CHAPTER V

ON THE CONVERGENCE OF A TLACUNARY FOURILR
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1 In this section, we discuss the convergence
of the series (L) and its conjugate series (Iy) in
[-m , 7} , when the function f satisfies a certain
condition in some subinterval I of [-m , 7]. The
following theorems are due to Kennedyl).

THEOREM A:

If £f(x) is of bounded variation in some

subinterval T, ahdnif ny 4 - ny —H00 as k — o0 , then
apy, = O(1/my),

bnk

THEOREM B:
If f(x) € Lip « in some subinterval I, :h-n

and ifnk+l-nk->oo as k— o« 4 theéen

]

O/n)

ank

i

oy, O(1/n0).
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1) Kennedy 1[6]
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We prove the following theorems.

THEOREM 20:

I £(x) € 12 (I),then the series (L) and
its conjugate series (Iy) dre almost everywhere
convergent.

THEOREM 21:

If £(x) is of bounded variation in some
subinterval I, then the series (L) is convergent
to f{x + o) + f(x - 0)/2 at any point where this
expreséion has a meaning and the conjugate'seriés
is convergent to f(x) whenever it exists, and when
x is a point of the ILebesgue seb. '

PROOF OF THEOREM 20:

If £(x) € 1?(1), then by lemma 2, chapter IV,

£(x) € 1° [~r 4, 7} , and hence by Carleson'sl)

theoremn,
the Fourier series (L) of f converges almost everywhere.
Also, by Riesz - FischerZ) theorem, the
conjugate series (L) is the Fourier series of
f(x) e Lz:[uw , T\ whenever f(x).€ 12 [-7y 7} and
hence the series‘(Ll) is almost everywhere convergent»
by Carleson's theorem. »
PROOF OF THEOREM 21: )
_If 8y are the partial sums and 6n are the
arithmetic means of order n for the series

1) Cafleson [41 .
2) Bary ( [13, p.64 )




uo+u1+112+osccuno +%+..i.~’

then,

7 - N

\ s ) ul+2u2+-..oo +nun
- 8n = *

(L Sn n n + 1

In case of a lacunary series, where in
calculating Fejdr sums it is necessary to replace the

absent terms by zerog,we have,

n k] +n + s e e + n
1%n; * Poln, 1%y,

(2) Snk - G—nkz 0y +. 1 )

Now, we take

unk = ankcosnkx + bnksin X in case of the

geries (L) and

unk

= b, cos mX = an, sin nyx 1in case of the
series (Ly).
Under the hypothesis of the theorem , we

have,

H

an, O(l/nk) .

br, (?(l/nk) , by theorem A.

Therefore

i

e O(1/ny)
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and hence, ‘
e Uy, = O().
Now, the number of terms in the numerator

of the right hand side of (2) is k, and hence,

Ak

| (3) {Snk - n | < e

where A is an absolute constant.
Now, -

k3o as k—>w ,

s
whenever: - L —Y 00,

Therefore

lsn,, ~ By | —>o .

Now, it is known that the Fourier series (L)
is summable (c, 1) to f(x + o) + f(x - 0)/2 for
every value of x for which this expression has a
meaning i.e.

0n~—> £(x + o) + £(x - 0)/2.
Hence Sp—> f(x +0) + f(x - 0)/2 for every value
of x for which this expression has a meaning.

It is also known that the series (I4) is
summable (C,; 1) to f(x) for every value of x
for which f(x) exists and when x is a point of the

Lebesgue set. Hence by the same argument as used
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above, (Iy) converges to f(x) whenever it exists,

and when x is a point of the Lebesgue set.

2 In this section we shall be concerned with the
series
Fel
Sy, = 8
(4) 2<...._.ﬁ._..._> ,
k
K=t
K
where Snk = Ziu ’ e ]
b=t

unp = anpcos n,x + bnpsin npx ’

and s is an appropriate number independent of 0.
Let
P(t) = £f(x + %) + £z - t) - 28/2.

We prove the following theorems.

THEOREM _22:

It £(x) is bounded and if
- [vs]

1

K=}

is convergent, then the series (4) is absolutely

convergent.
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THEOREM 23:
If -

. n
(1) ;Eﬁl —>1, as k—> 00 ,
“k

4

k+1
21
(4ii) - is convergent,
k=) k

then the series (4) is absolutely convergent.

THEOREM 24:

NTf f(x) is of bounded variation in some

subinterval IQ and if
(6) g%?ﬁ__.‘}},c.

is convergent, then the series (4) is absolutely
convergent,

THEOREM 25

If f(x) € Lip <, 0 < £ < 1, in some subinterval

I, and if I
2 5 -

—— v

K=y n%

is convergent, then the series (4) is absolutely

convergent.
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PROOF OF THEOREM 22:

We have in virtue of the lacunary Fourier

geries

. Sp -8 N SV PR
Therefore
‘Sn -8 n.

* 1 ) k+l \l )5»\«,%\«-: ,_t at
| Ny < 2w(nk+1- nk) ¢(t YN

i

2mingyg = M) Ty .ﬂq)(t Serie
o

Now, using E*L _ ~(1y , and also using the result
I
k

that
e

sin n.,t
[§ (8)| ——i— dt
k gin“t

(=

is bounded, whenever f(x) is bounded, we get,

i Sy Yol _~)+o

Ty E nk+1 = Dy )



= O(...._......._:.L.._.._..;._).
Ty T Ty

Hence the convergence of the series

(4) follows

from the convergence of the series (5).

PROOF OF THEOREM 23:

By the method similar to one

theorem 3, chapter II , we have,

Ny

[ = 0 (1/ny)

Hence the convergence of the series

oo
the convergence of the series ;{~1~

which is used in

(4) follows from

k=1 Dy
PROOF OF THEOREM 243
-8 - . + ¥ + s s +u - 8
(8) fmg =S Uny Yny Ny
nk ﬂk
We have

and hence,
1 1 1
- & m——— "’““"+ ooco.+"—'
Snk . A( nl+ Ny Ny )'”S!
<
Dy - Ny
where A is an absolute constant.
3 - log n
= ()(———~—33~).

Ny
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Hence the convergence of the serles (4) follows from
the convergence of the series (6)

PROOF OF THEOREM 25:

Under the hypothesis of the theorem, we have
.. = L
Ny C)‘nﬁ ) by theorem B.

Using (8), we get
+ 1 +

1 1
S - 8 A("""" e *—)""S[
n e < o
k < . nl“ ns nk
nk - nk
B
= k
= 0t =
Dy
1
= O -

e

Hence the convergence of the series (4) follows

from the convergence of the series

Theorems analogous to theorems 24 and 25

can be stated for the conjugate series (I,).



