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Chapter 1 
Overview

Implementation of the state-feedback control solution requires access to all the 

state variables of the plant model. In many control situations of interest, it is possible to 

install sensors to measure all the state variables. This may not be possible or practical in 

some cases, e.g. if the plant model includes non-physical state variables, measurement of 

these variables using physical sensors is not possible. Accuracy requirements or cost 

considerations may prohibit the use of sensors for some physical variables also.

The input and the output of a system are always physical quantities, and are 

normally not easily accessible to measurement. We therefore need a sub-system that 

performs the estimation of state variables based on the information received from the 

input and output. This sub-system is called an ‘observer’ whose design is based on 

observability property of the controlled system.

In order to employ a state variable feedback, it is necessary that all the states are 

accessible. In case where they are not accessible, it is necessary to obtain estimates of 

inaccessible states using observer-estimator [1] [2]. A reduced order stochastic observer- 

estimator may be designed Observer output may be noisy with noise having zero mean. 

For exact estimation the state of the observer, from noisy output, optimal estimator can be 

used.

Observer design and adaptive control for nonlinear systems have both been very 

active fields of research during the last decade. The introduction of geometric techniques 

has led to great success in the development of controllers for nonlinear systems. Many 

attempts have been made to achieve results of equally wide applicability for state 

estimation and adaptation. The observer problem has, however, turned out to be much 

more difficult than the controller problem [3], [4],

Lots of work has been done in the control system in 60's and 70's. After arrival of 

computers and PC’s the work in the field of control system is multiplied and the branch of 

control system is widened and now penetrated in all branches of engineering. A number 

of practical systems such as biochemical process, nuclear fission processes, physiological
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processes, population of species, thermal control processes, complex power systems, 

automobile, air craft etc. exist in bilinear and linear time varying nature[5],[6],[7]. The 

aim is to develop a design procedure to design optimum reduced order observer-estimator 

for linear time varying systems.

According to Webster’s dictionary, to adapt means “to change (oneself) so that 

one’s behavior will conform to new or changed circumstances.” So we can say the 

‘adaptive system’ means the “self-learning system” i.e. the system will adjust it self when 

there is change in operating or environmental condition.

An adaptive observer performs the twin tasks of state estimation and parameter 

identification. The two tasks are performed simultaneously and cannot be separated. The 

identification algorithm has to be defined using access to only the measured outputs and 

the estimated states. The state estimation algorithm has to work in the presence of 

uncertain parameters. This makes the problem very challenging.

The design of an adaptive observer for a linear time invariant system has been 

well analyzed [8]. [9] describe the use of parameter adaptive controller obtaining 

asymptotically exact cancellation for the class of nonlinear systems which can be 

feedback linearized. Adaptive observers [10], [11] use a coordinate transformation so that 

the estimation error dynamics would be linearized in the new coordinates, however the 

construction of the observer still remains a difficult task due to the need to solve a set of 

simultaneous part differential equations to obtain the actual transformation function. [12] 

deal with a fairly general class of nonlinear systems, in which the nonlinearities are 

assumed to be Lipschitz.

A systematic algorithm is provided which checks for the feasibility of an 

asymptotically stable adaptive observer. If the feasibility condition is satisfied, the 

algorithm provides the observer gains.

Since existing adaptive observers for nonlinear systems may generate unbounded 

parameter estimates in the presence of bounded disturbances, robust adaptive observers 

are presented which prevent parameter estimate drift. In addition the input to state 

stability of the error dynamics with respect to disturbances and parameter time- 

derivatives is guaranteed by generalizing a persistency of excitation result. Asymptotic 

convergence of state estimation errors is still achieved for systems in adaptive observer
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form when disturbances are not present, by a suitable extension of Barbalat’s Lemma 

[13].
Disturbances caused by unmeasured inputs, plant perturbations or faulty actuators 

degrade the robustness and performance of both control and diagnostic systems. These 

disturbances can be known or unknown. When the disturbances are known, extensive 

techniques exist for accommodating them, while only weaker techniques exists for 

estimating and accommodating faults of unknown origin and unknown dynamics. 

Techniques for the accommodation of unknown disturbances must be considered. It is 

also essential that the designed system must exhibit robustness. The procedure is 

expected to incorporate the robust behavior.

Observers designed by engineers to implement controllers or fault detectors have 

been utilizing precise numerical equations to model the system and characterize inputs 

and disturbances. With these quantitative methods an observer can be designed to reject 

any single disturbance that can be described quantitatively. However, if the disturbance 

disappears or changes, the observer can not dynamically compensate for the change. 

Classical approaches to rejecting disturbances for state observes have been under 

development for the last half century.

When the parameters of the system are unknown or time varying, an adaptive 

observer must be used. The adaptive observer, in addition to estimating the system states, 

must now also estimate the system parameters. Achieving this added requirement, while 

maintaining stability, has resulted in the development of significantly complex observer 

structure.
Because prediction error can no longer be unambiguously associated with errors 

in estimating state, a persistently exciting signal must be generate to insure the stability of 

the adaptive observer. Even with this persistently exciting plant signal, the adaptive 

observer has significant difficulty distinguishing between the effects of inaccurate 

parameter estimates and measurement disturbances.

The corresponding observer for a stochastic system containing additive noise 

processes, with known parameters, is a stochastic observer with a structure attributed to 

Kalman . This Kalman filter is a recursive solution to Gauss’s original least squares 

estimation problem and builds on the work of Norbert Wiener in estimating the
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underlying signal from a noisy time series. The Kalman filter is the optimum estimator 

when the corrupting noise has a Gaussian probability distribution. Like the Luenberger 

observer, the Kalman filter also includes a correction factor to insure stability and 

convergence, but for the Kalman filter it is based on the variances of the noise processes. 

If accurate estimates of the variance are not available, optimal observer performance is 

not obtained.

Disturbances caused by unmeasured inputs, plant perturbations or faulty actuators 

degrade the robustness and performance of both control and diagnostic systems. These 

disturbances can be known or unknown.

When the disturbances are known, extensive techniques exist for accommodating 

them, while only weaker techniques exists for estimating and accommodating faults of 

unknown origin and unknown dynamics. Disturbances can be either stochastic or 

deterministic. While stationary stochastic input processes with a zero-mean Gaussian 

distribution can be effectively rejected by a Kalman filter when accurate noise statistics 

are available, fixed non-stochastic disturbances can only be rejected when the observer is 

augmented with a dynamic model of the disturbance. Time varying disturbances of either 

type that can not be modeled as a linear system are difficult if not impossible to reject. 

Any ability to compensate for either stochastic or deterministic disturbances is called 

disturbance rejection. However, this dissertation will use the term disturbance rejection 

only for the rejection of deterministic disturbances, while the term noise rejection will 

used for the rejection of stochastic disturbances.

The Classical techniques use Adaptive Observers to estimate and accommodate 

disturbances, while Qualitative models and uses stability and tracking behaviors, 

implemented with fuzzy rules, to achieve robust rejection of disturbances.

Faults are often detected by monitoring the measurement residuals of state 

observers. Excessive measurement residuals are interpreted as being indicative of a fault. 

A tradeoff, however, must be made between detecting all faults and creating an excessive 

number of false alarms since measurement residuals can also be generated by unmodelled 

plant dynamics, parameter mismatch or plant input disturbances. Disturbance decoupling 

is required in order to distinguish between true faults and the effects of disturbances .
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Accurate estimation and robust accommodation of actuator faults can greatly 

increase the reliability and flexibility of control systems. Estimation allows for the 

characterization and classification of the fault, while actuator fault accommodation 

increases the robustness of the control system and allows time for diagnostic evaluation 

of the fault mechanism. With sufficiently accurate fault estimates and robust 

accommodation, the dynamics of a fault can be closely monitored and used for the 

preemptive scheduling of repairs, without interrupting normal plant operation. Robust 

accommodation also allows for the utilization of less expensive actuators. High accuracy 

and performance can thus be achieved with components that previously were not precise 

enough and did not have sufficiently stable performance characteristics.

Currently no simple scheme exists for the design of a controller that both 

estimates and accommodates for unknown actuator faults. If the type of fault is known, 

and has a priori been characterized by a piecewise linear model, adaptive techniques exist 

for estimating the parameters of the fault model. Other techniques can accommodate, but 
not estimate, a class of faults with a known H” / H2 bound and much work has been done 

in accommodating actuator faults in systems with redundant actuators. More complex 

methodologies have also been developed that use computer-automated reconfiguration of 

control laws to accommodate for a set of known actuator faults. Fuzzy logic is used to 

compensate the nonlinearities. Results have also been obtained using single layer / Two 

layer fuzzy compensation for a single known actuator fault. Performance of the 

compensator is investigated for a typical PID controller.

Qualitative models and machine learning techniques are used extensively in 

industry to tune linear systems. Undergraduate control courses introduce tuning by 

teaching the Ziegler-Nichols tuning rules for PID controllers. These heuristics adapt the 

three PID controller parameters based on the step response of the compensated system. 

When first developed in 1942, these heuristics were manually employed by an engineer 

to tune a PID controller. Recently, most of the tuning systems developed for industrial 

controllers rely on qualitative reasoning or machine learning techniques to automate the 

pattern recognition needed for tuning.
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Qualitative tuning is also used to adapt many other types of linear and non-linear 

dynamic systems. Most relevant to this dissertation is the work on tuning fault detectors 

and Kalman filters.

Disturbances caused by unmeasured inputs, plant perturbations or faulty actuators 

degrade the robustness and performance of both control and diagnostic systems. These 

disturbances can be known or unknown. A variation of the linear state observer to 

estimate disturbances may be used to reject the effect of the disturbances. Qualitative 

Robust Control (QRC) uses qualitative models, based on linguistic terms, which capture 

the structure of the plant and subsume perturbations and faults. The QRC methodology is 

validated with the popular 1992 American Control Conference (ACC) Robust Control 

Benchmark.

In contrast to the classical quantitative techniques, people in daily life often utilize 

symbolic reasoning and a fuzzy abstraction of a system to ascertain a system’s hidden 

states. These abstractions are frequently created using fuzzy logic and are represented as 

symbolic linguistic models. These models provide a convenient mechanism for tuning 

quantitative observers and improving their disturbance rejection properties. In addition to 

providing a mechanism for tuning quantitative observers fuzzy logic can be used to build 

fuzzy observers. An observer based on abstractions of the system and its disturbances 

functions over the entire range of system and disturbance configurations. The symbolic 

linguistic model effectively improves the robustness of the derived observer.

Qualitative approaches to observer design, fault detection and control requires 

creation of qualitative models of the underlying quantitative system. These qualitative 

models must be designed so they support reasoning that is consistent with the quantitative 

system. This coupling of consistent qualitative models with a continuous, quantitative 

plant is called a hybrid system. In contrast, many intelligent systems do not use 

qualitative models of the underlying quantitative system. As an example, intelligent 

systems based on ANN often learn to recognize patterns, and reason about the recognized 

patterns, but never develop a qualitative model of the patterns.

An ARTIFICIAL NEURAL NETWORK (ANN) [14-24] is an attempt, to mimic 

the action of the brain using simple structure. The ANN is built up using a class of 

adaptive machine that perform computation through process of learning. The large
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number of inter-connected artificial neurons forms the network. Thus neural network 

consists of massively parallel distributed processors which have a neural propensity for 

storing experienced knowledge and making it available for use.

Input output relations (mapping) in the form of traditional mathematical modeling

is replaced by ANN learning the synaptic weights by undergoing a training process. ANN
/

has built in adaptability or can be trained to modify the weights with the change in 

environment. The ANN can deal naturally with contextual information. Since knowledge 

•is represented by the regular structure and activation state of network. Every neuron is 

potentially affected by the global activity of all other neurons. ANN can be trained to 

make decisions and they are also fault tolerant in the sense that if a neuron or connecting 

link is damaged, recalling a pattern will be impaired in quality but due to distribution of 

information in the network damage has to be extensive for overall degradation. Since 

neurons are the common ingredients for all ANN, it is possible to Share the algorithm and 

structures in different applications. So it is possible to have a seamless integration of 

modules. The ANN is suitable in the following situation:

Correct model of process may not be available or mode may be, complex with to 

many unacceptable assumptions The classical modeling algorithm may not respond well 

to the measurement noise in sensors or performance through classical algorithms may not 

be adequate.

The FUZZY LOGIC based systems [25- 28] may be developed to overcome 

classical algorithm problems. There are many - similarities between ANN and FUZZY 

CONTROLLERS. The fuzzy logic frees us from the true/false reasoning of logical 

system of type that are used in symbolic languages.

Fuzzy linguistic models hold the promise of providing a finite qualitative partition 

of a quantitative dynamic system while being applicable to any system that can be 

described in linguistic terms. Fuzzy models provide a succinct and robust representation 

of systems that lack a complete quantitative model or have uncertain system 

perturbations. Consistency in reasoning, however, has not yet been proven for a fuzzy 

linguistic representation of a quantitative system.

Fuzzy linguistic models use fuzzy sets to create a finite number of partitions MBF 

of the inputs, outputs and states of a quantitative system. Currently most fuzzy models are
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implemented as a set of if-then rules, where the system input is used to evaluate the 

rules’ antecedents and the model’s output is the combined output of all the rules 

evaluated in parallel . This simple logical system, a Fuzzy Inference System (FIS) , does 

not implement inference chaining and can only evaluate a simplified qualitative model of

a plant. Recent work has expanded the usefulness of this structure by providing machine
/

learning methodologies to adapt and tune fuzzy linguistic models and to automatically 

generate new models through self-organization.

Learning or tuning allows the initial linguistic fuzzy model developed from 

heuristic domain knowledge to be optimized. Learning is achieved by using a neuro- 

fuzzy structure and exploiting the supervised learning strategies originally developed for 

neural networks. These strategies include gradient descent back-propagation , least-mean- 

squares, and a hybrid methodology that combines least-squares to optimize linear 

parameters and back-propagation to optimize the nonlinear parameters. These same 

supervised learning methodologies can automatically learn any arbitrary nonlinear 

mapping between input and output without an initial linguistic fuzzy model . The 

resulting self-organized fuzzy models do not necessarily have a linguistic interpretation 

that would be recognized by a human expert. Often systems developed through self­

organization are never interpreted linguistically, but are utilized effectively for pattern 

matching and curve fitting. Fuzzy networks are often preferred for curve fitting because 

the fuzzy rules used by the network have only a local effect, in effect providing an 

adaptive mechanism for implementing B-splines.

It is possible to integrate the fuzzy logic controller with ANN [ 29-3l]so that the 

expression for the knowledge used in the systems is understood by humans. This reduces 

difficulties in describing the ANN. Fuzzy controller learns to improve its performance 

using ANN structure & thus learns by Experience. Neuro-computing is fast compared to 

conventional computing because of massive parallel computation. Besides, it has the 

properties of fault tolerance and noise filtering. Here neural network is used as if 

estimator. Neural network-based control strictly does not need a mathematical model of a 

plant like a conventional control method does with the required precision.

The recent work published in the national/ international journals, from the 

seminars on control system, ANN/AI, fuzzy rule extraction, development of rules for the
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network, adaptation of new rules from the knowledge gained, various learning algorithm, 

various learning methods using computer programming various transform for learning are 

developed.

The above mentioned research work has inspired the author to work in this

direction and to think of better alternatives for implementation of adaptive and robust
/

observers, Estimators, Controllers and compensator for linear, Nonlinear or time varying 

process control systems using current soft computation techniques such as Fuzzy logic, 

Artificial Neural Network, Adaptive Neural Fuzzy Inference systems (ANFIS).

The research work aims at developing a classical algorithm for designing robust 

observer-estimator with/ without noisy output for time invariant as well as time varying 

systems. Since in many cases it may not be possible to have an exact model for noise, an 

alternative model in terms of neuro-fuzzy estimator may be designed and implemented on 

digital computer. The use of software development support tools [32] such as MATLAB, 

SIMULINK and Tool Boxes [33-39] makes simulation study as well design of graphical 

user interface simpler.

The work described in the thesis includes:

• Observer design for a time varying/Bilinear system using Dynamic programming 

and Method of Generalized Inversion [40].

• Development and Implementation of Single layer and Two layer Fuzzy 

compensator for the estimation and removal of nonlinearity for a process control 

system using PID controller. MATLAB/SIMULINK/Fuzzy/Neural Network are 

used for testing and Implementation a robust adaptive observer. Application of the 

designed observer for the control of Induction Machines employing ANN.

• Development of a robust state-feedback fuzzy controller that that incorporates 

robust 'stability and tracking behaviors

• Development of a robust hybrid output-feedback controller that combines the 

fuzzy controller with a robust PFI observer
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The contents of following chapters of the thesis are summarized as follows:

Chapter: 2 Background: Describes the survey of current trend in design of robust adaptive 
observer and controller using classical methods. A Design of a reduced order 
observer for linear time varying/ Bilinear system using method of generalized 
inverse and dynamic programming described. MATLAB is used for testing the 
design with various set of parameters.

Chapter:3 The general preview of the soft computing fields such as: Fuzzy logic, Artificial 
Neural Network and ANFIS provided in this chapter with reference to observer, 
estimator and Controllers. It also describes the software tools available for 
development of ANN models and to carryout their simulation study. Single Layer 
Fuzzy compensator for Non-linearity compensation and Two layer for pre­
compensation is developed. SIMULINK is used for testing the performance of the 
compensator.

Chapter: 4 It provides a comprehensive study of the work done by the researchers using soft 
computing techniques for the design and development of robust observer based 
control systems.

Chapter: 6 It provides a comprehensive study of the applications of soft computing 
techniques in control system.

Chapter: 7 Describes control of Induction machines and a comprehensive study of the work 
done by the researchers.

Chapter: 8 ANN model for control of Induction Machine is developed. It describes the 
design of GUI for the application suing MATLAB.

Chapter: 9 It contains discussion of the results and conclusions as well as scope of future 
work

Chapter:10 It contains Bibliography.


