
Chapter 5

Soft-Computing
Techniques and

Development Tools

Chapter 5 Soft-Computing Techniques and Development Tools

Soft-Computing Techniques and Development Tools

5.1 Overview of Soft-Computing Techniques
Real world problems have to deal with systems which are non-linear, time-varying in nature with

uncertainty and high complexity. The computing of such systems is study of algorithmic processes

which describe and transform information: their theory, analysis, design, efficiency, implementa­

tion, and application. Conventional computing/Hard computing requires exact mathematical model

and lot of computation time [1], For such problems, methods which are computationally intelligent,

possess human like expertise and can adapt to the changing environment, can be used effectively and

efficiently. Soft Computing is an evolving collection of artificial intelligence methodologies aiming

to exploit the tolerance for imprecision and uncertainty that is inherent in human thinking and in real

life problems, to deliver robust, efficient and optimal solutions and to further explore and capture

the available design knowledge [2]. Soft computing utilizes computation, reasoning and inference

to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and

approximation. Numerous Soft Computing-based methods and applications have been reported in

the literature in a variety of scientific domains. The advances in application of Soft Computing

Techniques in various demanding domains has promoted its use in industrial applications [3,4],

Soft Computing with its roots in fuzzy logic, artificial neural network, and evolutionary compu­

tation has become one of the most important research field applied to numerous engineering areas

such as Aircraft, Communication networks, computer science, power systems and control applica­

tions. Soft Computing Techniques comprises of core methodologies: Fuzzy Systems (FS), including

Fuzzy Logic (FL); Evolutionary Computation (EC), including Genetic Algorithms (GAs); Artificial

Neural Networks (ANN), including Neural Computing (NC); Machine Learning (ML); and Proba­

bilistic Reasoning (PR) [5]. Where PR and FL systems are based on knowledge-driven reasoning,

whereas, ANN and EC, are data-driven search and optimization approaches. List of various problem

Solving Techniques are as shown in Figure 5.1.

Soft Computing Techniques consists of rich knowledge representation, knowledge acquisition

and knowledge processing for solving various applications. These techniques can be deployed as

individual tools or be integrated in unified and hybrid architectures. The fusion of Soft Computing

techniques causes a paradigm shift in engineering and science fields, which could not be solved with

the conventional computational tools. Soft Computing ha!: gain importance in the application fields

for wireless communication in the last decade. Wireless communication systems are associated with

67

Chapter 5 Soft-Computing Techniques and Development Tools

Figure 5.1: Various Problem Solving Techniques

much uncertainty and imprecision due to a number of stochastic processes such as time-varying

characteristics of the wireless channel caused by the mobility of transmitters, receivers, objects in

the environment and mobility of users. This reality has fueled numerous applications of soft com­

puting techniques in mobile and wireless communications [6]. The role of soft computing in the

domain of wireless systems can be classified into three broad categories, namely, optimization, pre­

diction and uncertainty management [7]. Evolutionary algorithms are mostly used for optimization.

Neural networks and other learning systems are used for different types of prediction tasks. Uncer­

tainties arising due to incomplete modeling and measurements are handled using fuzzy logic, either

in stand-alone manner or in conjunction with the optimization and prediction algorithms.

This chapter discusses the theoretical understanding of core Soft Computing Techniques i.e FL,

ANN and GA in detail. Also the simulation of these systems with MATLAB based Toolboxes is

presented. Various methods of using the tools for application oriented programming techniques

is briefly discus'sed. The advances of application of Soft Computing Techniques in the vast field

wireless communication is reviewed and presented in the chapter.

68

Chapter 5 Soft-Computing Techniques and Development Tools

5.2 Fuzzy Logic System
Fuzzy systems are based on fuzzy logic, a generalization of traditional Boolean logic which is

extended to handle the concept of partial truth i.e values between “complete true” and “complete

False”. Fuzzy Logic provides a set of mathematical methods for representing information in a way

that resembles natural human reasoning and deals with system uncertainty and vagueness [9]. Con­

cepts of fuzzy sets, fuzzy logic and fuzzy control have been introduced and developed by L.Zadeh in

a series of articles spanning several years [10-13]. Fuzziness is imprecision or vagueness, a fuzzy

proposition may be true to some degree. For example we use a linguistic variable like short, tall,

very tall for HEIGHT or maybe young, old for AGE. Fuzzy logic is viewed as a formal mathematical

theory for the representation of uncertainty [14,15].

Figure 5.2: Fuzzy Logic System

A Fuzzy Logic System is an expert system that uses a collection of fuzzy membership functions

and fuzzy IF-THEN rule base, instead of Boolean logic, to reason about data. The rules in a Fuzzy

Logic System are of a form as following:

69

Chapter 5 Soft-Computing Techniques and Development Tools

IF (a is LOW) AND (y is HIGH) THEN (z is MEDIUM),

IF (premise) THEN (Conclusion)

where x and y are input variables for known data values, z is an output variable for an output

data to be computed, LOW is a membership function (fuzzy subset) defined on the set of x, HIGH is

a membership function defined on the set of y,and MEDIUM is a membership function defined on

the set of z.The antecedent (the rules premise, between IF and THEN) describes to what degree the

rule applies, while the consequent (the rules conclusion, following THEN) assigns a membership

function to each of one or more output variables. The set of rules in a Fuzzy Logic System is known

as the rule base or knowledge base. Figure 5.2 shows the Fuzzy Logic System Block Diagram.

Algorithm 5.1 Fuzzy Logic Algorithm
- Initialization:

• Define Linguistic variables and terms

• Construct Membership Functions

• Construct Rule Base

- Fuzzification: Convert crisp input data to fuzzy values using the membership functions
- Inference: Evaluate the rules in the rule base and combine the results in rule base
- Defuzzification: Convert output data to non-fuzzy values

The Fuzzy Inference Process consists of following steps [16]:

• Fuzzification: The membership functions defined on the input variables are applied to their

actual values, to determine the degree of truth for each rule premise.

• Fuzzy Inference Engine: The truth value for the premise of each rule is computed, and applied

to the conclusion part of each rule. This results in one fuzzy subset to be assigned to each

output variable for each rule. The aggregation method min or product is used as inference

rules. After Inference, the composition of all fuzzy sets is carried out. Under composition, all

of the fuzzy subsets assigned to each output variable are combined together to form a single

fuzzy subset for each output variable. Usually max or sum is used.

• Defuzzification: It convert the fuzzy output set to a crisp number. There are many defuzzifi­

cation methods [17,18]. The Fuzzy Logic Algorithm steps is as given in Algorithm 5.1.

Qor modeling, simulation and design of Fuzzy Logic Systems usage of simulation software

packages has become apart of engineering practice. MATLAB consists of Fuzzy Logic Toolbox

70

Chapter 5 Soft-Computing Techniques and Development Tools

1P<
FIS Editor

Rule Editor

rein*

BfMdnoi risi

fcmm fei

that allows designers to create fuzzy systems, the description of the features of the Fuzzy Logic

Toolbox is described in next Section.

5.2.1 MATLAB Simulation-Fuzzy Logic Toolbox

The Fuzzy Logic Systems can be designed and simulated using MATLAB Fuzzy Logic Toolbox

[19]. The Fuzzy Logic Toolbox, provides functions and GUI based editors for building Fuzzy

Inference System (FIS).

Membership
Function Editor

Dumb* It hip F mr Hon (
» M i»- ^

not FBI
t

i x>

SrtM* TB1* 2 unit. loJpU. ird 9 nits

Rule
Viewer

D Rul» V*w*i FIS1 - ofcj

Hr U1 V*w Of/nm

' i | l 1 1

2 1 | |
I

4 1 i 1 ; i

5 i ; i i i
t , .. J
7 1

«
9 i

3 | ?o ° "» n_ _ _ _
41 11

hi l».50| porta ioi ||*~* *•[’9* *> «4>:|

C**r*d :ra«t F1S1,9 niet II—ae. as 1

EJSuiUr* V*w*i FIS1
Fte Edt View OpOorts

I” 101 || HW I

Surface
Viewer

Figure 5.3: Fuzzy Inference System Editors and Viewers

Table 5.1: List of FIS Editor Blocks and description

FIS editor is a GUI which contains editors and viewers for building rule sets, defining mem­

bership functions and for analyzing the behavior of FIS. The toolbox also has ability to embed FIS

’(r»U) pqjj.j v CcnM v Z(COJXJ) „

15 Y grcfc 15

FIS Editor Blocks Description
FIS Editor Display general Information about FIS

Membership Function
Editor

Display and edit the MFs associated
with the input and output variables of FIS

Rule Base Editor View and edit fuzzy rules
Rule Viewer View detailed behavior of a FIS to help es

diagnose the behavior of specific rul
Surface Viewer Generates a 3-D surface from two

input variables and the output of FIS

I
if si,;1

j illi
ifl

i
'i5

!1
 H

ip M
l

P
iip
j!

Bl
lll

ii

: ‘
1

71

Chapter 5 Soft-Computing Techniques and Development Tools

in Simulink model for simulation and to generate C code or stand-alone executable fuzzy inference

engines. The editors and viewers of FIS Editor is as shown in Figure 5.3. Description of each editors

and viewers are listed in Table 5.1.

Figure 5.4: FLC in Simulink

MATLAB Function Description
newfis Create new Fuzzy Inference System
readfis Load FIS from File
evalfis Perform Fuzzy Inference Calculations
addvar Add variable to FIS
addmf Add MF’s tro FIS
addrule Add rule to FIS
defuzz Defuzzify Membershipo Functions

Table 5.2: List of MATLAB Functions for Designing FIS

FIS performance can be evaluated using the Fuzzy Logic Controller (FLC) block in a Simulink

model. The Fuzzy Logic Controller block automatically generates a hierarchical block diagram

representation for Fuzzy Logic controller designed. This representation uses only built-in Simulink

flocks, enabling efficient code generation. The Fuzzy Logic blocks available in Simulink and the

detailed representation is as shown in Figure 5.4.

72

Chapter 5 Soft-Computing Techniques and Development Tools

The FIS model can also be designed using the programming functions provided in the Fuzzy

Logic Toolbox. Table 5.2 lists few MATLAB Functions to design FIS System.

5.3 Artificial Neural Networks
An Artificial Neural Network (ANN) is an information processing paradigm that is inspired

by the biological neural networks, which consists of massively parallel computing systems with

large number of simple processors with many interconnections [20]. ANN methodologies consists

of basic architecture known as ’’Neurons”. A neuron or nerve cell is a special biological cells

that processes information in human brain. Brief description on Biological Neurons and Neural

Networks can be found in [21]. ANNs are applied to solve various challenging problems like

Classification [22], Clustering, Function Approximation [23-25], Prediction/Forecasting, Medical

Imaging Application [27],Optimization and Control related applications [26],

5.3.1 McCulloch and Pitts Model of Neuron

The science of ANN has its first significance appearance during the 1940’s, when researchers

McCulloch and Pitts [28,29] tried to emulate the functions of human brain by developing physical

model of biological neuron and their interconnections [30]. Their work was focus on a simple

neuron, which were considered to be binary with fixed thresholds as shown in Figure 5.5.

Inputs Weights

Figure 5.5: McCulloch-Pitts model neuron

The threshold unit receives input from N other units. Input from ith unit is termed as ®j, and the

associated weight is tu*. The total input to a unit is the weighted sum over all inputs

73

Chapter 5 Soft-Computing Techniques and Development Tools

N
Y WiXi = WiXi + W2X2 +... + WNXN (5.1)

If this value is below threshold t, the output of the unit is 1 and 0 otherwise. The McCulloch-

Pitts model of a neuron is so simple that it only generates a binary output and also the weight and

threshold values are fixed. But, it has substantial computing potential. The neural computing algo­

rithm has diverse features for various applications . Thus, we need to obtain the neural model with

more flexible computational features. Based on the McCulloch-Pitts model described previously,

the general form an artificial neuron can be described in two stages shown in Figure 5.7.

inputs Weights

In the first stage, the linear combination of inputs is calculated. Each value of input array is

associated with its weight value, which is normally between 0 and 1. Also, the summation function

often takes an extra input value Theta with weight value of 1 to represent threshold or bias of a

neuron. The summation function will be then performed as:

N
a = YWiXi + 9 (5-2)

i= 1

The sum-of-product value is then passed into the second stage to perform the activation function

which generates the output from the neuron. The activation function “squashes” the amplitude the

output in the range of [0,1] or [-1,1] alternately. The behavior of the activation function will describe

the characteristics of a neuron model.

Bias (6)

Figure 5.6: Artificial Neuron

74

Fnn

r\

Hidden ■ Output
Layer Layer

(a) Single neuron

Figure 5.7: (a) Feed-forward (FNN) and (b) Recurrent Neural Network (RNN) Architectures

• Feed-forward Networks: In this type of network neurons are organized into layers that have

unidirectional connection between them. This networks are static in nature as they have no

feedback and hence no delays, the output is calculated directly from the input through feedfor­

ward connections. They are memory-less networks as its response to an input is independent

of the previous network state. Types of Feed-forward networks include: Single-Layer per-

ceptron , Multilayer perceptron and Radial Basis Function networks. Figure 5.7 (a), shows a

single layer Feed-forward neural network with n inputs and m outputs.

• Recurrent or Feedback Networks: These networks are dynamic in nature i.e. the outut

depends on the current and previous inputs, outputs and states of network. Due to feedback

paths, the input to each neuron is modified according to the feedback value and the network

enters into a new state. Types of recurrent networks are: Competitive networks, Kohonen’s

Self-organizing Maps (SOM), Hopfield Network and ART models. Figure 5.7 (b). shows a

Recurrent Neural network' which consists of feedback paths from output to input neurons.

There can be neurons with self-feedback links.

5.3.2 ANN Network Architectures

ANNs can be viewed as weighted directed graphs in which artificial neurons are nodes and

their weights are connections between neuron outputs and neuron inputs. Based on the connection

pattern (architecture), ANNs can be classified into two categories [31,32]:

Chapter 5 Soft-Computing Techniques and Development Tools

("
O

ut
pu

t J
)

S’
 =!

«<
 XJ

m
 c

JQ

75

Chapter 5 Soft-Computing Techniques and Development Tools

The ability to learn is a fundamental trait of intelligence of ANN. In learning process, ANN

updates network architecture and connection weights from training patterns. ANN’s ability to learn

from examples makes it attractive for various applications in research field. ANNs learn the underly­

ing rules (like input-output relation) from the given collection of training data. Learning algorithms

[33] adjusts the weights of ANN using learning rules. Based on learning process there are three

types of learning paradigms:

• Supervised learning: also known as learning with a “teacher”, means the network is provifed

with the correct output for every input pattern. Connection weights are then determined so as

the allow the network to produce output very close to the correct answers. Examples of su­

pervised learning algorithms are Boltzmann learning algorithm, Learning vector quantization,

Back-propagation Adaline algorithm and Perception learning Algorithms.

• Unsupervised Learning: also know as learning without “teacher”, do not require correct

output answers for each input pattern in the training set provided. It explores the network

structure in data or correlations between input patterns, and organizes input patterns into cat­

egories from these correlations. Unsupervised Learning algorithms include Principal Compo­

nent Analysis, Associative memory Learning, Kohonen’s SOM, Adaptive resonance theory

(ART) algorithms.

• Hybrid learning: It combines supervised and unsupervised learning i.e. part of the weights

are determined through supervised learning and the remaining are obtained through unsuper­

vised learning. Radial Basis Function (RBF) Learning algorithm used for learning in RBF

networks using Error-correction and competitive learning rule is an example of Hybrid learn­

ing.

5.3.3 Designing Neural Network

The ANN design process follows number of systematic steps [34-36], It can be design using

following steps:

1. Collection of data: The data for which the neural network is to be designed, the data for

training the networks. It is termed as Inputs and Targets for the Neural networks [data preparation

for neural network].

2. Designing the network: It includes defining the architecture of Neural Network, it includes

defining the number of layers, number of nodes in each layer, defining Transfer functions for each

76

Chapter 5 Soft-Computing Techniques and Development Tools

layer, defining the training algorithm to train the network. Option parts of design includes: Error

function for neural network, plotting the data, number of echos.

3. Training the network: once the network is designed, it has to be trained to optimize the error

function. This process determines the best set of weights and biases for the collected data.

4. Testing the network: Finally the designed net is to be tested for accuracy and generalization.

5.3.4 MATLAB Simulation: Neural Network Toolbox

The MATLAB Neural Network Toolbox [37] provides tools for design, visualization and sim­

ulation of ANN. It supports many network paradigms and provides GUI which enables user to de­

sign networks. Neural Network Toolbox supports a variety of supervised and unsupervised network

architectures. With the toolboxs modular approach to building networks, custom network architec­

tures for specific problem can be developed. The network architecture including all inputs, layers,

outputs, and interconnections can be viewed. The features of GUI are as shown in Figure 5.8. The

Neural network Start GUI provides examples and data sets for designing neural networks. It con­

sists of Fitting Tool, Pattern recognition Tool, Clustering Tool and Time Series Tool for designing

ANN for various Applications.

77

Chapter 5 Soft-Computing Techniques and Development Tools

The toolbox can also be used by basic command-line operations. The command-line operations

offer more flexibility than the GUIs, but with some added complexity. Various ANN architectures

can be designed using command line functions like feedforwardnet for creating a feed-forward

neural network. Number of parameters for ANN like number of hidden layer, activation functions,

input nodes, training algorithm can be set using numerous MATLAB functions provided in the

Toolbox. Example of sample code for designing, viewing, evaluating, training and creating simulink

model for Feedforward network with 5 hidden layers is as below:
[x,t]=simplefit_dataset; % data set for training ANN
net=feedforwardnet(5) % Creates FNN
net=train(net,x,t); % Training of net
view(net) % View the net designed
y=net(x); % Evaluate net for x input
perf=perform(net,y,t) % Calculate network performance
gensim(net) % Generates simulink model for the net

Figure 5.9: Neural Network Simulink model

Alternatively, Networks can be created and trained in the MATLAB environment and automat­

ically generate network simulation blocks for use with Simulink using gensim command. This

approach also enables users to view networks graphically. Example of Custom neural network cre­

ated by the gensim' command for the sample code of feedforward network is as shown in Figure

5.9.

78

Chapter 5 Soft-Computing Techniques and Development Tools

Neural Network Toolbox provides set of blocks for building neural networks in Simulink. These

blocks are divided into four libraries:

• Transfer function blocks, which take a net input vector and generate a corresponding output

vector

• Net input function blocks, which take any number of weighted input vectors, weight-layer

output vectors, and bias vectors, and return a net input vector

• Weight function blocks, which apply a neuron’s weight vector to an input vector (or a layer

output vector) to get a weighted input value for a neuron

• Data pre-processing blocks, which map input and output data into the ranges best suited for

the neural network to handle directly

NN Predictive
Controtter

NARMA-L2
Controller

X(2Y) Graph

... Net Input X > nftfnrnri ?
Functions > netsum

Figure 5.10: Neural Network Toolbox Simulink Blocks

Figure 5.10, shows the set of blocks provides by Neural Network Toolbox for simulating Neural

Networks in Simulink. Neural Network Simulink blocks consists of Control Systems, Net Input

functions, numerous Pre and Post processing Functions, various Transfer Functions and Weight

functions for designing Neural Networks for various applications. Using these blocks ANN Archi­

tecture is designed and its performance and analysis is carried out for system analysis.

79

Chapter 5 Soft-Computing Techniques and Development Tools

5.4 Genetic Algorithms
Since 1950s several researchers have studied Evolutionary Systems as an optimization tool for

engineering problems. The basic idea in all these systems were to evolve a population of candi­

date solutions of a given problem, using operators inspired by natural genetic variation and natural

selection [39]. In 1970’s, the pioneering work of J.H. Holland proved to be significant contribu­

tion for various engineering and scientific applications. Holland’s book “Adaptation in Natural and

Artificial Systems” [40] was instrumental in creating the flourishing field of research in Genetic

Algorithms. The well known applications of GA include scheduling, sequencing, reliability design,

and image processing [41].

5.4.1 Introduction

Genetic Algorithms are inspired by the mechanism of natural selection, which is a biological

process in whcih stronger individuals are more likely to be winners in a competing environment

[42]. GA assumes that the solution of a problem is an individual, which can be represented by a set

of parameters. These parameters are known as genes of the chromosomes and can be represented by

string of binary values. GAs is a search technique which start with an initial set of random solutions

known as population. Each individual in population is called chromosomes, which is a string of

binary values. The chromosomes evolve through successive iterations, called generations. During

each iteration the chromosome evolve using some measures of fitness. Then the next generation

is created, where the new chromosomes called as off-springs, are formed by either merging two

chromosomes from current generation using a crossover operator or modifying a chromosome using

a mutation operator. New generation is formed by selection, based on the fitness values, some of

the parents and off springs are rejected to keep the population size constant. After several iterations

the algorithm converges to the best chromosome, which represents the optimum or sup-optimum

solution to the problem [43], Figure 5.11. shows the basic structure of Genetic Algorithms. The

Standard genetic Algorithm [42,44] is given in Algorithm 5.4.1.

Genetic Algorithm tools are available to evaluate the optimization problem. The GA toolkits

and libraries available [45,46] based on C++ programming include GALib, The Genetic Algorithm

Utility Library (GAUL), Open Beagle and Java based toolkits include Java Genetic Algorithms

Package (JGAP), JAVA API for Genetic Algorithms and JAVA GALib. MATLAB also provides

Global Optimization Toolbox for solving Optimization Problems. It consists of Genetic Algorithm

Solver as one of the method to solve optimization problems, discussed in following section.

80

Chapter 5 Soft-Computing Techniques and Development Tools

Figure 5.11: Genetic Algorithm Basic Structure

Algorithm 5.2 Standard Genetic Algorithm
- Input Initial Parameters: Fitness Function, Population size, Crossover operator, Mutation oper­
ator and stopping criteria.
- Initialize a random population of individuals;
- Evaluate fitness of all initial individual of population;
while stoppingcriterianot full filled do

- Select individuals for reproduction;
- Create offsprings by crossing individuals;
- Eventually Mutate some individuals;
- Evaluate its new fitness;
- Select survivors from actual fitness;
- Compute New Generation,

end while
- Plot SNR v/s Throughput

5.4.2 MATLAB Simulation: Global Optimization Toolbox

MATLAB provides Global Optimization Toolbox which consists of methods that search for

global solutions to problems that contain multiple maxima or minima [47]. Methods include global

search, multistart, pattern search, genetic algorithm, and simulated annealing solvers. The Genetic

Algorithm solves both constrained and unconstrained optimization problems that is based on natural

selection, the process that drives biological evolution. The genetic algorithm repeatedly modifies a

population of individual using rules modeled on gene combinations in biological reproduction. The

steps for the genetic algorithm optimization techniques are as follows:

1)' Random Initial Population is created using the population options like population size mid cre­

ation function specified.

81

Chapter 5 Soft-Computing Techniques and Development Tools

2)The algorithm then creates a sequence of new populations. At each iteration, the algorithm uses

the individuals in the current generation to create the next population. To create the new population,

the algorithm performs the following steps:
• Computing fitness value of each member of the current population.

• Selects members, called parents, who contribute their genes to their children, based on their

fitness.

• Some of the individuals in the current population that have best fitness are chosen as elite.

These elite individuals are passed to the next population.

• Produces children from the parents. Children are produced either by mutation or crossover.

• Replaces the current population with the children to form the next generation.

3) The algorithm stops when one of the stopping criteria like number of generations, time limit,

fitness limit is met.

4 Optirrvcabon Tool Enter Problem and Set - rrfir
Choose
Solver

fit Hetp Constraints Options Help

Sober 94 - Genet* Algorithm

Problem

Fitness function Crastngmskn

Number of .triable;. 2

Constraints

Linear inequalities A:

Linear equalities Aeq

Bounds Loner

Nonlinear constraint function

Integer variable indices

Pun sober and new results

Upper

Run Solver
Use random states from pre.icus run

Start

* Population

• Fitness scaling

* Selection

» Reproduction

» Mutation

* Crossover

• Migration

• Constraint parameters

♦ Hybrid function

♦ Stopping criteria

* Plot functions

• Output function

t Display tc commend window

•. User function e. aluaticn

View Results

Genetic Algorithm Solver
This loot corresponds 10 me 3a function

Chef to eipaname section tele a correspond!

Problem Setup and Results
» Problem

* Constraints

* Run sober and vie* results

Options
Specrfs options for me Genetic Algorithm solve

* Population

* Fitness scaling

’ Selection

* Reproduction

* Mutation

* Crossover

- Migration

* Constraint parameters

Figure 5.12: Optimization App in Global Optimization Toolbox

The Optimization App provided by the Global Optimization Toolbox is open by using the com­

mand: optimtool in MATLAB Command Window. This command opens the Optimization App, as

shown in Figure 5.12.

82

Chapter 5 Soft-Computing Techniques and Development Tools

Genetic Algorithm Solver options like Population, Fitness Scaling, Mutation options, Crossover

options and Stopping criteria is selected based on the optimization function and application. Us­

ing Optimization App various plots like best fitness, best individual, Distance, Range and Score

Diversity is generated for performance analysis of Genetic Algorithm.

Genetic Algorithm for mixed-integer or continuous-variable optimization, constrained or un­

constrained optimization problems can be also solved using MATLAB functions and by specifying

algorithm options. Customize Genetic algorithm can be created by modifying the initial population

and fitness scaling options or by defining parent selection, crossover and mutation functions. Table

5.3 lists the MATLAB functions for solving problems using Genetic Algorithm.

Functions Description
ga Find minimum of function using Genetic Algorithm

gaoptimget Obtain values of GA options structure
gaoptimset Create GA options sturcture

Table 5.3: List of MATLAB Functions for Genetic Algorithm

The genetic algorithm is executed y calling the gaoptimset function and providing with fitness

function to optimize and other Genetic Algorithm options.

5.5 Applications of Soft Computing Techniques in Wireless Commu­

nication
Wireless communications is rapidly evolving sector with challenges to meet the demands for

higher performance and efficiency. Wireless communication systems are associated with much

uncertainty and imprecision due to a number of stochastic processes such as time-varying char­

acteristics of the wireless channel caused by the mobility of transmitters, receivers, objects in the

environment and mobility of users. This reality has fueled numerous applications of soft comput­

ing techniques in mobile and wireless communications [48,49]. The role of soft computing in

the domain of wireless systems can be classified into three broad categories, namely, optimiza­

tion, prediction and uncertainty management [50]. Evolutionary algorithms are mostly used for

optimization. Neural networks and other learning systems are used for different types of predic­

tion tasks. Uncertainties arising due to incomplete modeling and measurements are handled using

fuzzy logic, either in stand-alone manner or in conjunction with the optimization and prediction

algorithms.

Fuzzy Logic have been applied in numerous areas of Wireless communication such as in channel

estimation, channel equalization and decoding [51]. Evolutionary Algorithms (EAs) have been

83

Chapter 5 Soft-Computing Techniques and Development Tools

frequently applied to telecommunication problems in hardware design, network design and data

transmission. Genetic Algorithms have been successful in solving various optimization problems

in the field of Wireless Communication. Genetic Algorithms has been applied to hardware design

applications like antenna design, network routing and assignment [52].It has also been applied to

Wireless Sensor Network to optimize system performance [53]. Artificial neural networks have

been applied in high-speed communication networks [54], Antenna Design [55]. Literature review

of various field areas where soft-computing techniques are applied in Wireless Communication

Systems and Wireless Sensor Networks is given in [48,50].

5.6 Concluding Remarks
This chapter discusses various problem solving techniques. The theoretical background for core

soft-computing techniques i.e Fuzzy Logic, ANN and Genetic Algorithm is summarized. MAT-

LAB based toolboxes available for designing and testing the performance of application of soft-

computing techniques in various areas is discussed in detail. Procedural steps for designing and

programming the soft-computing techniques and its usage using SIMULINK is summarized.

84

