
CHAPTER 17

OI_SHE_ABSgLHTl_COi™GMCE„OP_A 
LACTJNARY FOURIER SERIES

1. In a paper published in the year 1954 Noble
studied a laeunarity condition which enabled him to 
deduce results of general character concerning the 
behaviour of the Fourier coefficients and the absolute 
convergence of the lacunary Fourier series (L) under 
the assumption that the corresponding function f has 
certain property e.g* being of bounded variation or 
belonging to Lip «C , in a small subinterval of the 
Interval of periodicity. Noble*s laeunarity condition 
makes :it possible to relax restrictions on the behaviour 
of f. This approach of Noble gives rise to a question 
which was, in fact, posed by Noble himself. Suppose that 
the Fourier series of a function f converges absolutely 
as a consequence of a certain property P possessed by 
f in the whole interval C~7r , tt! . Is it possible to 
ensure the absolute convergence of the Fourier series of 
f under the assumption that f satisfies the property P 
In a subinterval (which may be arbitrarily :small) 
instead of the whole interval i> , V~] , by imposing 
some laeunarity conditions ? One may further ask as to

1) Noble 111]
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what will "be the weakest lacunarity condition which 
can ensure the absolute convergence of the Fourier 
series (L).

We have investigated in this chapter a 
lacunarity condition which is slightly weaker than 

Noble*s condition and which enables us to prove 

theorems of general character.
Let 1= ; | x - sQ| ^ 6 , 6 > o] denote

a subinterval of jjW , .

For h > o , let

(1) Xj(h) = log(e + h"*1) ,

= log log(ee + h"*1) , ......  etc.,

Let
(2) ^k ~ m^n ^nk “ nk-l* nk+l “

1)The following theorem is due to Noble . 

THEOREM ki If

(3) lim
-

log nk oo ,

•"M

and if f(x) 6 Lip < , where g < =C < 1 , in some 
subinterval I, then the series (L) is absolutely 

convergent.

1) Noble [ll3
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It may be noted that if we omit the
lacunarity condition (3) and take the interval I = H-w , irl ,

l)then this theorem reduces to a theorem due to Bernstein .

In the following, we discuss a condition on f 
under which the series (L) - converges absolutely even 
when f 6 Lip i . Our lacunarity condition is weaker than 
Noble's condition (3), In fact, we prove the following 
theorem.
THEOREM 8: If

(4) lim --  = 3
log %

and if,

B > s73 (3 + 6) 
6 5

00(h) = tO(h , f) < Ah*
Xfh.) Jl£h)... /C£h)

, 6 > o ,

in a closed subinterval I, where h > o, fthen. the series (L) 
converges absolutely for < = ^ .

It may be noted that iftwer.bmit the lacunarity 
condition (4) and take the interval I = £-7r , ttJ then 
the theorem 8 is reduced to a theorem due to L.Neder^.

For proving theorem 8 , we require the following
lemmas:

1) Bernstein [3}
2) L. Neder [l03
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LEMMA 1 : Let o < 5 < v and let m be a positive
integer. There exists a trigonometric polynomial

(5) Tm(x) = 1 + ^t^ cosjx
I

such that

(6) |Tm(x)f < | A1 5"1 , for all x ,

(7) |Tm(x)| < A1 m2 3 6 exp(-2Ag6m),

(6 < fxj < 2rr-6)
xfhere A^ , A^ and Ag are positive absolute constants. 

Further if it is supposed that

(8) ^ y 3 log m + l
Ag m ?

then (7) gives the simpler inequality

(9) |Tm(x)| < A2 exp(-As8m), (6 ^ |x| < 2tt-5),

l5-
where Ag is an absolute constant.

This lemma is due to Noble"", but it has been
stated here in a form which ms given to it by Kennedy^.

3)The constant Ag can be chosen, as was done by Bary , to 
be l/8e .

1) Noble [ll3
2) Kennedy 1.73
3) Bary ( £23 , p.270 )
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LEMMA 2: If (L) is a Fourier series of f(x) and if
f(x) 6 L2(I), then f(x) 6 L2 , tt] .

This is a particular case of a very general
*L }theorem due to Paley --iWienerx', theorem XLII’.

PROOF OF THEOREM 8:
Without loss of generality we choose xQ = o . 

We shall prove this theorem for m = 2.
Let n^ > tr/6 . Choose a sequence such

that

(10) 18(3 + e) 
6 log nk < Mk < 36(3 4- e) 

6 log nk .

If k is large enough 

(ll) ^ , when nk < .■

Let

(12) [ (x) = f(x + ~ ) - f(x - -E—)k 2nk 2nk

so that g^(x) has its Fourier series

60 v 
^ BpV(13) >2 s±n g— ( cos HpX - sin npx) .
M k

Consequently "by the choice of , ibif k is 
is large enough,then g^(x) Tm (x) has Fourier coefficients

1) Paley - Wiener t.12^
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°C« ? Pn 5 where,,nP P

y

(14) <n = 2 sin ( )-k^ Ok \ ’

for "p ^ v
-2sin^

2nk J

How, by the hypothesis f(x) is bounded in I,
2 2 hence f(x) G L (I) and hence by lemma 2, f(x) 6 L fi-m , ir^

and consequently by Bessel’s in equality

(15)
2>|<

.2 . . 2b^)Sin n v 1 P
2nk )

< JL
4tt

_jT

4(x) TMk(x)te
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-tr+ 0(e“2AS(6/2)^ J" |f(x)|2dx), by lemma 1,

- a

0(-

+ 0( e 8e^ ^| f(x)|2dx)

—~xr

Now, using (10), it can be observed that

sA > 2l0g \ ’

and hence, we get.

A* -TT
,2|f(x)| dx = 0(l/n^).

Therefore, we get

i-’M*

(16) (a^+^)= CX
Using Cauchy's inequality, we get,
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K-f-l Z “ °t)k
(17) ^(la^l + fb^!) a 0(

M 2k+l^ ^~I+x5

0(7774<*i> ),

Wow, for k > 3 , we have,

, 0k+1

A (”^+i)= log(e+ —' )v

> log 2k-1

(18) = (k-l)log 2 ;

^^TE+T^'= log log ^®e + ,k+l
TT

> log log 2k-1

(19) 1> | log(k-l).

Therefore

(20)
K~H O.
^(1 anpf: * !%!) = 0(

(k~l)log1+e(k

)

when °£=

) .:-l>

WI
H
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Hence, absolute convergence of the series (L) follows 
from the convergence of the series

1
(k-l)log1+e(k-l)

This completes the proof of the theorem.
1)The following theorems are due to Noble . 

THEOREM B;
If the lacunarity condition (3) is satisfied 

and if f(x) 6 Lip °C, o < °C < 1,' in some smbinterval I, 
and t > 2/2°c+l , then,

co(21) Ki/ + lvl*> < 00 •
k>i k

THEOREM Ct
If the lacunarity condition (3) is satisfied 

and if f(x) 0 Lip <=C , o < < < 1 , in some' subinterval I, 
and t < < , then,

°° +. i(22) + |bnJ ) < °° •
kci

It may be noted that if we omit the lacunarity 
condition (3) and take the Interval I = J-ir , ,

2)then theorem B reduces to a theorem due to 0. Szasz

Id Noble [ill 
2) 0. Szasz [l4l
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1)and theorem G reduces to a theorem due to Hardy .
In the following, we discuss the conditions 

ofi f under which (21) holds for t = 2/2°C+l and (22) 

holds for t = °C. We also consider the weaker lacunarity 
condition given in (4).

We prove the following theorems.
THEOREM 9:

If the lacunarity condition (4) is satisfied

o < °C < 1 , then $21) holds for t = 2/2qC+1 .

THEOREM 10:-
Hnder the conditions of theorem 8, (22) holds

for t =
It may be remarked that if we omit the lacunarity

condition (4) and take the interval I = £-ir , ,
then theorems 9 and 10 reduce to the theorems proved 

2)by Zannen .
We prove these theorems for m = 2.

1) ‘Hardy C5l
2) Zannen ^20\

and

(23) | f(x+h)~f(x) | < in I,



65

PROOF OF !EHEOREM 9: '
Let

2 o , ,2r_ = ar .+ b .^ ^p ^p
Choosing the sequence as in (10) and 

using the method of theorem 8, we get, as in (16) above

( 24 ) i* s= ( —  ----------- -----------  j )^ -fiMb&Air1'
Using (18) and (19), we get.

(25)
K+l

1k%-
Row,‘"-we apply Holder's inequality to get,

\<-V-1 fc+l .(Kf rioi "p

K+l

< 1
(2°C+l).t . 2

k(l-
2k<t ^(k„1)log1+e(lc-1)|-|^

M
id

*
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A
(k-l)log1+e(k-l)

• fdr * = §5%:

Therefore, the convergence of ;>r^ follows from 

convergence of

o°

i

the

(k-l)log“L+e(k-l)

Since as also , do not

4-

exceed r, it follows that the series (21) is 
P

convergent.

PROOF OF THEOREM 10:

From (17), we have,

K+l
Z.

C(S'*'S15 “ 0(
(i «c)k

X(——) fi+&(..F %
^ ~1r+V ^ >

)
-k+l k+l-

Therefore,

K+l
7~- - 1

+ ,v)<A
(k+l)(°c-4- ) k(4-*-oc)

_2______ ^ . 2

^ >'
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< A by (18) and (19)1+G(k-l)log (k-l)
Hence the convergence ©f (22), for t = < , follows

DEFINITION 1. Let 1 he the set of real numbers, and 
let °C > o. We say that f(x) 6 Lip °C in E, if

uniformly for x in E, as h —o. through unrestricted 
real values.
DEFINITION 2. A subset E of tv , ir1 , is said to
have a positive spread if there is a number ; d > o 
such that, for every;-integer P > 1, 1 contains P points 
x , x , .....,x ; satisfying |x -x | > dP , (p 9^q.).

X. j? P SI
discussed the absolute convergence 

of the series (L) by,replacing the subinterval I by a

from the convergence of

2 We shall need the following two definitions.

|f(x + h) - f(x) I = Q(|h|°C)

set, a subset E of positive spread. But, in doing so

1) Kennedy £71
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Noble's laeunarity condition (§) has been replaced by 

a stronger laeunarity condition^ In fact, the following 

theorem is proved by Kennedy.

THEOREM D:

Let

(26)
Vi "■ \ ,

lim ---------------------s°° , ( o < p < 1).
k—oo _B _\ log nk

Let f(x) 6 Lip <=C, o < °C < 1 in S, a subset 

of [W , ^3 of positive spread. Then

(27) ank = OO/ttjf5 >

V ■ o o/4p) ^
and the series (L) is absolutely convergent if 

(28) oc > | ((T1 - 1).

The author was unable to decide whether the 

conclusion of the theorem breaks down when

< = | ((T1 - 1).
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Here, we study a condition on fix) underwhich 
the series (L) is absolutely convergent for

«c = | cr1 -1)-
Let P be a positive integer satisfying

—1 T —1(29) P < tt 6 , AgP exp(-Ag6m). < g ^ S ,

where o < 6 < v and m is a positive integer such that 
(8) is satisfied.

Further, let the P pointsva^ , Xg Xp
in L-ir , satisfy

(30) ]Xp - xq| >26 (p * q) 9 

and put

(31) Sm(x) = |j ^ Tm(x - x1) ,
l-1

where Tffl is the trigonometric polynomial given in lemma 1.
We shall also need some results pertaining to 

Sm(x) due to Kennedy*^ which we state in the form of 

lemmas.
LEMMA 3: (i) Sm(x) is a trigonometric polynomial
of degree m at most, with constant term 1 ;
(ii) |Sm(x)| < A1(P 6) 1 , for all x ,

l) Kennedy
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(iii) |Sm(x)| < Ag exp(“Ag8 ra) , for all x ,

In outside the union of the set of

intervals |x - xg| < 8 , ( X= 1,2,3, ....,P);

(iv) |S^(x)I < 2Aim(P ST1 , for all x.

LffMMA. 4: Let P "be even and let tj he as in (5) and

let x£ he defined hy

(32) x£ = , ( 1= 1,2,... P).

Then, we have,

(33) Sm(x) = 1 + ^tj cos jx , .

where the summation is over all integers j which are 

multiple of P and satisfy 1 < j < m.

how we are in a position to prove the 

following theorem.

THEOREM 11:

If the lacunarity condition (26) holdsaarid if

o£

| f(x+h)-f(x)! = 0(-—------------------------------- ) , e > o,
i,(h) yh) .... jJ+e(h)

h > o , in E, as h —-> o through unrestricted real
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Tallies, then the series (L) is absolutely convergent 

for

< =| (p”1 - 1).

PROOF :
We shall prove the theorem for m = 2.
Let

(34) 4 106 “kl '

Let

(36) 6k = , Pk = Ho 4] ,

where c > o is a constant.
If we let m = m^. and 5 ~ 8^ , then by (34) 

and (35), (8) is true for all sufficiently large k, 
since p < 1. If further, we take c small enough and 
put P = P^ , then, for all sufficiently large k, (29) 
is true and

(36) d P^1 > 2 5k ,

where d is as in definition 2 for the set E.
Let gjj-Cx) be as in (12). Then the Fourier 

series of g^(x) is given by (13).
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Choose P points f\ ( JL- 1,2,....P, )

from the set E, satisfying |x. - x } > 26. , (p ^ q);

This is possible because E has positive spread and hence 
(36) holds for all sufficiently large k.

Let Em^,(x) be Sm(x) as in (33), with m = m^, 
6=6^ and P = P^.

Let

(37) ”k < K - Vl’ Vl - V-

Consequently, by the 

large enough, gfc(x ’ V x) has ^ELp ’ Prip 5 where

choice of m^. , if k is 
the Fourier coefficients

II ITS ■ s% sln )
k

3 Up ruv•2anPsin 5 *

f°r "j, > nk.

Now, f(x) 6 L |“-tt , if\ , using lemma 2,
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because it results from the hypothesis that f is 
bounded in a closed subinterval I and consequently 
f e L2(I). Hence g^x) S%(x) 0 L2 [-7r , tt! . 

Consequently, by Bessel*s inequality

TT~

—"77““

Let E^. be the union of the set of intervals
ix - x£\ < 6^ , (i= 1,2, ...  , Pfc).

Outside E^, we have

S%(x) = O(n^)

by n lemma 3.(iii) ,(34) and (35); and

s%(^) =

uniformly for x in , by -lemma 3(ii), and (35). 
Therefore

-tr(39) J^g^(x)S^.(x)dx = Q(J'g^(x)dx^ + 0(nj“6).

e.

H
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But if Jx - Xgf < 6^ , and k is large enough, then

I x - 2n,_ ” f ^ 25k ’

and so, "by the condition satisfied by f(x) in E, 

since x^ 6 E, we have

|gk(x)| < |f(x + ^-fCxf)! + |f(x^)-f(x- ^-)j

(40)

that

0(
k

i,(8k) 4+6(Sk)

Collecting (35), (38), (39), (40) and observing

^£,(6^) = O(log n^)

$k) = 0(log log n^) ,

for k large enough, we get,

JL-V^

C41) §% + = 0(

n-
-2°Cj3
k

»)(logn^- loglog1+enk)2 ’

and from this it follows that
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K+l
(42) £(a®

12* •P
0( 2 -2k°C(3

(k-log1+ek)2

for k large enough.
Using Cauchy’s inequality and noting that, 

hy the lacunarity condition, the number of nonvanishing 
terms in the sum on the left hand side of (42) is

0( 2^ we get5

(43) ^(la-np!
&

(~°cp + y*)k
= O (—------------, i- i+ek1 log jc

+ KPI) = 0( -°cpk

k log1+6k
(l-f)k/2 

2 )

when 1)

0(- k-log1+ek -)

From this follows the absolute convergence of the 
series (L). 7b

Elis completes the proof of the theorem 
We also prove the following theorems:
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THEOREM 12:

Under the conditions of theorem D,
oo(44) <^(Ian^l + l^njjl ^

is convergent for

. 3. - .p .
1 > ITTT^-FT ‘<p + C-rr1)

THEOREM 13:
If the lacunarity condition (26) is 

satisfied and if

(45) |f(x+h)-f(x)[ - 0(—-—h-:» „akp+(i-p)’.
(>4(h) 4(h):.: ^+etH))_’4l-^

6 > o , h > o , in E, as h—>o through nnrestricted 
real values, then (44) is convergent for

1 - P
°C(3 + 1-P

THEOREM 14:
Under the conditions of theorem D,

- -CO ,

(46) t
K'|

is convergent for
t < | p + «Cp.
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THEOREM 15:
Under the conditions of theorem 11, the 

series (46) is convergent for

t = \ p+ .

PROOF OF THEOREM 12:

Let
r2" =aS + b2

Under the conditions of the theorem, using 
((4.7),p.204) of Kennedy*^, we have

K+l

(47) r2 = 0(2“2kc<P) .
^ *

Applying Holder’s inequality and noting 
that the number of nonvanishing terms in the above 
sum (47) are 0(2^1“l3 '>k), we get,

(l-B)k(l- b 2 2

= 0<2'
-kpcpt + (l-p)(l- |)k

^ )
Therefore, the convergence of 
convergence of

follows from the

1) Kennedy
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Kcl

which does converge!-: when

t >
1 - p

ocp + (M)

From this, follows the convergence of the series (44). 

PROOF OF THEOREM 13:

Me shall prove this theorem for m = 2.

Using (39) and (45), we have,

K+l
t
S ”p

0(
-2k<£

(k-log'^k)
2°Cp + (1-p) 

(1-p)

Applying Holder's inequality, as in theorem 12,

we get

K+l

'K F 

x
oc

-k°cpt- (i-e)k(i- |)

2ccp + (1-p) ^
(k•log1+ek) 2(1-R)

)

0( : TZp; ) , when t = ------- =-£
k ■ log-^k

From this follows the convergence of the series (44).
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PROOF OF THEOREM 14:
From Kennedy^, we have

K-H

2
oK

np 1*4^1 + !%!>
0(BkCt” ®).2(2 §

, (t - J 8 - <=C8)k
OC 2 2 )

and hence the series (46) converges when t < (3 + °C{3.

<j3)k'
))

PROOF OF THEOREM 15:

We shall prove this theorem for m = 2. 

Using (43), we have,
co

0Q
-!

I

H+

A TX
>

C
O

ww©iHX

C
C
L

V0Q
_

irilNII

+3£©•g£
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F
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]
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via©

l) Kennedy ( £73 , p*204 )
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3 Masako Sato discussed the absolute convergence

of the series (L) where the function f satisfy some 

continuity condition at a point, instead of in a 

small subinterval, and proved the following theorems. 

THEOREM E;

Let o < °C < 1, and o < j3 < min (1-°C , ).

If

2/2-°C*-2p 2h/2+oC+|3
(48) ' k < < e ,

(49)

(SO)

(51)

then

(52)

IV i - *^1 > 4ek ng. , .

ip 1 |f(t)-f(t + h) |dt = 0(h*) , 

o

r
o

r
Jf(t)-f(t+h)|dt = O(l),unif.int> h ,

an-
■k

Jn-■k

= 0(l/n^) ,

■

THEOREM F;

Let ~<a<oC<l,o<|3<(2- <0/3,

l) Masako Sato ( £,83 ; £9 3 )
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and p/2 <°C*-a<(2-°C~ p)/4.

(53)

(54)

If
l/2°C-2a~(3

k
2k/2+°C+p

< n, < eK
*

(49) Is satisfied,

i f!f(t)-f(t +h)|2dt = 0(h2<*)
J
O

as h—> o 9

(55) ~-j|f(t)-f(t + h)| dt = CKl) unif.in r' > h ,
O

then, the series (I>) is absolutely convergent.
We discuss, here, the absolute convergence

of the series (L) only under the conditions of
theorem E. We are also able to cover a greater range
of =C i.e. I < «C < 1.

2 “
More precisely we prove the following

theorem.
THEOREM 16:

Let g < < < 1 and o < p < min( l~°c, ).

- If the conditions (48) , (49), (50) and (51) 
are satisfied, then the series (L) is absolutely 
convergent.

We need the following lemma for the proof 
of the theorem.
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LEMMA. :

If the sequence ^n^ satisfies the condition 

(49), then,for all sufficiently large k,

(56) 2+(3
> ck ,

where c Is an absolute constant. 

PROOF: From (49), we have,

n.w - "k > 4alc \ ’

and observing that > p on account of the lacunarity, 

we get,

k

k+1 1 .<* p+i p
r-i

4e £p nr
V*^i

k
> 4e 1+p

Therefore

( 1+P

v-i >ni+ 4e y dtt

+ 4e
. 2+(3k H . l
2+p 2+p
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= l£2+P{4| + 1 (n
k2+p 2 +12+p

s, 8e
2+p ’

by choosing k large enough. Hence the lemma is proved. 

PROOF OF THEOREM 16:
Under the hypothesis of this theorem

a-■n^l + lv l 12 oc-V)k n.°C ' »

= ^+o^~) » the lemma.

How, our hypothesis implies that 2°c > 1 and

S°C > o, and hence <7—_1----) is convergent, which
H < \ 2oc+poc
implies the convergence of /^lankl + |bnk( ). Hence

U-|
the theorem is proved.

We also prove the following theorems. 

THEOREM 17;

Let o < °C < 1. Under the hypothesis of 

theorem 16,
°° + 4-

k-»
is convergent for t > l/2°c.
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THEOREM 18:

Let o < < < 1. Under the hypothesis of 

theorem 16,
^ 1

K-» K K

is convergent for t < < .

PROOF OF THEOREM 17:

We have, under the hypothesis of theorem 16,

(Kj‘ + |^jh = OC ) ,
"• A n^

and using the lemma

+ ibnk!t} = +"'p'ccF") »

for all sufficiently large k.

Our hypothesis implies that 2°Ct > 1 , and 

p°Ct > o, and hence

o°
< ___I< 2°Ct + 8°Ct

K=t k

is convergent, -which implies the convergence of 

&>

!,< K'*+
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PROOF OF THEOREM 18: 

We have

oc <<-t+ £
n-

= o<—-1—j-),(2+p)(=C-t+

for all sufficiently large k,

Oc
k

1 + | + (<-t)(2+p)
).

How, our hypothesis implies that °C~t > o , 

and p/2 > o , hence the series
CP

<r i< "l + | ^(oC-t)(2+8) 
k z

is convergent which implies the convergence of 

°° (t - ~)
^k Cjan j + fhn-l).

In theorem 16, we discussed the absolute4.
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convergence of- the series (t) for the range < °C < 1.

This range can be extended in the discussion of the 
almost everywhere convergence of the series (L). In 
this connection we prove the following theorem.
THEOREM 19:

Under the hypothesis of theorem 16, the
Tseries (L) is almost everywhere convergent for ^ < °C < 1. 

PROOF:
Under the hypothesis of the theorem 16,

we have,

(ank + ^ = }

4°C+2°Cp= 0(1/2 ), by the lemma.

How, our hypothesis implies that 4°C > 1 and
2°Cp > o, which implies the convergence of 

oo

2 - 1)Hence f 6 L fW , rr^ . Then by Carleson theorem,
the series (L) is almost everywhere convergent.
This completes the proof of the theorem.

l) Carleson [4f\


