CONTENTS

	LIST OF FIGURES	vii
	LIST OF TABLES	xvi
	ACRONYMS	xvii
CHAPTER 1		1-6
	INTRODUCTION	1
1.1	Overview	2
1.2	Roadmap	5
CHAPTER 2		7-33
	MULTILEVEL INVERTER to HYBRID MULTILEVEL INVERTER	7
2.1	Multilevel Inverter Configuration	. 8
	2.1.1 Working Principle of Multilevel Inverter	9
2.2	Diode Clamped Multilevel Inverter	10
2.3	Flying Capacitor Multilevel Inverter	12
2.4	Cascaded Multilevel Inverters	14
2.5	Features of Multilevel Inverter	16
2.6	Hybrid Multilevel Inverter	17
2.7	Classification of Hybrid Multilevel Inverter	17
	2.7.1 Asymmetric Hybrid Multilevel Inverter	17
	2.7.2 Hybrid Multilevel Inverter Based on Half-Bridge Modules	19
	2.7.3 New Symmetrical Hybrid Multilevel Inverters	21
	2.7.4 Hybrid Clamped Five-Level Inverter Topology	23
	2.7.5 Distinct Series Connected Cells Hybrid Multilevel Inverter	24
	2.7.6 Hybrid Medium-Voltage Inverter Based on a NPC Inverter	26
	2.7.7 Hybrid Multilevel Inverter Based on Main Inverter and Conditioning Inverter	27
	2.7.8 New Hybrid Asymmetrical Multilevel H-Bridge Inverter	29
	2.7.9 Hybrid Multilevel Inverter with Single DC Source	30
2.8	Summary	33

i

CHAPTER 3		34-61
	NOVEL MODULATION TECHNIQUES FOR MULTILEVEL INVERTER	34
3.1	Classification of Different Modulation Techniques	35
3.2	Multi Carrier Pulse Width Modulation	36
	3.2.1 Carrier Disposition Techniques (CD)	37
	3.2.2 Phase Disposition (PD) Technique	37
	3.2.3 Phase Opposition Disposition (POD) Technique	38
	3.2.4 Alternative Phase Opposition Disposition (APOD) Technique	39
	3.2.5 Phase Shifted (PS) Technique	40
3.3	Hybrid Modulation Techniques	41
	3.3.1 Hybrid Modulation Strategy	41
	3.3.2 Inverted Sine Carrier PWM (ISCPWM)	43
	3.3.3 Variable Frequency Inverted Sine Carrier PWM (VFISPWM)	44
	3.3.4 Optimized Hybrid PDPWM	45
3.4	Switching Frequency Optimal PWM	46
	3.4.1 Multi Carrier Switching Frequency Optimal PWM (MC-SFOPWM)	47
	3.4.2 Phase Shifted Carrier Switching Frequency Optimal Pulse Width Modulation (PSC-SFO-PWM) or Phase-Shifted Suboptimal Carrier PWM (PS-SUB- PWM)	48
3.5	Higher and Lower Carrier Cells and Alternative Phase Opposition PWM(HLCCAPOPWM)	49
	3.5.1 Principle of HLCCAPOPWM	50
	3.5.2 HLCCAPOPWM Control Technique	51
3.6	Alternative Hybrid PWM (AHPWM)	53
	3.6.1 "W" PDPWM and "M" PDPWM Technique	53
3.7	Space Vector Modulation	55
	3.7.1 Space Vectors	55
	3.7.2 Switching Sequence	58
3.8	Comparison of Modulation Techniques on Basis of Modulation Index	60
3.9	Summary	61
		ii

-

HAPTER 4		62-90
	SIMULATION RESULTS for MULTILEVEL INVERTER and HYBIRD MULTILEVEL INVERTER	62
4.1	Simulations for Cascaded Multilevel Inverter	63
	4.1.1 Five Level Cascaded Multilevel Inverter	63
	4.1.1.1 Five Level Cascaded Multilevel Inverter with Staircase Technique	63
	4.1.1.2 Five Level Cascaded Multilevel Inverter with Phase Disposition Modulation Technique	65
	4.1.2 Seven Level Cascaded Multilevel Inverter	67
	4.1.2.1 Seven Level Cascaded Multilevel Inverter with Staircase Technique Using Three H Bridges	67
	4.1.2.2 Seven Level Cascaded Multilevel Inverter with Phase Disposition Modulation Technique	69
	4.1.3 Nine Level Cascaded Multilevel Inverter	71
	4.1.3.1 Nine Level Cascaded Multilevel Inverter with Staircase Technique Using Three H Bridges	71
4.2	Simulations for Hybrid Multilevel Inverter	74
	4.2.1 Asymmetric Hybrid Multilevel Inverter	74
	4.2.1.1 Single Phase Asymmetric Hybrid Multilevel Inverter with Hybrid Modulation Technique	74
	4.2.1.2 Single Phase Asymmetric Hybrid Multilevel Inverter with Phase Disposition Modulation Technique	78
•	4.2.1.3 Three Phase Asymmetric Hybrid Multilevel Inverter with Hybrid Modulation Technique	79
	4.2.2 Symmetrical Hybrid Multilevel Inverter	82
	4.2.2.1 Symmetrical Hybrid Multilevel Inverter with Staircase Technique	82
	4.2.2.2 Single Phase Symmetrical Hybrid Multilevel Inverter with Phase Shift Modulation Technique	83
	4.2.2.3 Three Phase Symmetrical Hybrid Multilevel Inverter with Phase Shift Modulation Technique	85
	4.2.3 Half Bridge Modules Based Hybrid Multilevel Inverter	86
	4.2.3.1 Single Phase Half Bridge Modules Based Hybrid Multilevel Inverter with Phase Shift Modulation Technique	87

CE

.

iii

	4.2.3.2 Three Phase Half Bridge Module Based Hybrid Multilevel Inverter with Phase Disposition Modulation Technique	89
4.3	Summary	90
CHAPTER 5		91-110
	SIMULATION RESULTS for SELECTED HYBIRD MULTILEVEL INVERTER	91
5.1	Simulations for Single Phase Hybrid Multilevel Inverter	92
	5.1.1 Simulations for HMLI with PD Modulation Technique	92
	5.1.2 Simulations for HMLI with POD Modulation Technique	93
	5.1.3 Simulations for HMLI with APOD Modulation Technique	94
	5.1.4 Simulations for HMLI with PS Modulation Technique	95
	5.1.5 Simulations for HMLI with Hybrid Modulation Technique	96
	5.1.6 Simulations for HMLI with Third Harmonic Injection Modulation Technique	97
	5.1.7 Simulations for HMLI with ISPWM Technique	99
5.2	Simulations for Three Phase Hybrid Multilevel Inverter	100
	5.2.1 Simulations for Three Phase HMLI with PD Modulation Technique	101
	5.2.2 Simulations for Three Phase HMLI with POD Modulation Technique	102
	5.2.3 Simulations for Three Phase HMLI with APOD Modulation Technique	104
	5.2.4 Simulations for Three Phase HMLI with PS Modulation Technique	105
	5.2.5 Simulations for Three Phase HMLI with Hybrid Modulation Technique	107
	5.2.6 Simulations for HMLI with Third Harmonic Injection Modulation Technique	108
5.3	Summary	110
CHAPTER 6		111-118
	CONTROL SIGNAL GENERATION	111
6.1	Digital Signal Processor	112
6.2	Flow of Control Signals	115

6.3	Driver Circuit	117
6.4	Summary	118
CHAPTER 7		119-123
	POWER CIRCUIT DESIGN	119
7.1	Design of Hybrid Multilevel Inverter	120
	7.1.1 Design of Single Phase Hybrid Multilevel Inverter	120
	7.1.2 MOSFET Selection	121
	7.1.3 Design of MOSFET Snubber	121
7.2	Design of Regulated Power Supply	122
7.3	Summary	123
CHAPTER 8		124-146
	EXPERIMENTAL RESULTS	124
8.1	Hardware Results for Single Phase Hybrid Multilevel Inverter	125
	8.1.1 Hardware Output for Single Phase HMLI without modulation	125
	8.1.2 Hardware Output for Single Phase HMLI with PD	127
8.2	Modulation Technique Hardware Results for Three Phase Hybrid Multilevel Inverter	130
	8.2.1 Hardware Output for Three Phase HMLI with PD Modulation Technique	130
	8.2.2 Hardware Output for Three Phase HMLI with POD Modulation Technique	136
	8.2.3 Hardware Output for Three Phase HMLI with APOD Modulation Technique	138
	8.2.4 Hardware Output for Three Phase HMLI with Third Harmonic Modulation Technique (PD)	140
8.3	Summary	146
CHAPTER 9		147-150
	CONCLUDING REMARKS and FUTURE SCOPE	147
9.1	Goals Reached	148
9.2	Innovations	149
9.3	Future Plans for Extension	149
9.4	Industry, Involvement and Interaction	150
CHAPTER 10		151-164
	BIBLIOGRAPHY	151

v

APPENDIX A		165-167
	DESIGN AND PRACTICAL READINGS for REGULATED POWER SUPPLY	165
A.1	Design for Regulated Power Supply	166
A.2	Practical Results for Regulated Power Supply	166
APPENDIX B		168-175
	PHOTO GALLERY	168
APPENDIX C		176-177
	WORKSHOPS ATTENDED and PAPERS PRESENTED/PUBLISHED	176