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Chapter 6
Soft computing: Miscellaneous Control Applications

Chapter provides a comprehensive study of the applications of soft computing 
techniques in control system. Applications in various process controls and other area 
where soft computing is applied are described. Design, Implementation, Animation and 
Simulation of inverted robotic arm is also described
6.1 An Adaptive H“ Controller Using Ridge Gaussian Neural Networks

The autopilot design for bank-to-turn (BTT) missiles has received considerable 
attention according to BTT missiles has higher maneuverability and aerodynamic 
acceleration compared with skid-to-tum missiles. However, the requirement of high roll 
rate for BTT missiles to change the orientation of the acceleration will induce undesirable 
cross coupling between pitch and yaw motions [1]. Furthermore, the highly nonlinear 
aerodynamics and missile dynamics of non-minimum phase make the autopilot design 
more difficult.

A wide variety of approaches have been used successfully to address the autopilot 
design for missiles. Adaptive robust control based on well-known input/output (I/O) 
feedback linearization technique to achieve the satisfactory tracking performance has 
been presented in [2-3]. In [4], the gain-scheduling approach based on H” control theory 
was proposed. In the past decade, FT optimal control has been widely discussed for 
robustness and its capability of disturbance rejection in linear and nonlinear control 
systems [5-6], however, for partly unknown dynamics; the gain-scheduling for autopilot 
was not satisfactory. Exploiting neural networks for BTT missiles control has been 
studied recently years [7-10]. [1] although the hybrid radial basis function (RBF) network 
autopilot with localized learning capability has demonstrated better performance than 
gain scheduled autopilot, the adjustable parameters of RBFs are only the hidden-to-output 
weights.

As to H“ control theory combined with neural networks, not only optimal 
tracking can be achieved while perturbations are absent, but also the worst case effect on 
the tracking errors due to the parameter uncertainties and external disturbances can be 
reduced to be less than or equal a desired level [11-12].

[13] integrates a proposed ridge Gaussian neural network, which is just a three-layer 
neural network with Gaussian activation functions, and control H°° theory to enhance the 
BTT missiles autopilot design in handling the tracking control problem with unmodeled 
uncertainties. It can be shown that the ridge Gaussian neural network is equivalent to the 
radial Gaussian neural network with matrices of scales and rotations of input vectors for 
each node. The advantages of ridge Gaussian neural network are fewer parameters to be 
tuned than traditional radial Gaussian neural network and both input-to-hidden and 
hidden-to-output weights can be on-line tuned.
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6.2 ANN for real-valued GA in knowledge acquisition

Rule-based expert systems are rather practical development in the artificial 
intelligent (AI) field. They are based on the premise that expertise can be encapsulated in 
a set of If-Then statements. Expert systems have already proven useful in many 
applications such as decision making, pattern recognition, speech understanding, fuzzy 
control, and so on. An area where expert systems find exciting applications is in medical 
diagnosis because there are many diagnostic processes which are guided by precompiled 
If-Then rules. In many cases, we have to deal with data which are incomplete, imprecise, 
uncertain, or vague. In order to handle such kinds of data the probability-based method is 
often adopted.

An important and well-known example is the MYCIN expert system [14] which 
introduces the concept of \certainty factors" to deal with uncertainty. However, humans 
do not think in terms of probability values but in terms of such expressions as Marge", 
\very hot", \slow", and so on. This motivates the methods of incorporating fuzzy sets 
and/or fuzzy logic into expert systems and forms so-called fuzzy systems. Fuzzy 
approach is in a sense matched to human reasoning or decision-making.

The performance of the rule-based systems (either conventional expert systems or 
fuzzy systems) is highly related to the completeness of the knowledge base. The 
construction of a complete knowledge base involves the process of knowledge 
acquisition. Traditionally, the design of rule-based expert systems involves a process of 
interaction between a domain expert and a knowledge engineer who formalizes the 
expert's knowledge as inference rules and encodes it in a computer.

There are several difficulties in obtaining an adequate set of rules from human 
experts. Expert may not know, or may be unable to articulate, what knowledge they 
actually used in solving their problems. Often, the development of an expert system is 
time-consuming. Thus, the process of building an expert system requires much effort. 
Another important problem is that it is difficult to determine whether the knowledge base 
is correct, consistent and=or incomplete. One way to alleviate these problems is to use 
machine learning to automate the process of knowledge acquisition [15].

Neural networks are attracting a lot of interest in the scientific community 
because of their dynamical nature, robustness, capability of generalization and fault 
tolerance. A veiy appealing aspect of neural networks is that they can inductively acquire 
concepts from examples; therefore, neural networks have long been considered a suitable 
framework for machine learning. Basically, a neural network is a massively parallel 
distributed processor and can improve its performance by adjusting its synaptic weights.

Although neural networks have many appealing properties, there are three main 
disadvantages in neural net- works. The first one is that there is no systematic way to set 
up the topology of a neural network. The second is that it usually takes lengthy time to 
train a neural network. The third and the most apparent disadvantage is that a trained 
neural network is unable to explain its response because the knowledge is encoded in the 
values of synaptic weights. In other words, a neural network cannot justify its response 
on the basis of explicit rules or logical reasoning process. There have been several
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attempts to overcome the problem. One approach is to interpret or extract rules from a 
trained backpropagation network [16]. The algorithm proposed by Bochereau and 
Bourgine can only extract some sets of the Boolean logic rules [17 ]

Gallant developed a neural network expert system MACIE (MAtrix Controlled 
Inference Engine), which possesses features that are usually associated with conventional 
expert systems [18-19]. Basically, the above mentioned methods extract crisp rules. A 
new approach which have been attracting the growing interest of researchers is to 
integrate neural networks and fuzzy systems into an intelligent system. T

This neuro-fuzzy synergistic integration reaps the benefits of both neural 
networks and fuzzy systems [20-25]. The integrated systems possess the advantages of 
neural networks (e.g. learning abilities, capability of generalization, optimization 
abilities, and connectionist structures) and fuzzy systems (e.g. high-level If-Then fuzzy 
rule thinking and reasoning). Each has its own advantages and disadvantages.

[26] proposes to train fuzzy degraded hyperellipsoidal composite neural networks 
(FDHECNNs) so as to provide an appealing solution to the problem of knowledge 
acquisition. The values of the network parameters, after sufficient training, can be then 
utilized to generate fuzzy If-Then rules on the basis of preselected meaningful features.

A FDHECNN is a two-layer feedforward neural network. As can be seen, a 
multilayer feedforward neural network incorporated with a gradient-based training 
algorithm is apt to getting stuck in local minima during the training procedure. In order to 
increase the chance of arriving at the global minimum, genetic algorithms (GAs) provide 
a feasible alternative since GAs have proved to be robust, domain independent 
mechanisms for optimization. While GAs have the advantage of not getting stuck in local 
optima, conventional GAs have shortcomings.

Conventional GAs require the natural parameter set of an optimization problem to 
be coded as a finite-length string over some _nite alphabets, therefore, it results in the 
problem of imprecision and computation load resulting from the coding and decoding 
processes. Besides, when the search space is large, GAs usually take lengthy time to get 
into the region of global optimum and then arrive at it. These problems motivated us to 
propose a real-valued genetic algorithm which use real-valued genes. This special real
valued GA is then utilized to train FDHECNNs.

6.3 GA-Sugeno Integral for Set function Determination

The weighted average method, a classical linear model, is often used as an 
aggregation means in information fusion. It is, essentially, the Lebesgue integral [4] with 
respect to a classical measure additively determined by the weights on a discrete space 
consisting of all information sources. The use of this model is based on an assumption 
that the functions of diverse information sources are independent to each other and, 
therefore, the joint effect of several information sources to the target is just the simple 
weighted sum of effects of the individual information sources. Cases where weighted 
method fails, weights should be replaced by a nonnegative monotone set function, so- 
called importance measure that describes the importance of each individual information
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source as well as the interaction among them due to its non-additivity, and some type of 
nonlinear integral should be used as an aggregation means.

The crux of using the above mentioned new model in a real problem is 
how to determine the values of the importance measure. It is much more difficult than 
determining weights in the weighted average method since the weights are defined on the 
set of all information sources while the importance measure is defined on the power set 
of this set and a monotonicity restriction on the set function should be satisfied. Various 
strategies to construct nonnegative monotone set functions in systems have been 
proposed recently and are being developed now [27-32]. Among them, using statistics 
from data is the most practical one.

Recently, [33] shows a genetic algorithm used to determine nonnegative 
monotone set functions in systems where the Choquet integral is adopted as the 
aggregation means. In the current paper, we adopt another often used type of nonlinear 
integral, the Sugeno integral (fuzzy integral), as the aggregation means and a relevant 
algorithm is developed to determine importance measures.

[34] Introduces the concept of importance measure. It focuses on a discussion of 
Sugeno integrals (fuzzy integrals), a type of nonlinear integrals, with respect to an 
importance measure and demonstrates the fuzzy linearity of the Sugeno integral when the 
importance measure is fuzzy additive. A model of information fusion is developed where 
the Sugeno integral with respect to the importance measure is used as a means of 
aggregation.

To determine the values of the importance measure, a statistical method and, 
therefore, an optimization problem The Sugeno integral is regarded as a multi-input 
single-output system and its input{ output data are collected. To solve the optimization 
problem, some soft computing methods can be adopted. A special genetic algorithm that 
is rather effective for our purpose. The algorithm has been run for a number of examples 
successfully.

6.4 Fuzzy Observer Design for Mobile Robot

The mobile robot can be applied to home appliance machine for assistance and 
security. It has to navigate autonomously and intelligently. When it moves on the floor, 
its dynamics depends on the floor materials and conditions. We have to design controller 
with considering them although we do not have any information on them.

Fuzzy logic algorithm is based on human intelligence and an expert’s knowledge 
and performs well for the system that has nonlinear characteristics. And fuzzy logic .is 
robust on the change of system parameters and copes with the disturbance that has bad 
effects on the system [35] [36]. Because of these merits, fuzzy logic control is used to 
control a mobile robot nowadays.

In order to get better performance on the controller of mobile robot, we propose 
an observer which estimates state variables as well as disturbance. We usually use the
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sonar sensor to get the motion information of mobile robot. After that, it carries out path 
tracking. In the process, the path consists of straight routines and curves.

However, due to contour error and direction error, the robot stays easily out of the 
way. Those errors are caused by load disturbance include slip between wheel and floor 
and some unknown disturbance like nonlinear friction. In mobile robot, nonlinear friction 
is the factor which makes stick-slip induced by stiction and Stribeck effect [37],

To reduce these errors, [38] add it to controller so that the observer can estimate 
load disturbance as well as state variables to controller. It is necessary to control the robot 
with high performance and accuracy by proper modeling and friction compensation.

In designing an observer, [39] separates friction torque characteristic into two 
parts as one part due to mechanical characteristics of motor which has highly nonlinear 
characteristics and the other part due to slip between wheel and floor which has time 
varying characteristic. According to analysis on the observer, we can show the 
convergence of estimate states to true value. Simulation results show that fuzzy controller 
using the observer has good performance ever if the robot has different slip condition 
between two wheels.

6.5 Sliding Mode Observer

In the last couple of years the issue of observers in fuzzy systems was discussed 
from different points of view like observability and the separation of the controller and 
observer.

In [40] a fuzzy Thau-Luenberger observer is presented which eliminates 
uncertainties coming form different initial conditions of the observer and the plant. In 
some cases, however, local linear observers fail to eliminate modeling uncertainties 
which might even lead to instability. Sliding mode techniques used for observers have the 
advantage to cope with matched and even unmatched uncertainties very effectively. An 
extensive review of these techniques can be found in [41-42],

In [43] fuzzy sliding mode observers were firstly introduced and conditions have 
been given under which matched uncertainties can be eliminated. In [44] a sliding mode 
observer for a very general case was designed. In [45] a controller/ observer scheme for 
unmatched uncertainties is proposed. The fuzzy observer discussed in [47] uses a 
transformation of the locally linearized system into a specific canonical form. [47] 
approach utilizes results from [41,46]. The main idea of this approach is that one assumes 
the nonlinear system to be linear dominant within a certain operating region. The fuzzy 
approximation of a nonlinear system is briefly described. The design of a fuzzy sliding 
mode observer for a linear dominant system according to [46] is presented in [47] with its 
application to pendulum on a cart.

6.6 ANN Observers for Synchronous Generators

In recent years, there has been a considerable interest in the on-line estimation of 
synchronous generator parameters [48-53]. Online methods are particularly attractive
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since the machine’s service need not be interrupted and parameter estimation is 
performed by processing measurements obtained during the normal operation of the 
machine.

The need for on-line parameter estimation arises because generator parameters 
tend to deviate substantially from nominal values obtained from off-line testing. These 
deviations are usually due to magnetic saturation [54-57], machine aging, internal 
temperature, the effect of centrifugal forces on winding contacts, and incipient faults 
within the machine. It is to be noted that although incipient faults can typically be 
detected by continuous or periodic monitoring of characteristic^quantities [58-60] (such 
as efficiency, fuel and oil consumption, impurities in the cooling stream, radio frequency 
noise level, temperature etc.), not all faults may manifest themselves in change of these 
quantities. However, parameter estimates obtained by processing online measurements 
are useful for generator condition monitoring [61].

6.6.1 On-line Tracking of Data

Using an extensive database, online parameter estimates may be used to 
monitor generator condition and take preventative maintenance measures before 
complete breakdown occurs. Measurements acquired during synchronous generator 
testing are often a small subset of the machine’s state vector.

The remaining unmeasurable components of the state vector are typically 
composed of currents in the rotor body circuits [62-64] which encapsulate high frequency 
sensitivity due to the flow of eddy currents in solid parts. In the absence of full-state 
measurement, the parameter estimation algorithm may require heavy computation to 
achieve convergence or may even fail to converge on a set of parameters, especially 
when poor initial estimates are used. When the state vector is completely known, 
parameter convergence is guaranteed and recursive estimation algorithms may be used to 
estimate machine parameters. Observers are frequently used to estimate immeasurable 
state vector components based on operating data.

It must be recognized that the problem of estimating a system’s un
measurable states by processing its measurable states is essentially a system identification 
task and neural networks offer a promising means of achieving this [65])

An ANN observer is developed in [66] to map sequences of measured 
machine outputs to un-measurable rotor body currents by processing data acquired during 
transient disturbances. Data for developing the neural network model are obtained 
through off-line simulations of the synchronous machine model connected to an infinite 
bus system. It is assumed that the structure and order of the machine model used in 
generating data for developing the observer is accurately known. Nominal parameter 
values are used in the machine model. These assumptions are reasonable because, over 
the years, significant advances have been made to accurately model synchronous 
generators based on well-established modeling and parameter estimation techniques.
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During training, all state variables of the machine model are assumed measurable. 
This would correspond to the stage when simulations are carried out to obtain a 
sufficiently accurate observer model. After developing the neural network observer, it 
can be used to estimate rotor body currents by processing measurements acquired on-line 
in an actual operating environment.

6.6.2 State Vector Estimation from On-line Operating Data

The measured responses are a small subset of the synchronous generator's 
state vector. In the absence of information pertaining to the generator's unmeasurable 
states (such as currents in the rotor-body circuits), estimation algorithms based on non
linear minimization techniques have to be used to estimate machine model parameters. If 
complete state information is available, recursive algorithms may be used to estimate the 
machine parameter vector.

Observers have often been used to estimate state information by 
processing available measurements. Investigators have developed various observers for 
estimating the state vector of a synchronous generator. Neural networks, with their 
parallel processing abilities provide a viable means for reconstructing, in real time, the 
synchronous generator's state vector from a set of measurements.

The implementation of a linear neural network in an actual operating 
environment will result in incorrect estimates of rotor body currents. This is because 
machine model parameters estimated on-line can deviate substantially from 
corresponding nominal estimates obtained off-line. On-line machine model parameter 
estimates are nonlinear in nature and may be influenced by generator operating condition.

ANN [67] observers account for model parameter non-linearities and 
provide accurate estimates of rotor body currents irrespective of generator operating 
condition. Instead of using nominal machine parameters, data for training the observers 
are generated through off-line simulations of a machine model whose parameters are 
varied according to on-line parameter estimates.

During training, all state variables of the machine model are assumed to be 
known. This corresponds to a stage when simulations are carried out to determine the 
order and parameters (weights and biases) of the ANN observers. After enhancing 
observer robustness to simulated parameter variations and noise, the trained ANN 
observers are tested with experimentally obtained on-line measurements to provide 
estimates of un-measurable rotor body currents. These estimates are then used along with 
experimental measurements to estimate machine parameters.

6.7 ANN Adaptive Controller for Robotic Manipulator

Robotic manipulators are complicated nonlinear dynamical systems with inherent 
unmodeled dynamics and unstructured uncertainties. These dynamical uncertainties make 
the controller design for manipulators a difficult task in the framework of classical 
adaptive and nonadaptive control. Design of ideal controllers for such systems is one of
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the most challenging tasks in control theory today, especially when manipulators are 
asked to move very quickly while maintaining good dynamic performance.

Conventional control methods such as proportional, integration, and derivative 
(PID) scheme, the computed torque scheme (CTM) and the adaptive control scheme 
(ACM) etc. are used.

The traditional PID control with a simple structure and implementation has been 
the predominant method used for industrial manipulator controllers. Though the static 
precision is good if the gravitational torques are compensated, the dynamic performance 
of PID controllers leave much to be de-sired.

CTM and ACM give very good performance, if manipulator dynamics are exactly 
known or the linearity in parameters of the robot dynamics holds. However, they suffer 
from three difficulties. First, they require explicit a priori knowledge of individual 
manipulators, which is very difficult to acquire in most practical applications. Second, 
uncertainties existing in real manipulators seriously devalue the performance of both 
methods. Although ACM has the ability to cope with structured uncertainties, it does not 
solve the problem of unstructured uncertainties. Third, the computational load of both 
methods is high. Since the control-sampling period must be at the millisecond level, this 
high computational load requires very powerful computing platforms that result in a high 
implementation cost.

A class of computational model known as neural networks (NNs) has been 
applied to robot control, which provides robotic manipulators with just such enhanced 
adaptive capability. Justification for using NNs for robot control lies in their excellent 
capability in learning any complicated mapping from training examples and generalizing 
what it has learned such that the robot controller is able to respond to an unexpected 
situation.

The parallel processing capability, when NNs have been implemented in 
hardware using very large scale integration (VLSI) technology, enables NNs to respond 
quickly in generating timely control actions. Much research effort has been put into the 
design of NN applications for robot control. The early applications of NNs in the control 
of robotic manipulators include Albus and Miller’s CMAC Controller [67-68], Iiguni’s 
linear optimal control techniques with backpropagation NNs [69], Kawato and Ozaki’s 
feed-forward compensators using backpropagation NNs [70,71] for improving the control 
performance, etc.

NN-based control approaches described could give good simulations or even 
experimental results but lack of theoretical analysis and stability security makes 
industrialists wary of using the results in real industrial environments. To cope with these 
problems, stable NN-based adaptive control both m continuous and discrete time for 
robots has been recently investigated by many researchers.

Representatives of these researches are nonlinearly parameterized NN-based 
adaptive controllers [72-75] and linearly parameterized NN-based adaptive ones [76-79] 
for robotic manipulators.
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In the proposed control schemes above, NNs are used to approximate the 
nonlinear components in the robot dynamic system, and Lyapunov stability theory or 
passive theory is employed to design a closed-loop control system with stability, 
convergence and improved robustness. As a result, the designed systems are stable, and 
online NN weight updating laws yield the function approximations. All these results have 
showed that stable NN-based control approaches do have the potential to overcome the 
difficulties in robot control experienced by conventional adaptive and nonadaptive 
controllers [80].

Most of the existing NN-based control approaches require the measurements of 
robot joint angle velocity, which may significantly deteriorate the control performance of 
these methods, because the velocity measurements are often contaminated by a 
considerable amount of noise. Furthermore, velocity sensors such as tachometers increase 
the weight and volume of the moving parts of the robot, thereby decreasing the robot’s 
efficiency. Therefore, it is desired to achieve good control performance by using only 
joint position measurement [81].

In order to solve the NN-based adaptive tracking control problem for those manipulators 
using the position measurements only, an NN-based output feedback controller with an 
observer is proposed by Kim [82] for rigid robotic manipulators, which contains two 
NNs, one for the observer and the other for the controller. The controller design requires 
accurate knowledge of the robot inertia matrix, and the controller structure and the 
computing algorithms are very complicated.

In [83] hybrid control design is investigated by incorporating the merits of the 
NN-based adaptive control with the output feedback control of a robot. The output 
feedback control is used to stabilize the robot system with a linear observer, while the NN 
approach is employed to further improve the control performance of the controlled 
system by approximating the modified robot dynamics function The whole NN-based 
controller design, with a linear observer to estimate the velocity of the robot, only 
requires one NN. At the same time, the robot dynamics is assumed to be unknown. This 
paper gives the main results for designing such an observer-based adaptive controller for 
robots using multilayer NNs with sigmoidal activation functions. For performance 
comparison with the conventional adaptive algorithm as on-line approximator, the 
adaptive control algorithm proposed by Bayard and Wen [84] is expanded with an 
observer in the same control framework as the NN approach for robot trajectory tracking.

The effectiveness and efficiency of the proposed observer-based controller [84] 
using multilayer NNs are demonstrated in comparison studies with the conventional 
adaptive control algorithm by simulations of a two-link manipulator.

6.8 ANN based Process Estimation and Control

The common approach adopted to develop a realistic nonlinear model of a process 
system is based upon a first principles understanding. Since process systems may be 
complex this often necessitates the devotion of considerable time. Moreover, simplifying 
assumptions have to be made in many instances to enable a tractable solution to the 
modeling problem. A first principle model is very costly to construct and will be subject 
to inaccuracies due to the assumptions made during the development.
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Although the concept of inferential measurement can improve control 
performance using conventional instrumentation there are certain situations where more 
advanced methodologies are required. In particular, the use of model based controllers 
have been shown to be useful when the process is nonlinear or large time delays exist. 
Significant attention has already been directed to the use of a nonlinear model directly 
within a control strategy (e.g. Lee and Sullivan. 1988 [84]

Unfortunately, the above techniques are primarily based upon mechanistic models 
and are thus dependent upon the accuracy of the nominal model used during control law 
synthesis. Initial studies by Willis et al. (1991) have shown that it is possible to develop a 
long range predictive controller where the nominal model is a neural network thus 
facilitating rapid and cheap development of a nonlinear control philosophy. This 
contribution builds upon these early studies to further demonstrate the utility of an ANN 
model based predictive control technique: Dynamic Network Control (DNC).

A desirable objective is the development and application of a technique which 
possesses generality of model structure (facilitating rapid and cheap development) but 
which could also be capable of learning and expressing the process nonlinearities and 
complexities. The ANN appears to offer this possibility.

In [85] ANNs are modified in order to model dynamic systems and utilized in 
process application. After introducing the basic concepts of ANNs, inferential estimation 
is discussed and a tentative exposition of an inferential controller comprising a neural 
network model (NNM) and a simple PI algorithm is presented.

The NNM is used to provide estimates of "difficult-to-measure" controlled 
variables by inference from other easily measured outputs. These estimates are then used 
for feedback control. The philosophy is used to provide more frequent measurements 
than could be achieved by hardware instrumentation. The particular advantage is that 
standard industrial controllers can then be employed.

6.9 Fuzzy Predictive Functional Control

In recent years, the predictive control has become a very important area of 
research. It is based on the prediction of the output signal at each sampling instant. The 
prediction is obtained implicitly or explicitly according to the model of the controlled 
process. Using the actual predictive control law, the control signal is calculated which 
forces the predicted process output signal to follow to the reference signal in way to 
minimize the difference between the reference and the output signal in the area between 
certain time horizons.

The fundamental methods that are essentially based on the principle of predictive 
control are Clarke’s method, (generalized predictive control [86]), Riehalet’s method 
(model algorithmic control and predictive functional control [87]), Cutler’s method 
(dynamic matrix control [88]), De Keyser’s method (extended prediction self-adaptive 
control [88]), and Ydstie’s method (extended horizon adaptive control [90]).
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[91] combines a well-known method of predictive functional control together 
with fuzzy model of the process. The prediction is based on a global linear model, which 
is obtained by fuzzy model given in the form of Takagi-Sugeno (T-S) type.

The predictive control based on a fuzzy model [6] is capable to control also very 
difficult processes such as strongly nonlinear processes, processes with long time delay 
and nonminimum phase processes. The controllers based on prediction strategy also 
exhibit remarkable robustness with respect to model mismatch and unmodeled dynamics. 
The proposed fuzzy predictive control has been evaluated by implementation on heat- 
exchanger plant, which exhibits a strong nonlinear behavior

6.10 Optimal Fuzzy FED Controllers

Fuzzy PID-like controllers the design parameters within two groups: structural 
parameters and tuning parameters.

The structural parameters are determined during off-line design. Tuning 
parameters can be calculated during on-line adjustments of the controller to enhance the 
process performance, as well as to accommodate the adaptive capability to system 
uncertainty and process disturbance. Some parameters can be called either structural or 
tuning parameters depending on their usage.

A wide variety of fuzzy PID-like controllers have been developed Significant 
studies based on the closed-form analysis of fuzzy PID-like controllers started with the 
work of Ying, Siler, and Buckley [92-94], where they have used a simple four-rule 
controller similar to that of Murakami and Maeda [95]. More analytical work in this 
regard was subsequently reported for the four-rule controllers [96-98], and linear-like 
fuzzy controllers [99-100] [3], [5]. Palm has analytically demonstrated the equivalence 
between the fuzzy controller and sliding-mode controllers [101]

It is possible to build a fuzzy controller which provides better performance than a 
conventional PID controller. In a study of optimal design for fuzzy controllers, two 
relationships must be established: 1) design parameters and control nonlinearity, and 2) 
control nonlinearity and process performance,

[102] uses an analytical approach to the optimal design of fuzzy controllers. A 
simple controller applying a single variable, three rules, and six design parameters is 
developed. The properties of the control action are discussed in terms of the design 
parameters. The nonlinear proportional gain is explicitly derived in an error domain.

In [102] The issues of nonlinear controller design are discussed and a 
conservative design strategy is suggested for a guaranteed-PID-performance fuzzy 
controller. Two indexes are proposed for the evaluation of nonlinear controller designs. 
For an optimal system design using genetic algorithms, an overall performance index is 
proposed including several individual performance indexes. Numerical studies are 
performed on several processes including nonlinearities due to time delay and saturation.
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6.11 A Fuzzy RISC Processor

To provide high-performance fuzzy computation [103-104], several 
special purpose fuzzy circuit implementations and processors have been proposed. 
However, an approach based on specialized computing engines for performing fuzzy 
computation does not take into account that fuzzy processing is often not the only task 
required of the processing unit.

Fuzzy processing is often embedded into a complex system, requiring 
input/output (I/O) management, and other crisp operations. A few processors can support 
both general purpose computing and fuzzy computing, but they are mostly available at 
the low-performance microcontroller level. In this paper, we show how fuzzy processing 
can be implemented efficiently on general purpose processors and what functionality is 
required to achieve peak performance.

[105] has extended a general purpose reduced instruction set computing (RISC) 
processing unit with specialized fuzzy control operations to achieve high fuzzy 
processing performance with only minor changes in the processor, thereby preserving 
general purpose computing performance. This approach to designing application-specific 
processor variants based on a common reconfigurable processor core allows to build 
systems-on-a-chip with high fuzzy processing performance. Alternatively, the extensions 
can be integrated into a standard microprocessor part to create product differentiation for 
particular markets. To optimize tradeoffs between hardware resource utilization and 
fuzzy processing performance, a tech-Manuscript unique called hardware/software 
coevaluation is employed.[106] to evaluate different instruction sets and find the most 
promising in terms of performance and hardware complexity. The application specific 
instructions for fuzzy processing support is referred to as MIPS-F, for MIPS with fuzzy 
processing support Amongst the new instructions, only one instruction is fuzzy specific, 
whereas all others are also useful for general purpose programs.

To achieve maximum performance, a technique called subword parallelism is 
used to pack multiple fuzzy data in a single processor word. This approach utilizes 
processor resources to the fullest, parallelizing multiple fuzzy inference steps and 
reducing memory traffic and reduces both memory access penalty and power 
consumption, which is of major concern in embedded applications where most fuzzy 
computation is used.

6.12 Adaptive Neural Observer-Estimator for Non-linear System

An Artificial Neural Network (ANN) based design of adaptive observer with error 
back propagation is considered for continuous time system. In this new approach, neural 
network is constructed and trained off-line and estimates of the plant output are generated 
through trained neural network.

The proposed scheme is adaptive and it is designed and simulated for control and 
stabilization of robot arm. Simulation of proposed scheme is done using MATLAB 
Simulink. Error and settling time are well below the acceptable limit. The capability of
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neural network is applied to estimate a part of nonlinear dynamics to control complex and 
unknown nonlinear control system. Application of neural network in such control will 
transform real time estimation of state (Observer) problem to simply adjustment of 
weights of neural network to find desired solution. The problem of Robot Arm 
Stabilization using Neural Network and Digital Signal Processor is addressed. It 
combines the approximation capabilities of neural network and computational power and 
speed of digital signal processor.

Many systems exist whose characteristics are difficult to mathematically model, 
making the design of an adequate controller a computationally intensive task. A controller 
that does not depend on exact characteristics but can adapt to differences in the system 
could eliminate the need for an exact model. An example of this type of system is the 
motor-driven inverted robot arm (Fig. 6.1): gear-induced time delay, wind and other such 
disturbances, and mass-distribution differences combine to produce a complex model, 
needing an even more complex controller. Since a human cannot always be on hand to 
balance the robot arm, it would be advantageous to have a controller which can mimic this 
ease of control.

Cbrtiol Signal Angle Sensor Output

Fig 6.1: Inverted robot arm

The neural network is having linear variation in its output with variation m the input. The 
Network output is adaptive to the changes in the input.

6.12.1 MODES OF OPERATION

Fig. 6.2: Modes of operation: System block
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The two modes of operation are described: learning and controlling.

1. In learning mode (Fig. 6.2, Top), a joystick is used to manually control the 
robot arm through a gain and protection circuit which keeps the current and 
arm-angles from exceeding safety limits and brings the control signal up to the 
power needed to drive the motor. The motor then adjusts the arm angle, which 
is detected using a sensor in the motor/arm assembly. The neural network to 
learn how to control the arm uses the angle-signal and the joystick signal. 

(Learning will be more fully described in the next section.)

2. In controlling mode (Fig. 2, Bottom), the joystick is removed and the neural 
network is connected to produce the control signal to manipulate the robot arm. 
It is necessary to generate the training data for the Learning Mode of controller 
using Simulink and to train the network and calculate the weights of Neurons 
using Least Mean Square (LMS) Algorithm.

6.12.2 PROGRAMMING

Fig 6.3: SIMULINK model for Inverted Robot Arm

The learning mode (Fig 6.4) generates the training data for the Neural Network (Fig 6.3). 
(Fig 6.5) depicts the Data set generation signals.
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Fig 6.4 SIMULINK Setup for Manual Signal Generator

Least Mean Square (LMS) algorithm is used for training. MA TI^ABprogram calculates 
weights of Neural Network. These weights are used to determine response of Neural 
Network in the controlling mode. The accuracy of control is in the range of ±2 degrees of 
variation in arm angle for worst case of noise and disturbance.

• Learning Mode Learning mode of the controller can be described as learning 
phase of the neural network. In this mode the Neural Network is provided 
with the set of training data. The type of learning algorithm is decided. This 
training data is used as designated by the training rule of the Neural Network. 
The weights of Neurons are calculated as per the algorithm. The development 
of this phase basically consists of three considerations:

a) To generate the training data set
b) To decide the algorithm
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c) To implement the chosen algorithm and calculate weights

Fig 6.6 Classical SIMULATION setup

• Controlling Mode: Controlling the mode is the mode of normal operation of the 
ADAL1NE Controller. In this mode controller effectively controls robot arm 
angle based on its previous training experience. This mode can be implemented 
by following modifications in the model of learning mode. Artificial Neural 
Network governs the feedback loop. It takes output arm angle as input and 
considering the weights of neurons; it gives control signal, which is multiplexed 
with plant output and disturbance signal to generate the control signal. .

6.12.3 Simulation

The steps followed to simulate Neural Adaptive Observer and Estimator for robot arm 
areas follows:

> First to generate data for training of Neural network, Run td_250.m: this will 
create the disturbance and a couple other signals via Simulink.

> Save the results, which are in workspace to th250.mat file. So, the training 
data set is ready.

> Now, run lms2.m: this trains the neural network according to the training data 
found within th250.mat.

> You can clear out most of the variables from the workspace to save memory; 
just make sure you keep a copy of the weights (W).

> Create a new 30 x 1 matrix Xes by executing Xes = zeros(30,1);
> run ann ctrl cntr.m: to simulate the controlling mode of ANN.

After simulating the model following signals (Fig 6.7) are generated. The disturbance 
signal represents the noise and disturbance output.
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Arm angle and Manual Signal are the worth noting signals. By observing both signals 
we can say that arm angle and the Manual signals behave in complementary way. When 
Arm angle has a positive deviation due to noise and disturbances the Manual signal 
deviates in negative side to null the effect of the destabilization.

Animation Block: This block (Fig 6.8) is a MATLAB function block. It is used to 
pass the parameters to the M-function ‘ann robot.m’, the arm angle measured from 
vertical position and direction vectors of robot arm. It draws the pendulum graphic to 
graphically show the robot arm during the simulation of the controlling mode

The simulation generates the disturbance signal representing the noise and 
disturbance output. The output of the animation block is a pendulum animation. The 
animation Fig 6.9 shows the effect of the noise and disturbance signals on the robot arm 
angle graphically.

Fig 6.8. Robot arm animation

The output of M-function anndelay is the control signal, which takes into account 
the effect of noise and disturbance on the robot arm. This signal varies in the opposite 
direction of that of robot arm deviation in order to null the deviation.
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The simulation response ie Fig.6.9, makes it clear that when robot arm angle has 
positive deviation, control signal has negative deviation to null the effect of the deviation. 
The positive peak of the control signal and negative peaks of the arm angle deviation 
coincides The proposed Neural Adaptive Observer and Estimator for continuous time 
nonlinear system can be extended for discrete time. It may also be implemented using 
DSP
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(c) (d)
Fig 5.22: Performance comparison of fuzzy controller using state estimates from a 

PFI Kalman filter (black lines) and Compl, a 5th order Hz compensator 
from Marrison and Stengel (gray lines).

(a) Output response to a unit impulse disturbance to m2 

for k = 0.6 to k = 2.0 in steps of 0.2
(b) for mi - 0.6 to mi - 2.0 in steps of 0.2, and
(c) for m2 = 0.8 to m2 = 2.0 in steps of 0.2.
(d) Tracking of a unit step command for k = 0.6 to k = 2.0 in steps of 0.2.

The following tabulates simulation results for an impulse disturbance on m2.

k 0.5
Compl

1.0 2.0 0.5
Fuzzy Controller A

1.0 2.0

t|yU0.1 26.0 14.4 14.3 25.3 15.0 24.2

11L1 <0.05 >40 14.5 7.5 26.1 6.7 8.8

y max 1.8 2.1 2.0 1.45 1.05 1.58

Sul 5.0 2.6 2.8 2.7 3.1 2.2 3.9

Comp3 Fuzzy Controller B


