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Chapter 5
Fuzzy Observers: Disturbance Rejection Fault Accommodation

Disturbances caused by unmeasured inputs, plant perturbations or faulty actuators 
decade the robustness and performance of both control and diagnostic systems. When 
these disturbances are unknown, robust accommodation of disturbances requires 
elaborate architectures.

Current techniques for disturbance rejection require either a precise quantitative 
model of a disturbance or extensive supervised learning. This requirement limits the 
disturbance rejection capabilities of a single observer to a single narrow class of 
quantifiable disturbance. If a set of several disturbances need to be rejected a 
corresponding set of observers is required, with each individual observer designed to 
reject only one of the known possible disturbances. Optimal rejection of the entire set of 
disturbance then relies on an autonomous supervisor which selects the appropriate 
observer outputs to use in construction the state estimation.
Both the quantitative and learning approach suffer from some serious limitations, 
including:

• disturbance must be known a priori,
• multiple observers must perform in parallel to reject multiple classes of

disturbances, and
• estimates of disturbances are not available.

New techniques for disturbances reject must be developed that allow the rejection of 
unknown set of disturbances with only one observer. Chapter describes two 
accommodation methodologies: quantitative and qualitative.

The quantitative methodology uses the integral action of the Proportional 
Integral (PI) Observer and Adaptive Observer to estimate and accommodate 
disturbances. Our second methodology is based on qualitative models and uses stability 
and tracking behaviors, implemented with fuzzy rules, to achieve robust rejection of 
disturbances. Validation studies show that integral action is effective in estimating 
disturbances caused by unmeasured inputs, plant perturbations or faulty actuators, and a 
PI Observer-based controller will even outperform a Linear Quadratic Regulator in the 
presence of nonlinear actuator faults. The qualitative approach was validated with the 
1992 ACC Robust Control Benchmark. Fuzzy controller achieves stability robustness 
and tracking robustness comparable to the other compensators.

The PI observer was developed by Shafai to extend the robustness of observers by 
iheluding an integral action in the observer equation. This section extends the integral 
action for the purpose of disturbance rejection.

* Integral action is extended to the adaptive case, where the
parameters of the plant are unknown, with the new PI Adaptive 
Observer (PIAO).
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• The integral action of a PI observer is shown to effectively
estimate and compensate for an arbitrary set of disturbances with n 
distinct injection points, if n independent state measurements are 
available. Increasing the integral gain allows for the rejection of 
faster perturbations, but with the negative side effect of decreasing 
the filter’^ stability margin.

The robustness of the PI observer may be adversely effected by transitory 
disturbances with unmodelled distribution matrices. This can in fact severely limit the 
applicability of the PI observer; simple integral action cannot alone provide a robust 
solution to the 1992 ACC Benchmark.

The chapter describes generalization of the PI observer, the Proportional 
Fading-Integral (PFI) observer which discounts the integral term over time. Fading 
enables the rejection of these transitory events with unmodelled distribution matrices and 
improve the stability margin of the observer, allowing an unstable PI observer to become 
a stable PFI observer, yet with still sufficient integral action to reject disturbances.

QRC is used for disturbance rejection, Qualitative Robust Control, is based on 
qualitative modeling. These qualitative abstractions are frequently created using fuzzy 
logic and are represented as symbolic linguistic models. These models provide a 
convenient mechanism for tuning quantitative observers and improving their disturbance 
rejection properties and may be used to build fully fuzzy observers.

Existing fuzzy observers rely on machine learning to model a system, rather than 
using symbolic linguistic models of the system. The symbolic linguistic model effectively 
improves the robustness of the derived observer. The QRC methodology for designing 
fuzzy controllers transcends the quantitative methods that are utilized by the majority of 
fuzzy controllers described in the literature and contributes a new qualitative 
methodology.

Instead of using the fuzzified versions of quantitative controllers, qualitative 
models of the plant behavior is used. Robust set-point control is achieved if a qualitative 
plant model that subsumes all specified plant perturbations is utilized in designing the 
controller. A rule-based fuzzy controller is then incrementally designed based on the 
"qualitatively robust" plant model. After characterizing stability behaviors, tracking 
behaviors are developed to augment the controller. The stability and tracking behaviors 
are robust over the extent of plant configurations that are subsumed by the qualitative 
plant model. The resulting fuzzy controller supports both stability and performance 
robustness and allows for simple compensator tuning by changing linguistically 
interpretable rule parameters. The following sections provide a brief overview of the 
background -material.

5.1 Fault Detection
The two main applications of state observers are observer-based state feedback 

control and fault detection. Both applications rely on accurate state estimation and suffer 
from performance degradation when input disturbances corrupt the observer’s state 
estimates.
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Faults are often detected by monitoring the measurement residuals of state 
observers. Excessive measurement residuals are interpreted as being indicative of a fault.
A tradeoff, however, must be made between detecting all faults and creating an excessive 
number of false alarms since measurement residuals can also be generated by unmodelled 
plant dynamics, parameter mismatch or plant input disturbances. Disturbance decoupling 
is required in order to distinguish between true faults and the effects of disturbances .

Accurate estimation and robust accommodation of actuator faults can greatly 
increase the reliability and flexibility of control systems. Estimation allows for the 
characterization and classification of the fault, while actuator fault accommodation 
increases the robustness of the control system and allows time for diagnostic evaluation 
of the fault mechanism. With sufficiently accurate fault estimates and sufficiently robust 
accommodation, the dynamics of a fault can be closely monitored and used for the 
preemptive scheduling of repairs, without interrupting normal plant operation.

Robust accommodation also allows for the utilization of less expensive actuators . 
High accuracy and performance can thus be achieved with components that previously 
were not precise enough and did not have sufficiently stable performance characteristics.

No simple scheme exists for the design of a controller that both estimates and 
accommodates for unknown actuator faults. If the type of fault is known, and has a priori 
been characterized by a piecewise linear model, adaptive techniques exist for estimating the 
parameters of the fault model. Other techniques can accommodate, but not estimate, a class 
of faults with a known If3 bound and much work has been done in accommodating actuator 
faults in systems with redundant actuators .More complex methodologies have also been 
developed that use computer-automated reconfiguration of control laws to accommodate 
for a set of known actuator faults .

Qualitative approach to fault detection requires the creation of qualitative models 
of the underlying quantitative system. These qualitative models must be designed so they 
support reasoning that is consistent with the quantitative system. This coupling of 
consistent qualitative models with a continuous, quantitative plant is called a hybrid 
system.

This section explains how qualitative models are abstracted from quantitative 
systems and then introduces the implementation of fuzzy systems from qualitative 
models. It concludes with an overview of fuzzy tuning systems for linear observers, 
linear observer-based fault detectors and Proportional, Integral and Differential (PDD) 
controllers, and a discussion of full fuzzy controllers.

5.1.1 Learning Fuzzy Models
Learning or tuning allows the initial linguistic fuzzy model developed from 

heuristic domain knowledge to be optimized. Learning is achieved by using a neuro- 
fuzzy structure and exploiting the supervised learning strategies originally developed for 
neural networks. These strategies include gradient descent back-propagation, least-mean- 
squares, and a hybrid methodology that combines least-squares to optimize linear 
parameters and back-propagation to optimize the nonlinear parameters .
These same supervised learning methodologies can automatically learn any arbitrary 
nonlinear mapping between input and output without an initial linguistic fuzzy model.
The resulting self-organized fuzzy models do not necessarily have a linguistic 
interpretation that would be recognized by a human expert. Often systems developed
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through self-organization are never interpreted linguistically, but are utilized effectively 
for pattern matching and curve fitting.

Moore, Harris and Rogers have used least-mean-squares learning to train a set of 
fuzzy networks, where each individual fuzzy network is trained with noisy data to track a 
target when perturbed by a single unique acceleration disturbance/maneuver. These fuzzy 
networks are then used in a hybrid scheme to detect and identify maneuvers and estimate 
target position.

A similar approach to solving the least-mean-squares estimation problem has been 
developed by Chao and Teng. A fuzzy network is trained off-line to estimate the state of 
a non-linear process from a sequence of noisy measurements. An estimation correction 
term similar to that utilized by a Kalman filter is included in the observer to ensure 
stability and convergence. As in the work by Moore, Harris and Rogers no linguistic 
qualitative model is employed in the design of the observer.

Fuzzy tuning of quantitative systems is a large field, but by far the largest 
application of fuzzy systems is control. The next section describes fuzzy derivatives of 
quantitative controllers and controllers based on qualitative models.
The majority of fuzzy controllers described in the literature fall into three main categories:

• fuzzy PID controllers,
• fuzzy sliding mode controllers, and
• fuzzy gain scheduling.

All three compensators realize close-loop control action and are based on 
quantitative control techniques. The fuzzy PID controllers and fuzzy slide mode 
controllers are fuzzy implementations of the linear quantitative PID controller and a 
nonlinear quantitative sliding mode controller. Both controllers use the error term and its 
derivatives and integrals as input into a fuzzy rule base. Coleman and Godbode compare 
the robustness of a fuzzy PID controller with that of a conventional PID and sliding mode 
controller and conclude that the fuzzy controller has equivalent robustness characteristics.

The fuzzy gain scheduler uses Sugeno type fuzzy rules to interpolate between 
several control strategies . This methodology is useful for controlling nonlinear plants 
that are piece wise linear or for linear plants that have a time varying parameter. An 
example of this is a controller built for an inverted pendulum with a variable length 
pendulum. Measurements of the pendulum length are used as inputs into a fuzzy rule 
base that interpolates the output of a small number of controllers that are optimized for 
controlling short, medium length and long pendulums .
Additionally, fuzzy controllers have been developed using qualitative models of target 
behavior. These controllers are often developed using the following steps:

1. rules are developed to realize a localized qualitative behavior,
2. global behavior caused by the interpolated localized rules is tested, and
3. Behavior is refined by tuning localized behavior and superimposing additional

localized and global behaviors.

Two solutions are presented. The first uses the PI Observer and its new variants to 
estimate and accommodate unknown disturbances. The second uses fuzzy control based
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on qualitative models to accommodate for disturbance. The solution steps involving the 
integral action are:

• characterize the quantitative PI techniques for disturbance rejection for PI 
observer and the PI Kalman filter,

• increase parameter robustness of the PI observer by introducing an adaptive PI 
observer, and

• increase the disturbance rejection robustness of the PI observer by developing the 
Proportional Fading-Integral (PH) observer.

The solution steps for the approach using qualitative models and behaviors are:

• create design methodology for a robust state-feedback fuzzy controller that use 
qualitative behaviors that incorporates robust stability and tracking behaviors, and

• create a robust hybrid output-feedback controller that combines the fuzzy 
controller with a robust PFI observer.

5.2 Fault Estimation and Accommodation

Faults can take several forms, but the literature usually focuses on faulty actuators 
and sensors. Additional faults can be caused by excessive friction, component failure, or 
age degradation. This thesis will focus on actuator faults and will propose a benchmark 
for the accommodation of frictional faults to be used in future research.

Actuator faults can be linear or nonlinear in nature. Gain mismatch and gain 
offsets are common examples of idealized linear faults. Backlash and deadzone are often 
described as typical idealized “actuator nonlinearities” (Tao and Kokotovic 1996 [1]), 
and actuator saturation is often indicative of a nonlinear actuator power limit (e.g. all 
actuators have fixed output ranges). These faults can occur in combination, or vary in 
severity with changes in operating conditions, maintenance schedule and age. Fig 5.1-5.4 
shows the effects of gain mismatch, deadzone, backlash and saturation on actuator 
outputs.

5.2.1 Gain Mismatch Faults

Faults caused by gain mismatch are often caused by component drift or mis- 
calibration. The output of an actuator with this simple linear fault is

u = f(w) = Kamenw (5.1)

Fig 5.1shows a gain mismatch with katten = 0.6
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5.2.2 Deadzone Faults

Deadzone fau lts suppress actuator output for a range of Input values. This feult is 
often caused by friction in the actuator. The output of the foiled actuator is

W -**
M = f(w) = • 0 l/'-kdz<w<kdz (5.2)

w--**

Fig 5,2 shows a deadzone feult with kdz = 0.3.

5.2.3 Backlash Faults

Backlash is a simple form of hysteresis and differs from the other three faults 
described here in that it has memory; the current state of the fault mechanism is a 
function of it's previous state. A compact representation of the feult mechanism is

u(t) = f(w) = w
0

if w > Oand u(t) = w - kb! 
if w = 0

(5 3)

Fig 5.3 shorn a backlash feult with kw= 1.
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5.2.4 Saturation Faults

Almost all actuators saturate at some extreme range of inputs, beyond the nominal 
operating range of the actuator. However, over time the performance of an actuator ran 
deteriorate, and saturation begins to overlap die nominal operating range of the actuator. 
The output of the felled actuator is

u = f(w)- w

if
if-kiat <w<ks

-km if ™<-K

Fig 5.4 shows a saturation fault with feat = 1.

Fig 5.4: Saturation Fault

(5.4)

5.3 Validation Benchmarks

This section describes the validation benchmarks to verify the theoretical results, 
described in the previous chapters. The ACC Robust Control Benchmarks are used for 
evaluating die disturbance rejection robustness of controllers. The chapter continues with 
the additional benchmarks develop to validate the results of the dissertation and future 
research.

An extension to die Robust Control Benchmark is described to validate die 
frictional fault rejection properties of observers and observer based controllers. Modified 
benchmark is proposed to validate the disturbance rejection properties of adaptive 
observers.
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5.3.1 Robust Control Benchmarks

The benchmark plant consists of a simple mechanical and the benchmark 
scenarios consist of rejecting input disturbances and tracking a unit step. The IF AC ’93 
(Graebe 1994[2]) was introduced at the 12th IF AC World Congress in Sydney Australia. 
The benchmark plant is seventh order with a nominal third order realization and has 
parameters with no physical interpretation. The exact plant is unknown to the control 
engineer and a tracking controller must be designed based only on noisy measurements 
from a black box simulation.

The ACC ’92 benchmark, subsequently referred to as the Benchmark, was 
selected to validate the theoretical work in qualitative fuzzy control and observer design 
because the simple mechanical plant of the Benchmark lends itself to qualitative 
modeling The following sections describe the Benchmark plant and design scenarios.

■4 ACC ’92 Robust Control Benchmark

The Benchmark plant shown in Fig 5.5 is a simple flexible structure consisting of 
two masses connected with a single spring. This dynamic system has a noncollocated 
sensor and actuator; the sensor senses the position of m2 while the actuator accelerates m,

input u

output v = Xj
disturbance tv

u mi

| o o 

A xjj :<s = dxt/dr

mi

kj o

tv

-5#< -*0, a'Xy'at

Fig 5.5: Plant used in the ACC benchmark. 

The state space model for the plant is

V 0 0 1 O' V 0 0
*2 0 0

k/ml
0 1 *2

+ 0
U + 0

*3 -k/ml 0 0 x3 1/tHj 0
*4. k/m2 ~klm2 0 0 _x4_ 0 llm2

where:
Xi is the position of m,, 
x2 is the position of m2, 
x, is the velocity of m2,

(5 5)
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*4 is the velocity of m2, 
y is the plant output x2, 
w is the acceleration disturbance on m2 and 
u is the control acceleration on m,

The following additional variables are needed to complete a description of the closed 
loop, series compensated system shown in Fig 5.6:

Fig 5.6 (a) Plant P with Series Compensator in a negative feedback loop.

v is the sensor noise, 
e is the compensator input and 
r is the reference input.

The corresponding transfer function between the plant input (actuator output) and plant 
output is

(k/m m ) 
12

W 2 s
(5.6)

sl + k(m + m )/m m K 1 2J 1 2J

The corresponding transfer function between the disturbance and plant output is

(1/m )(s2 +k/m ) 
2 1

wy 2 s sl + k(m +m )!m m v 1 2} 12

(5.7)

5.3.2. Benchmark Extensions: Adaptive Observer

The ACC Benchmark presented in the Background Chapter is a robust control 
benchmark and as such is insufficient for benchmarking and validating failure detection 
and disturbance rejection properties of adaptive observers However, the ACC 
Benchmark can easily be augmented to include frictional failure scenarios and a simple 
disturbance rejection benchmark can be created from the plant used by Kudva and 
Narendra (Kudva and Narendra 1973 [3]) in their adaptive observer paper. The 
benchmark presented at the end of this section based on the Kudva and Narendra plant is 
called the Adaptive Observer Benchmark.
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The ACC Benchmark can easily be augmented to test the robustness of the 
compensated system to system failure. The failures consist of Coulomb friction acting on 
the individual masses (Schneider and Frank 1996[4]). Three failure modes can exist, with 
friction on either m, or m2, or friction on both masses.

The Adaptive Observer Benchmark uses the plant from Kudva and Narendra 
(Kudva and Narendra 1973[3]), described by the equations

— 5 f T
X =

-10 0 x + 2
y — [l 0]x = jc,

(5.8)

All four of the design scenarios utilize the input

u—5 sin(r) + 5 sin(2.5r) (5.9)

a combination of two distinct sine waves, to excite the two states of the plant and ensure 
convergence of the parameter estimates. The initial state and state estimates arex(0)
= x(0) = 0 , and initial parameters estimates, a(t) or 6(0, are 102% of the actual plant 
parameters:

a0 -1,02a -
5.1
10.2

and b0 =1.026 =
1.02
2 04

(5.10)

5.4 PI Adaptive Observer

The development of the PI adaptive observer parallels the development of the PI 
observer from the conventional P observer; a term proportional to the integral of the 
estimation error, v, is added to the conventional P observer equation. However, instead of 
the term Bv(t) being added to the observer equation, the term 6(0 v(t )must be added for 
the adaptive case. Because the magnitude of the integral offset is now dependent on the 
estimate 6(0, and not b, the integral action is no longer unambiguously associated with 
the errors in estimating state With the adaptive version of the PI observer the integral 
action can now result from either state estimation error or parameter estimation error. 
Therefore, care must be taken in assuring that the parameter adaptation is not completely 
corrupted by the observer’s integral action.

The PI adaptive observer is described by the equation

x-Kx + [k — a(t)]xl (t) + b(t)(u + v) + w, (t) + w2 (t) 

v = K,(cx-y)
(5.11)



144

with the corresponding error equations

e = Ke + a{t)xx (?) + fi(t)u + b(t)v + w, (t) + w2(t) e, = ce 
v^K,ex

where e = x - x, a = a(t) - a and p = bit) - b.These error equations differ from the error 
equation for the P adaptive observer by the term bit) v.

Stability and convergence of this new error equation is shown by using an extension of 
the Gronwall-Bellman lemma (Narendra and Annaswamy 1989[5]) for almost time- 
invariant systems. First the error equations are converted to the following partition form:

e
v

K
K,c

0 + 0 b(t)
0

+
a(t)

0
JT] +

Pit)
0 u +

Wft) + W2(t) 
0

The error equation has the structure z = (A + B{t))z + f(t), where

0

f(t):

K
KjC

a(t)
0

, B(t): 0

x, +
Pit)

0

bit)
0

u +

and

w, (t) + w2(t) 
0

(5.13)

(5.14)

We can now use the following theorem to prove stability and convergence of the PIAO: 
Theorem The PIAO error dynamics z = (A + B(t))z + fit) converges to zero for t> to if
i) A is asymptotically stable,
ii) there exists a bo such that || B(f) || < bo for t > t„ and 
Hi) there exists a bi such that 11 f (t) || < bj for t > tG.

5.4.1 Robust PI Kalman Filter

The PI version of the Kalman filter was first developed by Kim and Shafai (Kim, 
Shafai et al. 1989[6]; Kim and Shafai 1990[7]). The development was awkward and 
disturbance rejection was not explored. This section begins with a simplified 
development of integral action for the Kalman filter and then develops a necessary 
condition for the rejection of n simultaneous disturbances injected at n distinct injection 
points by integral action for either the PI observer or the PI Kalman filter.

The PI Kalman Filter contains the integral term y, which is added to the original 
estimator equation by using the pair of coupled differential equations
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A|* AXl\k-\ A.
v(k) = v(k-l) + K,

n-cxk i*-i.

yk~cK\k-,

+ Bu(k) + B,v(k)
(5.15)

where the constant K, determines the time constant of the integral action while B, 
reflects the form of the plant perturbations or disturbance injection points. These quations 
can be manipulated to give one augmented equation that has the form of the estimator 
equation for the standard Kalman filter

- <V, 1+ Bum (5-16)

where

A =

1

1

^ 
■

I_____ , B =
B ,c = [c o\k=

kk~

and z =
X

0 I A Kj V

The optimal gain K for a given process and measurement noise covariance can be 
derived using technique developed by Kim and Shafai (Kim, Shafai et al. 1989[7]). 
However, when optimizing K for perturbation and disturbance rejection, Kk becomes the 
Kalman gain and the gain associated with the integral action Ki should be selected such 
that

A-KkC B, 
-K,C /

(5.18)

has eigenvalues within the unit disc.

The integral action of the PI Kalman filter is effective in estimating both plant 
perturbations and input disturbances that can be modeled by the term B,v. When rejecting 
plant perturbations, the perturbation must be in the form DAE, and D becomes B,. As an 
example, the PI Kalman filter can be used to reject the perturbation to the Benchmark 
plant caused by changes in the spring constant provided that B, = D = [ 0 0 -1 1]'. 
Correspondingly when rejecting input disturbances, the distribution matrix of the 
disturbances must be used as B,. As an example, when rejecting a disturbance to m, the 
injection point of the disturbance is X3 and B, = [ 0 0 1 0]'.

However for single output systems, a PI Kalman Filter can not simultaneously reject both 
a perturbation and slowly varying disturbance. With only one state measurement the PI 
Kalman Filter can reject either (1) a single rank one perturbation or (2) an input 
disturbance with a single known injection point. This can be generalized to the following:

Theorem If the plant [A, B, C] of order n is completely observable, and if

— n
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where r is the number of independent outputs, then all perturbations and disturbances 
modeled by B, can be rejected.

The proof is a generalization of the development given by Saif (Saif 1997[8]). The 
theorem requires that for the simultaneous rejection of a rank a perturbation and b 
disturbances with unique injection points requires (a + b) independent state 
measurements.

The robustness of PI Kalman filter to plant perturbations and disturbances can be 
adversely effected by transitory disturbances. These disturbances which are not modeled 
by Bi create an offset in the integral term and adversely impact the performance of the PI 
Kalman filter. Rejection of these transitory features can be achieved by discounting the 
integral term over time.

5.4.2 Kalman Filter with a Fading Integral Term

The fading of the integral term allows integral action to estimate and accommodate 
disturbances with known injection points in the presence of transitory disturbances with 
unknown injection points. Without fading any small transitory disturbance, who's 
injection point is not incorporated in B,, will add a permanent offset to the integral action, 
precluding the convergence of the disturbance estimate and the disturbance. The fading- 
integral is developed in this section for the Kalman filter; an equivalent development is 
also valid for the Luenberger observer.

The Proportional Fading-Integral (PFI) Kalman filter decays the integral term of the PI 
Kalman filter, allowing the effects of transient disturbances to decrease with time. The 
PFI Kalman filter is described by

*H* = + K* I?* “ C%-* J+ Bu{k) + BtVi-k)r i (5.i9)v(k) = (I-KFMk-l) + Kl[yk ~CxklkJ

where the constant Kr determines the amount of fading. As for the PI Kalman Filter these 
equations can be manipulated to give one augmented equation with the following
parameters

A =
A 0

, B =
B"

,c =
c o'

, K =
Kk B, "

and z =
X

0 I 0 0 / Ki -KF V

Using the same technique as for the PI Kalman filter, the optimal gain K for a given 
process and measurement covariance can also be derived for this augmented 
system.When designing the filter for perturbation and disturbance rejection it is necessary 
to insure stability for the PFI Kalman filter by having the eigenvalues of
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A-KkC B,
- K,C I-Kf

(5.20)

inside the unit disk. As shown by R, the additional freedom afforded by the KF term 
allows the design of PFI Kalman Filter with a larger stability margins than the 
corresponding PI Kalman filter. Indeed, an unstable PI Kalman Filter can be made stable 
with the addition of fading.

Simple integral action alone can achieve time recovery, but can not reject transitory 
events that contribute to the integral action. However, with the PFI Kalman Filter the 
fading term Kt can be tuned so that the effects of transients on the integral action decay 
over time. Faster suppression of transients is achieved by increasing KF, but often it is 
also necessary to increase the integral action gain K, so that fading term does not 
completely suppress the integral action.

5.4.3 Timing Integral Action
Proper rejection of perturbations or disturbances requires that K for the PFI 

Kalman filter, or equivalently the PFI observer, be designed by separation. The following 
four steps are required:

1. solve for the optimal Kalman gain for the system [A, B, C],
2. determine B, from the perturbation structure and/or the disturbance injection
matrices,
3. tune K, so that the transient response of the integral action can follows the
fastest perturbation and/or disturbance, and
4. tune KF so that effects of perturbations and/or disturbances with unknown
distribution matrices decay satisfactorily and the PFI Kalman filter is stable.

• Tuning the Integral Gain
A large integral gain K, shortens the transient response of the integral action to 

disturbances, but also leads to overshoot and ringing. The critical integral gain can be 
determined by achieving a critically damped transient response to a unit step disturbance. 
The speed of the critically damped transient response limits the ability of the PI Kalman 
filter to reject fast repetitive disturbances. An optimal integral gain can often not be 
found for a given disturbance because the fastest possible transient response of the 
integral action is too slow to match a quickly varying input disturbance. It is however 
possible to decrease the transient response by:

1. increasing the modeled process noise or
2. reducing the measurement noise which allows for larger integral gains.

• Tuning the Fading Rate
The fading of the integral term discounts the integral term over time. Decaying 

the integral term allows the rejection of transients that would otherwise cause large 
offsets in the estimates of plant perturbation and disturbance. This is analogous to the 
discounting of old measurements in a P Kalman Filter by increasing the magnitude of the 
process noise covariance used by the filter. In fact, increasing the model process noise
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will also fade the integral term of a PFI Kalman Filter; however large levels of process 
noise will increase the variance of state estimates.

With small values of Kf the PFI Kalman filter performance approaches that of the 
PI Kalman filter, while for large values of Kf the integral action of the filter is suppressed 
and the PFI Kalman filter performance approaches that of the standard P Kalman Filter.

5.5 Robust Fuzzy Control and Benchmark

The fuzzy controller design begins with the qualitative plant model. First state 
information must be extracted from the plant output by using a combination of linear 
methods and fuzzy process models. The crisp outputs of linear operators and fuzzy 
process models are used as input to a Sugeno FIS controller (Fig 5.6).

The design of the rules for the FIS is suggested by the plant’s qualitative state 
transition diagram. Given the connection between qualitative input events and changes in 
qualitative states, as shown by the plant’s state transition diagram, the FIS controller is 
constructed to generate the qualitative events that will result in the qualitative state 
transitions required to realize the desired control actions.

The first control objective is the stabilization of the plant. Stability for the 
Benchmark entails the dampening of vibrations after an external disturbance is applied. 
After stabilization, the FIS is augmented with rules to achieve performance objectives.

Fuzzy logic lends itself to this methodology, because fuzzy logic deals with 
possibilities and reasoning remains consistent even when conflicting requirements 
generate conflicting rules. Further tuning of the composite compensator can be made 
adjusting the relative weighting of the outputs of the different behaviors and by gating 
behaviors, allowing them to be performed only during specified states.

Fuzzy
Compensator

Fig 5.6(b): Fuzzy Controller with State Estimator 
The Benchmark problem requires both the achievement of stability and tracking 

performance. The physical intuition is that the spring oscillations caused by disturbances 
must first be dampened to achieve stability, and then after stability is achieved the goal of 
tracking can become paramount. This nonlinear dichotomy is easily supported by fuzzy 
logic.
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QRC allows the separate development of stability and tracking behaviors; the 
superimposition of these behaviors then achieves the final control objective. An analysis 
of the transfer function of the mass-spring-mass plant indicates that these behaviors 
should exploit the rigid-body-mode of the plant, where the plant behaves as if the masses 
are rigidly connected. If the stability behavior can be made to achieve this rigid-body
mode, then the tracking behavior can treats the mass-spring-mass system as a simple 
single mass. This allows a simpler tracking behavior to be effective.

The stability behavior is derived from the heuristic that a control action is most 
effective in suppressing plant vibration if it is applied when the spring is neutral, and the 
control action opposes the motion of the spring. As an extreme example of this effect, an 
impulse to a stationary plant can be rejected with only one complementary impulse of 
equal magnitude, if the impulse occurs exactly as the spring relaxes.

• Fuzzy Spring Process Model
A fuzzy process model of the spring needs to provide the qualitative state 

information necessary to dampen the vibrations of the plant and achieve stability. This 
can be achieved by abstracting the quantitative state of the Benchmark plant to just one 
qualitative state that indicates whether the spring is at its neutral length and whether the 
spring is in the process of compressing or elongating. This fuzzy process model requires 
that any estimate provided by a linear filter of the plant's quantitative state effectively 
captures:

• the timing of the spring relaxation
• the direction of motion of the spring (e.g. compressing and stretching).

Because the fuzzy process model only requires accurate estimates of state with 
respect to these two metrics, the linear filter does not need be optimal (e.g. Kalman 
filter), but can be a sub-optimal filter derived with robust filter methodologies.

The fuzzy process model utilizes a qualitative spring state that is specified by a 
qualitative partition of the spring length, L = x2 ~ xl, and the spring length velocity,

A Mamdani Fuzzy Inference System (FIS) applies seventeen rales, shown in Table 5.1, to 
infer the qualitative spring state, Ql from the inputs L and L . The output Ql is 
partitioned into the following qualitative states mapped with triangular and trapezoidal 
membership functions to the interval [-1,1]:

• spring is compressing rapidly and is relaxed,
• spring is compressing and is relaxed,
• spring is not in State 1, 2,4 or 5.
• spring is stretching and is relaxed,
• spring is stretching rapidly and is relaxed,

The input and output membership functions for the process model are shown graphically 
in Fig 5.7 where L, L and Ql are partitioned by five membership functions.
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Fig 5.7: Input and output membership function of the Spring Observer.

1. If (spring_length_estimate is negative)
then

(spring_state is not_stretching_or_compressing_with_neutal_spring)
2. If (spnng_length_estimate is small_negative) and (d el ta_ spnng Jength _es timate is negative)

then
(spring_state is compressing_fast_with_neutal_spring)

3. If (springjength_estimate is small_negative) and (delta_spnng_length_estimate is sm_neg)
then

(spring_state is not_stretching_pr_compressing_,with_neutal_spring)
4. If (spnng_length_estimate is smalljnegative) and (delta_spnng_length_estimate is zero)

then
(spnng_state is not_stretching_or_compressmg_with_neutal_spnng)

5. If (spnng_length_estimate is small_negative) and (delta_spnngjength_estimate is sm_pos)
then

(spring_state is not_stretching_or_compressing_with_neutal_spring)
6. If (spring_length_estimate is small_negative) and (delta„spring_length_estimate is positive)

then
(spnng_state is stretchingjFast_with_neutal_spring)

7. If (spring_Jength_estimate is zero) and (delta_spring_length_esti mate is negative)
then

(spnng_state is compressing_fast_with_neutal_spnng)
8. If (spring_length_estimate is zero) and (delta_spnng_length_estimate is smjneg)

then
(spring_state is compressing_fast_with_neutal_spring)

9. If (spnng_length_estimate is zero) and (delta_spring_length_estimate is zero)
then

(spnng_state is not_stretchmg_or_compressing_with_neutal_spnng)
10. If (spring_length_estimate is zero) and (delta_spring_length_estimate is sm_pos)

then
(spnng_state is stretehing_fast_with„neutal_spring)

11. If (spring_length_estimate is zero) and (delta_spring_length_estimate is positive)
then

(spnng_state is stretching_fast_with_neutal_spring)
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12. If (spring_length_estimate is small_positive) and (delta_spring_length_estimate ̂ negative) ’

then
(spring_state is compressing_fast_with_neutal_spring)

13. If (spnng_length_estimate is small_positive) and (delta_spnng_length_estimate is sm_neg)
then

(spnng_state is not_stretching_or_compressing_with_neutal_spring)
14. If (spring_length_estimate is small_positive) and (delta_spring_length_estimate is zero)

then
(spring_state is not_stretching_or_compressing_with_neutal_spring)

15. If (spnng_length_estimate is smalLpositive) and (delta_spring_length_estimate is sm_pos)
then

(spring_state is not_stretching_or_compressmg_with_neutal_spring)
16. If (spring_length_estimate is small_positive) and (delta_spnng_length_estimate is positive)

then (spring_state is stretching_fast_with_neutal_spring)
17. If (spnng_length_estimate is positive)

then (spnng_state is not_stretching_or_compressmg_with_neutal_spring)
Table 5.1: Rules for determining spring state

The stability behavior is enabled during output states 1, 2, 4 and 5; these states indicate 
the spring is vibrating and transitioning through zero. Noise immunity was improved by 

requiring that when L is not zero, but rather smaiLposiuve or smaiLnegative, that the level of L 
be large, either negative or positive, before Ql is set to a state indicate a vibration. Only for 
zero values of L will smaiLposiuve or smail_negauve of L result in an output Ql which indicates 
that a vibration needs to be suppressed.

• Fuzzy Compensator

The fuzzy compensator integrates both the stability and tracking behavior. First, a 
single Stability Behavior was developed and qualified, and then two tracking behaviors 
were developed. As when designing linear controllers, a tradeoff is required between 
maintaining the stability robustness of the Stability Behavior and increased tracking 
performance. Tracking Behavior A limits its control action to when the spring length is 
small, minimizing the interference with the Stability behavior, while Tracking Behavior 
B adds additional rules to improve the settling time performance, but at the expense of 
reducing stability robustness.

The Stability Behavior requires five rules while Tracking Behavior A required an 
additional three rules and Tracking Behavior B requires five rules. These rules used a 
combination of six (seven when Tracking Behavior B) Sugeno output functions where the 
output functions are a linear combination of the position and velocity inputs to the FIS.

bb,s
pos

Vi hb!saccel
i small 
uaccel

-1 -3 8 -0.6
Table 5.2 Coefficients for output equations used by vibration suppression behavior.
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Stability behavior is realized with 5 fuzzy rules that map the 5 fuzzy partitions of 
QL to five output membership functions. These rules are shown in Table 5.3. Vibrations 
are suppressed using the following five output functions:

big_stop_spring_stretching y^iZx+bSx+b*. (5.21)

small_stop_spring_stretching y=bZ2 (5.22)

zero y = 0 (5.23)

small_stop_spring_compressing v _ lj small
y sssc ”acc.el (5.24)

big_stop_spring_compressing V =hb,gx + hb!g X - hb,g
ybssc uposA' ~ uvel ^ uaccel (5.25)

These output equations use four constants whose values are given in Table 5.2 
actual vibration suppression is achieved only by the bias terms bb,gcel and £>““'/. These 
terms generate a pulse which opposes the stretching or compression of the spring. The 
remaining terms bias the amplitude of the pulse, so that the pulse aids in zeroing both the 
position and velocity of the masses.

___________________ Rules to supress vibrations________
1. If (spring state is compressing_fast„with_neutal_spring) then

(control_output is big_stop_spring_stretching)
2. If (spring state is compressing_slowly_with_neutal_spring) then

(control_output is small_stop_spring_stretching)
3. If (spring state is not_stretching_or_compressing_with_neutal_spring) 
then

(control_output is zero)
4. If (spring state is stretehing_slowly_at_zero_accel) then

(control_output is small_stop_ spring_compressing)
5. If (spring state is stretching_fast_with_neutal_spring) then
_________ (control_output is big_stop_ spring_compressing)_________
_____________ Additional rules to achieve tracking of m2
6. If (position_error is BigNegative) then

(control_output is zero_large_position)
7. If (position_error is negative) and (springjength is tinyBell) then

(control_output is zero_small_position)
8. If (position_error is zero) and (velocity is zero) then

, (control_output is zero)
9. If (position_error is positive) and (spring_length is tinyBell) then

(eontrol_output is zero_small_position)
10. If (position_error is BigPositive) then
_________ (control_output is zeroJarge_position)_________________
_________________ Table 5.3 Fuzzy Rules for Controlling Plant
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• Tracking Behavior: Tracking behavior has the conflicting goal of settling the 
plant output so that |y | < 0.1 after 15 seconds and interfering as little as possible 
with the stability robustness provided by the stability behavior. Two versions of 
the tracking behavior were developed:

1. Tracking Behavior A which attempts to minimizes any detrimental 
interaction with the Stability Behavior

Tracking Behavior A is implemented with Rule 7 to 9, from Table 5.3. It 
uses these three rules to implement a Sugeno Fuzzy PD controller which 
becomes active only when the spring length becomes small. This gating of 
the tracking behavior minimizes any detrimental affect the tracking 
behavior may have on the stability behavior. A smooth gating is obtained 
by using a smooth bell curve, the tinyBeii membership function, instead 
of a simpler triangle membership function. The width of tinyBeii at half
height is smaller than the equivalent zero membership function used by 
the spring process model, but unlike a triangle membership function 
decays smoothly to zero.
The single output membership function used is:

zero_small_position pSmanx + dsmaUx (5.26)

2. Tracking Behavior B which sacrifices stability, but attempts to 
minimize the peak overshoot and settling time for y for the nominal 
plant with k = 1.

Tracking Behavior B are designed so that when there are large position 
errors the tracking behavior is superimposed directly on the stability 
behavior, with the assumption that stability and vibration suppression are 
less important for large errors. This modification of Behavior A requires 
an additional two rales that are activated when y is large. These additional 
two rules are used to increase the PD controller gains when the output 
error is large, irrespective of whether the spring length is small, but with 
the detrimental effect of reducing the efficacy of the stability behavior. 
Additional output membership function used is:

zero_large_position ym = Plmgex + dlmgex (5.27)

A Sugeno PD controller is implemented with output membership function which 
consist of a linear combination of the position and velocity of m2. Table 5.4 gives 
the values of the constants used in the output equation for both Tracking Behavior 
A and B.

Psmall dsmall piarge dlarge

Behavior A 
Behavior B

Table 5.4 Coefficient used for tracking

-0.4 -2.1
-0.25 -2.5 -0.75 -1.2



154

5.6 MATLAB/SIMULINK: Simulation

Simulations validate the disturbance estimation and accommodation properties of 
the integral action for the PI observer and the PI adaptive observer, PH observer and 
Robust Fuzzy observer Simulations have been performed using Matlab7 and Simulink 6

5.6.1 PI Observer
Fig 5.8 depicts the SIMULINK model of a Luenberger observer with integral 

action for non-adaptive observer. The Integral Action block implements the integral 
action using an integrator and constant block.

Fig 5.8: PI Observer block.

Fig 5.8 shows a detailed Simulink model of the observer based regulator. The 
observer output is multiplied by the constant block K_lqr to obtain the control output u.

PI observer is able to reject the step plant input disturbance by utilizing the 
integral offset v. Fig 5.9(a) reveals that after 3 seconds the values for v begin to settle to
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their final values. At this point the estimates of by for the PI observer converge, As 
shown in Fig 5.9(b) the cumulative estimation error for the hidden state x2 reach a 
constant value for the PI observer while for the P adaptive observer the cumulative error 
is unbounded.

Fig 5.10: Response to a step input disturbance, din= 0.2,
Adaptive Observer Benchmark plant:

(a) . Integral offset, v, from the PI
(b) the cumulative error estimating the hidden state x2 for P and PI observer.

In the closed loop regulator configuration the PI observer was able to reject the 
step plant input disturbance faster than in the open loop case; after only several seconds 
the integral offset v shown in Fig 5.10(a) converges. During this initial settling time for v 
the PI regulator fails to track the performance of the full state feedback regulator. After 
settling the graph of cumulative error in Fig 5.10(b) shows that the PI regulator fully 
33recovers the performance of the optimal full state feedback regulator, while the P 
regulator maintains a proportionally larger error and never achieves full loop recovery.

5.6.2 PI Adaptive Observer
The simulation for non-adaptive observers used the Simulink model of an 

adaptive observer shown in Fig 5.11
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Fig 5.11 PI Adaptive Observer.

Integral action is added to the adaptive observer by adding integral and constant 
blocks to the PI Observer block of the model The disturbance rejection properties of the 
PI adaptive observer is evaluated with a step measurement input disturbance, dm of 
magnitude 0.2, an integral proportionality onstant, Kt, of -4. The initial simulations used 
these adaptive gains from Kudva and Narendra (Kudva and Narendra 1973[3]) for both 
the P and PI adaptive observers,

140 0' 5 0 “
r, = , and r2 =0 75 0 7.8

(5.28)

but the estimates of a2 and b2 failed to converge for the PI adaptive observers. 
Convergence however was achieved for both benchmark scenarios after increasing the 
gains for the PI adaptive observer to

•pP/ __
1 1 “

'140 0 ‘
rf =

'5 O'
and

0 150 0 15_
(5.29)

In the open loop configuration the PI adaptive observer was able to reject the step 
plant input disturbance by utilizing the integral offset v. Fig 5.12 (a) reveals that after 20 
seconds the values for v begin to settle to their final values. At this point the estimates of 
both state and plant parameters for the PI adaptive observer begin to converge, as shown 
in Fig 5.12(b).
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Fig 5.12: Response of open-loop P and PI adaptive observer to a step input 
disturbance, din = 0.2,

In the closed loop regulator configuration the PI adaptive observer was able to 
reject the step plant input disturbance faster than in the open loop case; after only several 
seconds the integral offset v shown in Fig 5.13(a) converges. During this initial settling 
time for v the PI regulator fails to track the performance of the full state feedback 
regulator. After settling the graph of cumulative error in Fig 5.13(b) shows that the PI 
regulator fully recovers the performance of the optimal full state feedback regulator, 
while the P regulator maintains a proportionally larger error and never achieves full loop 
recovery.

Fig 5.13(a): Response of closed-foop P and PI adaptive observer to a step input
disturbance, din = 0.2
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Fig 5.13(b): Estimates of a and b parameters from the closed-loop PI (solid line)
___________ and the P (dashed line) Adaptive Observer (triangular Disturbance)________

• Triangle Disturbance: The input to the compensated plant is

u = 5sin(t) + 5sin(2.5t), the disturbance input is a triangle wave and the PI 
adaptive observer uses an integral gain of Ki = -8 for these simulations.

Fig 5.13 shows that the estimates of the hidden state X2 by the PI observer adaptive 
is significantly more accurate than for the P adaptive observer.

5.6.3 Fault Estimation and Accommodation

Simulations were performed for the plant using the four actuator faults described 
in the Theoretical Results chapter: of gain mismatch, deadzone, backlash and saturation. 
The parameters for each fault are:

Fault Type Parameter Value
gain mismatch katten “ 0.6

deadzone kdz = 0.3

backlash kw= 1

saturation ksat = 1

The same observer parameters, except where noted, are used in this section as in the 
Previous sections in this chapter.

• Fault Estimation and Accommodation with the PI Observer
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Fig 5.14. The performance of the LQR (dashed line), the P observer-based 
regulator (gray dashed line) and the PI observer-based regulator in the presence of 
four common actuator faults is compared in the first two columns:
(a) plant output (b) Cumulative output error. Column (c) Actuator disturbance

An integral gain Hi = -50 for the PI observer is selected and an input u - sin(0.5t)

Fig 5.14(c) shows that the integral action of the PIO effectively estimates the 
disturbances caused by the actuator fault, leading to superior regulator performance, 
shown in Fig 5.14(a).

The graph of the cumulative output error, Fig 5.14(b), shows that the PlO-based 
regulator out performs both the PO-based regulator and LQR for all four faults. Only for 
the backlash feult does the performance of the LQR approach that of the PlO-based 
regulator.
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Fig 5.15: The performance of the LQR (dashed line), die P adaptive observer-based 
regulator (gray dashed line) with/without common actuator faults is compared in 
the first two columns;

• Estimation and Accommodation with the PI Adaptive Observer

These simulations used an integral action gain for the PI adaptive observer ofK/= 
-20, an increase from the gain used by the previous simulations (K/~ -4). Fig 5.15 shows 
that the integral action of the PIAO precisely estimates the disturbances caused by the 
actuator feult, but with a slight degradation in estimation accuracy over the non-adaptive 
case. This degradation in performance can be attributed to inaccuracies in estimating 
plant parameters.
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(a) Plant output (b) Cumulative output error, (c) Actuator disturbance (gray line) 
and its estimate by the integral action (black line).

Fig 5.15(a) and Fig 5.15(c) shows that even with this reduced estimation 
accuracy, the PIAO-based regulator outperforms the PAO-based regulator. The graph of 
the cumulative output error, Fig 5.15(b) shows, however, that the PIAO-based regulator 
no longer out performs, in every case, the LQR using foil state feedback.

The PIAO is superior for gain mismatch and saturation faults, slightly better for 
dead zone and inferior to LQR for the backlash fault. Noted that nonetheless even with 
this performance degradation with respect to LQR, only the PIAO-based regulator has foe 
capability of estimating and characterizing foe actuator foul!

5.6.4 Fading Integral Action

The PI observer-based regulator is not able to solve foe impulse rejection 
Benchmark problem. Whereas the PI observer can compensate for the disturbance caused 
by a spring parameter mismatch, it can not also accommodate foe unmeasured impulse 
input The PFI variant of foe PI observer can discount foe effects of foe impulses, and 
provides a solution for the Benchmark problem that is superior to that given by foe P 
observer-based controller.

6 10 
Time (sec)

o 6 10 is
Timer (sec)

Fig 5.16: The effects of process noise and integral fading on foe rejection of a unit 
impulse to mz for a perturbed plant with spring constant k =0.8.

(a) output for a PI Kalman Filter-based controller over a range of p
(b) output of foe correspond PFI Kalman Filter-based controller (Ki = -20) 

for a range of Kf.
(c) and (d) give the respective error in estimating foe state xi.
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A PI Kalman Filter-based controller was designed for the nominal plant and tested 
on a perturbed plant with a spring constant, k = 0.8. The efficacy of the lading term and 
high modeled process noise in rejecting transients was compared for a range of Kf and p. 
Fig 5.16(a) and (b) show that a P Kalman Filter-based regulator with high process noise 
and a PFI Kalman Filter-based regulator can achieve comparable output performance. 
However Fig 5.16(c) and (d) clearly shows that the estimation error for the PFI Kalman 
filter is much smaller than for die P Kalman Filter. Increasing die process noise enhances 
robustness of the filter, but has the detrimental effect of creating large estimation errors.

• Estimating Plant Perturbations with PFI Kalman Filter
S The Benchmark problem requires that the integral term of the PFI Kalman 

filter estimate die perturbation Ax caused by changes in spring constants 
S simultaneously reject the effects of an impulse disturbance to m2.

Fig 5.17: A comparison of the P, PFI Kalman Filter-based regulators and a LQR 
with full state feedback for a perturbed plant with spring constant k =0.8.

(a) Output,?
(b) Regulator output«,
(c) Respective estimating error, e, for state xi and
(d) the estimate Biv of the perturbation term Ax from die PFI Kalman Filter.

Fig 5.17(d) shows that for a perturbed plant, with k = 0.8, the integral action Bjv after 
seven seconds discounts the effects of the impulse disturbance and begins to effectively 
estimates the perturbation term Ax. The lading integral action allows the PFI Kalman 
filter-based regulator to achieve superior regulator output over the standard P Kalman 
filter-based regulator, shown in Fig 5.17(a), and improves the estimation accuracy of the
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filter, shown in Fig 5.17(c), while requiring only a nominal increase in compensator 
effort, Fig 5.17(b).

The robustness to plant perturbation of a Kalman filter-based regulator can be 
increased by using large modeled process noise. The tradeoff between robustness to plant 
perturbation and the level of actuator effort required to achieve this robustness is shown 
in Fig 5.18

05 1 16 2
Spring Censtant (k)

Fig 5.18: Peak regulator output versus plant spring constant for a P Kalman 
Filter -based controller and for a PF1 Kalman Filter-based regulator.

5.6.5 Robust Fuzzy Control

The Simulink model of the of the robust control benchmark plant is shown in Fig 5.19

—— p — 2000

—B—p=100 

—*^p=10 

-«-p=1 

_gj_p=01 

—Kl = -B0 

—Kl = -23

Fig 5.19 Plant used for Robust Control Benchmark.

The model was designed so that the three plant parameters, mi, m2 and k, can be 
adjusted dynamically. This model is used the Simulink Simulation shown in Fig 5.20.
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A unit impulse was simulated by a pulse of amplitude of 4 units and duration of 0.25 
seconds.

Fig 5.20: Robust Control Benchmark system with series compensation.

The performance of our QRC fuzzy controller was investigated using computer 
simulations for two scenarios: when complete state information was available and when a 
state observer was required to estimate the plant state. The QRC controller using Full 
State Feedback (FSFB) was benchmarked against the Linear Quadratic Regulator (LQR).

The LQR was selected because it shows the optimal robustness to plant 
perturbations of any linear controller (Anderson and Moore 1989). Equivalently, the QRC 
controller using output feedback and a robust Kalman Filter to estimate state was 
compared to the H2 compensators: based on stability Robustness and Performance 
Robustness.

The compensators were evaluated for their ability to reject an impulse disturbance 
to m2 using several metrics, t^isoos, the time it takes L to settle within ±0.05 units of the 
final value, is used to measure the stability of a compensated plant. The effect of 
vibration suppression on stability robustness was evaluated by comparing the range of 
spring constants k for which L settles within ±0.05 units of the final value in less than 15 
seconds to the stability radius of the compensated plant.

Tracking performance was measured by comparing the metric jw, the maximum 
value of the plant output, and /|,| SCu, the settling time of plant output y to within ±0.1 
units of the final value. Since stability robustness and performance is enhanced by 
increased compensator output, Eh/jo, the total actuator output for the first 15 seconds of 
the simulation was measured to insure that comparable levels of effort were used by all 
compensators.
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All measurements, of both plant outputs and states, were corrupted with zero 
mean Gaussian noise with a period of 0.01 seconds and a standard deviation of 0.02. The 
LQR and LQG controllers use the same LQR gain matrix KLQR = [0.8997 3.6077 0.5634 
6.5076]'. The PFI Kalman filters used a model based on the nominal plant, with m,-m2- 
k= 1 and process and measurement noise covariance matrices

fi =
1 0 
0 0

and v=0.01

which gives a Kalman gain K = [41.3051 6.4508 29.1938 20.8062], Integral action, 
which compensates for spring constant perturbations, used a distribution matrix Bi = [ 0 0 
11]' and an integral gain Ki = -20.

Both the Kalman gain and the LQR gain were calculated with the standard 
MATLAB functions. All the fuzzy compensator configurations modeled the actuator as 
first order system with T = 40/(s+40). These simulation were performed with 
SIMULINK.

The robustness of the stability behavior used in the full fuzzy controller was 
characterized for both FSFB and output feedback. Figure 41 shows the response to a unit 
impulse disturbance to m2 for a range of spring constants: k = 0.5 to 3.0 in steps of 0.5. 
Both compensator configurations show excellent vibration suppression properties.

The range of spring constants for which | L | < 0.05 after 15 seconds is 0.1 < k < 
1000 for FSFB and 0.4 < k < 2.3 for the output feedback configuration. As expected, 
FSFB suppresses vibrations faster, over a wider range of plant perturbations and with less 
compensator effort, than output feedback.

The fuzzy stability behavior is so effective in suppressing vibrations, that even the 
output feedback configuration suppresses vibrations over a wider range of spring 
constants than a LQR using FSFB with equivalent actuator effort; the LQR regulator 
settles L only in the range 0.5 < k < 1.6.

The addition of tracking behavior reduces the stability robustness of the 
compensator. However, if designed correctly a compensator with the less evasive 
Tracking Behavior A should be more robust than the compensator incorporating Tracking 
Behavior B. The effect of these two tracking behaviors is compared for the output 
feedback case in Fig 5.21
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Fig 5.21Comparison of the two tracking behaviors using only output feedback,

While Behavior A shows higher peak responses and longer settling times, it is 
fester and more robust in settling L. This corresponds to a 50% larger stability radius for 
Behavior A than Behavior B. The Stability Behavior settles L within 15 seconds to \l\< 
0.05 for 0.4 <k< 2.3. The addition of Tracking Behavior A only marginally reduces the 
range of k to 0.7 < k <2.3, where as the performance oriented Tracking Behavior B 
reduces the range even further to 0.8 < k < 2.0.

The stability robustness and tracking performance of the foil QRC controller with 
Tracking Behavior B (QRC B) using FSFB was compared to LQR.

Fig 5.22: Performance comparison of two full state feedback controllers: the fuzzy 
controller (black and the LQR (gray) and Fuzzy Controller (black) after unit 
impulse disturbance to niz for k= 1,2,3,4.

(a) Plant outputy (b) Spring length L (c) Compensator output«
(d) Cumulative compensator output Em (for k = 0.5 to 4.5 in steps of 0.5).
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Fig 5.22 superimposes the output of these two controllers for a range of spring 
constants after a unit impulse disturbance to m2. In order to insure a fair comparison, the 
LQR gain KLQR was selected so that the peak LQR output was about the same as for the 
fuzzy controller; in fact, Fig 5.22(c) shows that in the range 1 < k < 4 the LQR produces 
larger peak compensator output.

While the LQR over this range of k suppresses the effect of disturbance on the 
plant output y faster, shown in Fig 5.22(a), Fig 5.22(b) shows that the LQR compensated 
Plant has significantly larger oscillations in L. The superior vibration suppression 
properties of the QRC compensator contributes to the significantly larger stability margin 
of the QRC compensator: 0.2 < k < 1000 for the QRC A, 0.4 < k < 1000 for the QRC B, 
versus 1 < k < 4 for the LQR. Fig 5.22(d) shows that the superior performance of the 
QRC compensators is achieved while having a total compensator effort that is 
significantly smaller for the QRC controller, except when k = 0.5.

5.6.6 Fuzzy Control with Output Feedback

The stability robustness and tracking performance of the lull QRC controller with 
output feedback was evaluated using a PFI Kalman filter to estimate plant states. The 
QRC controller performance was compared to LQG using an identical PH Kalman filter 
and to the two Marrison and Stengel Compensators: Compl given by

r_ -79.3(g-0.8)(j + 5.7)(s + 0.11) (5 3Q)
(s2 + 3.84.V + 10.24)(.y2 + 6.882.V + 13.69)(v + 0.46)

and Comp3, given by

T________-8.2 (s - 4.7 )(s + 3.9)Qr + 0.24)
(^2 + 4.662s +13.69)(s 2 +3.132i + 7.29)(s+1.6)

(5.31)

The stability robustness of the two QRC controllers proves to be far superior to 
that of the PFI Kalman filter-based LQG, but less robust than Compl and Comp3. The 
QRC A is stable for 0.1 <k< 3.0 and QRC B is stable for 0.5 < k < 2.1, while the LQG is 
for 0.8 < k < 1.4 and Compl is stable for 0.5 < k < 5.5. However QRC B has superior 
tracking performance than Compl in the range of spring constants specified by the 
Benchmark problem, 0.5 < k < 2.0. As shown in Fig 5.23(a) QRC B has smaller peak 
output when perturbed by an impulse to m2, and as shown Fig 5.23(d) has smaller 
overshoot when tracking a unit step. Additional, Fig 5.23(b) and (c) show that QRC B 
has superior tracking performance when m, and m2 are perturbed.

When comparing metrics for the QRC A, QRC B, Compl and Comp3 
compensators at k = 0.5, 1.0 and 2.0, the QRC compensators show better vibration 
suppression behavior and comparable compensator output.
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k 0.5 1.0 2.0 0.5 1.0 2.0
tiylsoj »4 10.3 10.2 >40 8.0 19.4

tlLl^OOS 33.4 9.5 >40 8.8 14.9
yinax 0.87 1.17 1.38 1.02 1.33

Sal 5.0 2.3 2.8 5.71 2.2 4.96

The table cells with the best results for the nominal plant, k = 1, are highlighted. 
QRC B has die best settling time for X2, hut takes longer to dampen vibrations in the 
flexible structure than QRC A. Comp3 has the smallest peak, but takes longer to settle 
than QRC B and is not stable in the range 0.5 < £ < 2.0 specified in the Benchmark 
problem.

Fig 5.23: Responses to an impulse at im for the nominal plant (k = 1.0) for Fuzzy 
controllers QRC A and QRC B and the linear controllers Compl and 
Comp3. (a) The fuzzy compensators have a lower overshoot in o/p 

(b) The fuzzy controllers dampen vibrations faster.

Fig 5.23 compares the nominal plant(/n; = mf= k = 1) output y and die spring 
length L response to a unit impulse disturbance to m2.

The techniques developed give powerful tools to the field of disturbances 
rejection. Using these techniques disturbances caused either by unknown inputs, plant 
perturbations or actuator faults can be estimated and accommodated. The integral action 
approach, using variants of the PI observer, provide accurate disturbance estimate that 
allow for the accommodation and identification of disturbances given: (1) the injection 
points of the disturbances, (II) at least one independent state measurement for each 
disturbance and (HQ disturbances with time constants longer than the time constant of the 
plant Qualitative Robust Control (QRC), shows that controllers built using qualitative 
models and behaviors are as effective at accommodating disturbances as controllers built 
using H2 and H00 techniques. The QRC controller requires only a small set of simple 
linguistic rule, with all parameters having simple interpretations, to achieve the same 
level performance as the H2 and ETcontrollers built with complex mathematical 
constructs, and using obscure parameters.


