
CHAPTER 4

Discussion
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4.1 Structural and floristic dynamics of the study area

Structural and floristic dynamics (expressed as Holdridge Complexity Index HCI 

.Basal area BA, Shannon diversity index H’ and density of a species) for mixed 

vegetation covers of SWS showed similarity with other studies performed on tropical 

mixed deciduous forests world wide. Range of structural and floristic components 

measured in present study are comparable to that of Singh et al. (2005), who 

measured structural components (HCI, BA and H’) for moist deciduous forest of 

Madhya Pradesh, India. Kalacska et al. (2005) measured related structural 

components (HCI, BA and H’) for tropical dry forest of Santa rosa national park in 

north-western Costa Rica. Range of structural components in present study is also 

comparable to this study. Measured structural and floristic parameters in present 

study are comparable with the standardized range reported by Murphy and Lugo 

(1986) from world wide tropical dry forests sites. Earlier, Sagar et al. (2003) and 

Gairola et al. (2011) reported Shannon diversity index and species density across 

different dry tropical forests sites of India. Similar range of Shannon diversity index 

and species density was observed in present study. Madugundu et al. (2008) 
measured basal area of deciduous forests of Karnataka, India (basal area 26-42 m2 

ha'1). Range of basal area in present study (basal area 16.94-44.49 m2 ha'1) was 

comparable to this study. Basal area range obtained in this study is also analogous 

to range provided by kumar et al. (2006) for different forest communities in the 

tropics.

This study area supports a mosaic of vegetation covers successional stages. The 

structure of the regenerating vegetation has been greatly affected by altering of Land 

Use Land cover (LULC) and plantation activities of Gujarat forest department. 

Variation in the range of Normalized Difference Vegetative Index (NDVI) values in 

three different succession classes of vegetation in SWS was observed. Spectra 

coming from this area also differed. By utilizing remote sensing data change 

detection in forest covers because of human intervention can be easily recorded and 

monitored across large spatial scale. Studies in this respect could involve the 

detection and characterization of plant successional groups, which would be of 

crucial importance for conservation purposes (Sanchez-Azofeifa, 2005). 

Examination of average reflectance spectra (October) for the different vegetation
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types indicated that the Hyperion data provided many possibilities for separating 

vegetation successional groups using specific narrow bands throughout the 400 to 

2350 nm spectral range. Earlier, Huete et al. (2008) reported that most of the 

spectral variations among tropical rainforest, regenerating successional forest, and 

pasture/agriculture occur in the NIR region, but there is also high spectral variability 

in the shortwave infrared (SWIR) region. Results of this study conforms this report.

Linear regression models between basal area and two indices (HCI and H’) worked 

well. These linear regression models can be useful to get estimations of species 

complexity and diversity of tropical deciduous forests using basal area 

measurements. These models can be tested for forest covers with similar pattern of 

vegetation.

4.2 Phenological changes and Hyperion reflectance spectra

Reflectance spectra acquired from two distinct phenological stages of vegetation 

showed marked difference in pattern and shape. Green foliage, canopy area and 

density of trees influenced spectra coming from each vegetation cover. Spectra 

coming from October month reflected the lush green state of vegetation and the 

ones coming from April month showed deciduous nature of vegetation cover. 

Appreciable differences between April and October reflectance spectra revealed 

contrasting phenological stages of vegetation. Results showed potential of Hyperion 

reflectance spectra in deciphering vegetation phenology. Earlier, Huete et al., (2008) 

reported similar phenological changes using Hyperion reflectance spectra of tropical 

forests. Results of this study are in confirmity. Average reflectance spectra acquired 

from images of April and October showed major variation in reflectance pattern in 

visible (400-800 nm) region. Changes in the blue and red region of electromagnetic 

spectrum are largely taking place due to the amount of chlorophyll (Asner, 2008). As 

the leaf senesces, lower concentrations of chlorophyll greatly reduce the amount of 

absorption throughout the visible region, thereby increasing reflectance (Clark et al., 

2005). Distinct difference seen at visible-NIR region of the spectra coming from 

October and April indicate the influence of pigmentation on reflectance spectra as 

reported earlier (Sims and Gamon, 2002). Dash et al. (2010) estimated
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phenologicai variables of vegetation covers of India using space borne Medium 

Resolution Imaging Spectrometer (MERIS) data. Their study showed the importance 

of variations in terrestrial chlorophyll content in the prediction of phenology of the 

vegetation. Similar inferences can be drawn from the results reported here. In 

present study lush vegetation and difference in canopy structure in post monsoon 

season (October) of SWS resulted in variation in reflectance within NIR region (700- 

1300 nm). Martin et al., 2008 said that NIR plateau is also strongly influenced by 

water and canopy structure. Results obtained in present study are analogous to this 

study. Earlier, Serrano et al., 2000 reported that NIR regions have been found to 

have liquid water absorption features. Change seen in the reflectance in NIR region 

can be attributed to the change in water content in foliage. Water content of the 

foliage also influenced the pattern of NIR spectra reflecting phenologicai status of 

vegetation cover. Similar inference was made earlier by Ceccato et al. (2001).

4.3 Hyperion reflectance spectra (October) for different vegetation 

covers of SWS

Reflectance spectra for the different vegetation covers (teak, bamboo and mixed 

vegetation) of SWS showed typical patterns of vegetation reflectance: low VIS 

reflectance caused by absorption by chlorophyll and other pigments, high NIR 

reflectance due to multiple-scattering within the leaf structure, weak NIR water 

absorption features at NIR region, and moderate reflectance in SWIR region 

(Gausman, 1985; Roberts et al., 2004). In present study differences in the spectral 

reflectance of high and low density quadrats are variable between wavelength 

regions but are greatest within the NIR and SWIR regions. Reflectance spectra 

showed that high density quadrats of teak and bamboo vegetation covers of October 

month demonstrated high reflectance in NIR and SWIR region. Within the NIR 

region, reflectance is largely a function of the type, density, and arrangement of 

leaves as these influence photon scattering (Clark et al., 2005). In the present study 

greater stem density holding thick foliage resulted in high photon scattering in high 

density quadrats of teak and bamboo which gave rise to high reflectance in NIR 

region. In present study large variation observed in reflectance at near infrared (NIR) 

and short wave infrared (SWIR) regions can also be explained by large differences
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in Leaf Area index (LAI) values in low density and high density quadrats. Thenkabail 

et al. (2004) suggested that there is strong relationship between LAI and reflectance 

in NIR and SWIR regions. Many studies have reported that reflectance in NIR and 

SWIR region is affected by change in LAI values (Brown et al., 2000; Cohen and 

Goward, 2004; Lee et al., 2004; .Nemani et al., 1993; Schlerf et al., 2005; 

Darvishzadeh et al., 2008). Larger differences in the LAI values of teak and bamboo 

quadrats have shown their influence in reflectance values of NIR and SWIR regions.

4.4 Species level classification of Hyperion data

4.4.1 Dimentionality reduction using Stepwise Discriminant Analysis (SDA)

High data dimensionality is the key problem with hyperspectral image processing. 

Therefore, powerful statistical methods are required to reduce dimensionality (Chan 

and Palinckx, 2008). Dimensionality reduction is mostly done by band selection. 

Many advanced methods are available such as genetic algorithm, clustering based 

technique, clonal selection for band selection. SDA is comparatively a simpler 

method and hence is being used by many researchers (Jain et al., 2007; Lucas et 

al., 2008; Ray et al., 2010; Van Aardt and Wynne, 2001). In present study SDA 

could identify 22 bands for the discrimination of 8 vegetation classes of tropical 

deciduous forest. Resulst are comparable with the results obtained by Thenkabail et 

al. (2004) where combination of band selection mechanism (including SDA) 

recognised 22 optimal bands for the classification of African savanna vegetation. 

SDA results clearly depict importance of SWIR region for the discrimination of 

tropical deciduous forest. Earlier, Clark et al. (2005) reported better crown scale 

separability of tropical rain forest trees in SWIR region. Chan and Palinckx (2008) 

reported larger number of bands in SWIR region contributing to the separability of 

temperate tree species. The SWIR region was observed to be important in the 

characterization of savanna tree species (Dudeni et al., 2009). Findings of present 

study are in tune with these reports. Previous studies have shown that the SWIR 

region has higher correlation with water thickness and plant moisture content 

(Hardisky et al., 1983; Yilmaz et al., 2008; Delalieux et al., 2009). Hyperion image 

used in present study was acquired at the time of the year when vegetation in the
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study area has lush green foliage. This could be the reason for greater separability 

in the bands coming from SWIR region.

4.4.2 Different classification algorithms

Identifying suitable classification algorithm for hyperspectral data is very important. 

Classifiers with higher complexity are potentially more effective than the ones with 

smaller complexity, especially for difficult classification problems (Dalponte et al., 

2009). Many advanced classification approaches were used for classification of 

vegetation, such as Artificial Neural Networks (ANN) (Erbek et al., 2004; Foody, 

2004; Kavzoglu and Mather, 2004), Decision tree classifier (Lawrence et al., 2004; 

Pal and Mather, 2003), Support Vector Machine (SVM) classifier (Dalponte et al., 

2009; Melgani and Bruzzone, 2004; Plaza et al., 2009), Random forest and 

Adaboost (Chan and Palinckx, 2008), linear discriminant analysis (Du and Ren, 

2003; Clark et al., 2005), Spectral Angle Mapper (SAM) (Christian and Krishnayya, 

2009; Clark et al., 2005). The performance of three classifiers (ANN, SVM and SAM) 

was compared over highly diverse tropical forest in present study.

Artificial Neural Network (ANN) is the most widely used model. This algorithm is a 

promising technique for a number of situations such as non-normality, complex 

feature spaces and multivariate data types, where traditional methods fail to give 

accurate results (Atkinson and Tatnall, 1997). One of the most notable feature about 

a neural network which motivates its adoption is its ability to generalize input 

(Bischof, et al., 1992; Paola and Schowengerdt, et al., 1995; Weeks and Craston, 

1997). Large complexity associated with the network structure is the major 

disadvantage of ANN algorithm. Melgani and Bruzzone (2004) pointed out the 

effectiveness of Support Vector Machine (SVM) to analyze hyperspectral data 

directly in the hyper dimensional feature space, without the need of any feature 

reduction procedure. They also mentioned about the advantage of SVM in 

classifying heterogeneous data (like the one of tropical system) for which only few 

training samples are available for each identified class. Shafri et al. (2007) said that 

core advantage of Spectral Angle Mapper (SAM) is, when used on calibrated 

reflectance data, it is relatively insensitive to illumination and albedo effects.

4.4.3 Supervised classification

110



Supervised classification was performed using selected 22 bands and all 165 bands. 

Performance of three classifiers tested on the spectra coming from 22 bands was 

different. ANN fared better compared to other two classifiers. The Hyperion image 

classified with the help of ANN appeared very close to the actual distribution of 

vegetation seen in the study area. Chan and Palinckx (2008) reported OAA values of 

69 % and 70% for the classification of trees and grasslands respectively with the 

help of two ensemble classification algorithms (Random forest and Adaboost). 

Martin et al. (1998) reported an OAA of 75% for the classification of 11 forest cover 

types of conifer species with the help of airborne hyperspectral data. OAA values 

reported here from ANN classifier are much better than these reports. Lucas et al. 

(2008) have classified mixed species forests with an accuracy of 87% in central 

south-east Queensland (Australia) using airborne hyperspectral data. Dalponte et al. 

(2009) studied a forest area in Italy characterized by 23 different classes reaching 

accuracies of about 90% with airborne hyperspectral data. Clark et al. (2005) 

obtained highest accuracy of 92% for crown scale separability of tropical rain forest 

trees with the help of airborne hyperspectral data. In this study Hyperion data (EO-1) 

has been used to classify tropical vegetation. OAA levels are appropriate for 

spaceborne data.

Clear gains in OAA were made using ANN for the mapping of 8 tropical vegetation 

classes in comparison to SVM and SAM classifiers. The ANN classifier was able to 

classify correctly even those quadrats which are having lesser percentage of 

occupancy of a particular vegetation class. ANN gave better OAA for all types of 

vegetation classes with diverse levels of occupancy. Earlier, Linderman et al. (2004) 

have reported that the neural network is probably more capable of classifying minor 

features, adapting to the variable influences of changing canopy conditions. 

Classification results of this study are analogous to this report.

SAM classifier was unable to correctly classify quadrats having lesser percentage of 

occupancy. Performance of SAM classifier did not alter for the spectra coming from 

22 bands or from 165 bands. SAM classifier fared better in classifying trees with 

higher percentage of occupancy. This is seen in the accuracy levels of Tectona and 

Dendrocalamus. These two species are dominant in the study area with
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homogenous distribution. Okin et al. (2001) reported failure of multiple endmember 

spectral mixture analysis in classifying vegetation below 30% occupancy in arid and 

semiarid environments of southeastern California. Results coming from SAM 

classifier are in tune with this report. The SAM classifier was least successful of the 

tested classifiers. Clark et al. (2005) has reported that SAM was unable to achieve 

high classification accuracies for tropical rain forest trees. Results for SAM classifier 

are similar to these findings.

SVM classifier tested with 22 band data and 165 band data showed difference in 

performance. It is worth noting that the kernel based implementation of SVMs 

involves the problem of selection of multiple parameters (y, p) and the penalization 

constant (C) (Melgani and Bruzzone, 2004). Selections of appropriate values of 

these parameters determine the suitability of SVM for a given problem (For detailed 

information please refer Vapnik, 1995 and Burges, 1998). The idea of standardizing 

the parameter values is to (i) maximize the margin and (ii) to minimize the estimate 

of the expected generalization error (Melgani and Bruzzone, 2004). Combinations of 

parameters with different penalization constants tested here for different classes 

showed OAA levels falling in a narrow range. OAA values coming from spectra of 

165 bands showed higher values and the differences in OAA across various C 

values are negligible. The best OAA values are coming from C value of 40. Similar 

values were reported earlier (Melgani and Bruzzone, 2004) for data classification. 

OAA coming from 22 bands data are lesser while the ones coming from 165 bands 

are higher and are equivalent to ANN classifier. For the tested data set of this study, 

performance of SVM was better with 165 bands spectra (without dimensionality 

reduction). Classified images coming from ANN classifier (22 bands) and SVM 

classifier (165 bands) are quite similar. Melgani and Bruzzone (2004) pointed out the 

effectiveness of SVM to analyze hyperspectral data directly in the hyperdimensional 

feature space, without need of feature reduction procedure. This is reflected in 

present analysis. Ghiyamat and Shafri (2010) mentioned that discrimination of 

heterogeneous tropical trees is quite challenging. Different analytical techniques are 

to be used for better separation. OAA levels obtained in this study by ANN and SVM 

classifiers identify the suitability of these classifiers for tropical vegetation 

discrimination.
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Findings of present study are encouraging for the discrimination of tropical forest 

species using space borne hyperspectral data. Earlier, Castro-Esau et al. (2006) 

stated that the ability to accurately map tree species in tropical ecosystems will 

represent a significant advancement that will facilitate ecosystem characterization, 

tree demographic studies, mapping endangered or endemic species, identifying 

important food sources for wildlife, and quantifying carbon pools and carbon 

sequestration rates. Results and conclusion of this study can be expanded to 

address these issues.

4,5 Biophysical attributes

Range of biophysical attributes (quadrat level) obtained from the study area were 

compared with range of similar attributes acquired from other studies. Results 

indicated that range of biophysical attributes obtained from the SWS are comparable 

with other studies in tropical regions. Madugundu et al. (2008) have estimated LAI 

and biomass of tropical forests of India. Range of LAI and bole biomass in present 

study is comparable to their findings. Range of LAI values recorded here are 

comparable with other global level compilations (Soudani et al., 2006: Yang et al., 

2006: Ganguly et al., 2008). Estimated LAI values of the study area were compared 

with MODIS derived LAI product (for 24-10-2006). Range of values was similar. 

Proportion of area with higher LAI values (>4.5) was higher (16 % in MODIS and 

65% in Hyperion) in our estimated product indicating its superiority. Brown et al. 

(1989), Ponzani et al. (2010) and Englhart et al. (2011) estimated above ground 

biomass of tropical forests. Range of bole biomass in this study is analogous to 

these studies. Canopy area values in this study are comparable with the values 

obtained by Estes et al. (2010) for woody forests of Kenya. All the three covers 

showed distinction in the values of canopy area indicating specificity of each other. It 

was maximum in mixed cover followed by teak and bamboo. Complete leaf fall in 

teak and bamboo (in summer season) left these areas covered with denuded stems.
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4.5.1 Partial Least Square (PLS) regression analysis for biophysical attributes

Biophysical attributes (except LAI) were estimated with maximum accuracy when 

PLS regression models were prepared using full reflectance spectra. PLS model run 

with narrow spectral range did not give higher accuracy. Earlier, Cho et al. (2007) 

have concluded that bands selection did not improve performance of PLS regression 

for predicting herb biomass. Result for bole biomass and canopy area agrees with 

conclusion made in this study. Wolter et al. (2009) have estimated different 

biophysical characteristics of coniferous and hardwood species using PLS 
regression (R2 values 0.22 to 0.87). Similar range of R2 values were obtained in 

present study for biophysical attributes. Goodenough et al. (2006) estimated 

temperate forest biomass with the help of PLS regression developed using Hyperion 
data (R2 =0.82). Coefficient values achieved in present study is comparable to this 

study. PLS regression analysis revealed that dry season Hyperion data (April) is 

ideal for the prediction of bole biomass in tropics. Reflectance spectra from April 

image contain signals mostly coming from defoliated vegetation. This improves 

accuracy in prediction of bole biomass. Gomez et al., 2011 predicted canopy area of 
olive trees with R2 values ranging from 0.65 to 0.82. R2 values obtained in this study 

are comparable to this. Spectral region of 1000-1510 nm is found to be more 

sensitive towards LAI. This confirmed findings of previous studies suggesting a 

strong relationship between reflectance values at NIR to SWIR bands and LAI 

(Brown et al., 2000; Cohen and Goward, 2004; Lee et al., 2004; Thenkabail et al., 

2004; Schlerf et al., 2005; Darvishzadeh et al., 2008). Earlier, Darvishzadeh et al., 

(2008) have concluded that the PLS regression did better when subset of related 

wavelengths were selected for estimation of LAI. Results are in conformity with this 

study.

Cross validation of the developed PLS regression models with leave one out 

technique gave better results for both teak and bamboo covers indicating suitability 

of the model for the determination of measured parameters. To extend the 

applicability of the model, bole biomass and canopy area of teak were cross 

matched with the data of mixed vegetation cover. Martens and Martens (2000) 

mentioned that cross validation between truly independent sample (referred as leave 

one product out) yields assessment of the ability of the model to reproducibly predict
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Y and X via the latent variables, in new samples of the given type. Analysis done in 
this study gave high R2 values (0.83 for bole biomass and 0.67 for canopy spread) 

indicating the applicability of this model for vegetation covers with similar 

characteristics.

4.6BiochemicaI attributes

Many important biochemical attributes were considered to increase the 

comprehensive strength of the study. Measured attributes showed broad range 

indicating the suitability of the data set for modeling across tropical, systems with 

similar vegetation features. Range of chlorophyll values tested in this study is similar 

to the ones published by others for temperate / tropical forests and grasslands 

(Asner and Martin, 2008; ie Maire et al., 2008; Darvishzadeh et al. 2008). Range of 

lignin and cellulose in this study is comparable to the range obtained by Serrano et 

al., (2002) and Kokaly et al. (2009). Nitrogen range obtained in study is higher than 

the one reported by Smith et al., (2003); Martin et al., (2008) and Knox et al., (2011). 

This is attributed to the luxuriant growth of vegetation. EWT measured in present 

study is comparable to the one used by Ceccato et al. (2002) for spectral modeling 

studies. This clearly demonstrates the applicability of models coming from this 

dataset across vegetation covers of tropics with similar composition.

4.6.1 Partial Least Square (PLS) regression analysis for biochemical attributes

All biochemical attributes were estimated with high accuracy when PLS regression 

was performed with full spectra (except for lignin and cellulose contents of bamboo). 
Obtained R2 and Standard Error for Calibration (SEC) / Standard Error for Cross 

Validation (SECV) values are comparable with published reports (Smith et al., 2002 

and 2003; Cho et al., 2007; Asner and Martin, 2008; Martin et al., 2008; 

Darvishzadeh et al, (2008); Schlerf et al., 2010). Dimensionality reduction is an 

important aspect in hyperspectral data analysis. Development of any model using 

full reflectance spectra is time consuming. Secondly, it falls short in exploiting 

sensitive regions of reflectance spectra. Model performance gets improved when 

spectral range to be tested is narrowed down to the vicinity of sensitive band/ bands
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of an identified attribute. This improvises information retrieval specific to a parameter 

of interest within narrow spectral range. To improve the predictability of the PLS 

model, spectral subset analysis was carried out. Range of the spectral subset 

primarily came from published sensitive wavelengths for each attribute recorded 

here (Curran, 1989; Kokaly et al. 2001; Serrano et al., 2002; Thenkabail et al., 2004; 

Asner, 2008; Asner and Martin, 2008; Martin et al., 2008). PLS regression results 

improved when spectral ranges for each parameter were selected. Improvement is 
seen in R2 and SEC values. It has been reported that wavelength selection 

enhances PLS regression results (Davies, 2001; Kubinyi, 1996; Martens and 

Martens, 2000; Schmidtlein and Sassin, 2004; Darvishzadeh et al., 2008). Results 

are analogous to these studies. Results of this study reaffirm the importance of 600- 

750 nm regions for the prediction of chlorophylls. Earlier, Sykioti et al. (2011) 

reported high sensitivity of 550-750nm spectral region towards stand level 

chlorophyll content. Asner and Martin (2008) found that chlorophyll contributes more 

at the spectral region of 510-730nm. Similarly, Gitelson et al., (1996) concluded that 

maximum sensitivity of chlorophyll concentration appears in the reflectance from 

520-630 nm and also near 700 nm. Results for chlorophyll are in confirmity. le Maire 

et al., (2008) have tested developed indices for chlorophyll estimation in broad

leaved temperate forest stands at canopy scale where variation in measured 

chlorophyll values were less. Accuracy values in this study are relatively better 

across a broad range of values. Spectral region of 984-2000 nm is found suitable for 

nitrogen. It showed higher accuracy in estimating nitrogen for teak and bamboo. 

Martin et al. (2008) found sensitivity of this spectral region (984-2173 nm) in the 

estimation of canopy nitrogen across wide range of ecosystems. Findings of this 

study are in confirmity. Huang et al. (2004) performed PLS regression analysis on air 
borne hyperspectral data for estimation of nitrogen from Eucalyptus melliodora (R2 

=0.75 and RMSE = 6% of mean). Prediction errors (ranging from 19.67 to 22.76 % 

of mean) obtained in this study are appropriate as they are coming from space borne 

data. Result showed that spectral subset in SWIR region is highly sensitive towards 

lignin and cellulose of canopy and stem of teak and bamboo. This confirmed findings 

of previous studies suggesting a strong relationship between reflectance values at 

SWIR bands and contents of lignin and cellulose (Curran, 1989; Serrano et al., 

2002; Ustin et al., 2004; Thenkabail et al., 2004; Kokaly et al., 2009). Differences 

seen in the best performing spectral subsets for cellulose and lignin are negligible.
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This may be due to spectral similarity between lignin and cellulose (Ustin et al., 

2004). Earlier, Serrano et al., (2002) predicted canopy lignin from chaparral 
vegetation with the help of air borne hyperspectral data (R2 0.81 and RMSE 23% of 

mean). Prediction error range obtained in this study is better (19.67 to 22.76 %). 

EWT did not respond well to subset analysis. It gave maximum accuracy when PLS 

regression was developed with full Hyperion spectra. Ceccato et al. (2001) have 

concluded that combination of SWIR and NIR is necessary to retrieve EWT. Sims 

and Gamon (2003) said that for retrieval of canopy water, wavelengths that are 

weakly absorbed (NIR bands) are essential as they penetrate more deeply into 

canopies. These could be the reason for lesser response of EWT to subset analysis. 

Colombo et al., (2008) predicted canopy EWT by using simulated reflectance 
spectra (R2 = 0.85, RMSE 22 %). Error values obtained for retrieval of EWT are 

similar in this study (21.62 % to 24.93 %).

PLS regression with 165 band spectra and with spectra developed from a narrow 

range broadly indicates that spectral subset is appropriate for the band sensitive 

biochemical parameters. For parameters like biomass, canopy cover whole 

spectrum gives better estimation.

4.7 Development of vegetation indices

4.7.1 Index developed for chlorophyll

PLS regression model for prediction of chlorophyll showed maximum negative 

coefficient at 692nm and maximum positive coefficient value at 743nm for both Teak 

and Bamboo. These two wavelengths (692 and 743nm were selected for developing 

ratios for chlorophyll estimation). Earlier, Cho et al. (2008) suggested that 

wavebands at 680, 694, 724 and 760 nm have the potential for maximally explaining 

variations in leaf chlorophyll content with minimal effects of leaf and canopy 

biophysical confounders such as LAI. Simple ratio (743/692) gave best results for 

prediction of chlorophyll with Leave One Out Cross Validation (LOO-CV). Wu et al. 

(2010) evaluated Hyperion data for chlorophyll content estimation with a range of 

vegetation indices. The lowest RMSE reported in their study was 30.53 % of mean. 

RMSE values of this study (RMSE 9.49-16.57 % of mean) are lower for both the
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species mentioning about higher accuracy of the developed, ratio in chlorophyll 

estimation. Predictive errors (for chlorophyll estimation) obtained for the two tropical 

species (teak and bamboo) in present study is similar to the ones reported by le 

Maire et al. (2008) in temperate forest stands using Hyperion data.

4.7.2 Index developed for LAI

PLS regression performed on spectral region of 1000-1507 nm gave the best 

results. Further separation of spectral subset into narrow spectral regions and 

subsequent PLS analysis failed in making any more improvement of prediction error 

for LAI. Earlier, Darvishzadeh et al. (2008) predicted LAI using PLS regression 

analysis at canopy level using airborne spectra (Root Mean Square Error, RMSE 

11.59 % of mean). Prediction results for LAI are better than this study. Results 

suggested that broad spectral region of 1000nm-1507nm is sensitive towards LAI. 

This confirmed findings of previous studies suggesting a strong relationship between 

reflectance values at NIR to SWIR bands and LAI (Brown et al., 2000, Cohen and 

Goward, 2004, Lee et al., 2004, Thenkabail et al., 2004, Schierf et al., 2005). The 

best PLS regression model for prediction of LAI showed maximum negative 

coefficient at 1457nm and maximum positive coefficient value at 1084nm. This 

coincides with the findings of Schierf et al., (2004, 2005) mentioning the importance 

of 1088nm for the estimation of LAI. These two wavelengths (1084 and 1457 nm) 

were selected to develop ratios for LAI estimation. Normalized difference ratio 
(ND1457/1084) gave the best results for prediction of LAI with LOO-CV method (R2 

0.66, RMSE 0.57). Wu et al., (2010) evaluated Hyperion data for LAI estimation 

using various vegetation indices. The lowest RMSE reported in their study was 

32.73 % of mean. In this study predicted LAI with the help of vegetation indices 

resulted with a lower RMSE value 13.57 % of mean. Prediction errors obtained in 

this study are better than the ones reported earlier by Wu et al., (2010) and le Maire 

et al., (2008).

Three vegetation covers (teak, bamboo and mixed vegetation) showed high variation 

in the levels of different biophysical and biochemical attributes. These differences 

are detectable and can be used to map vegetation. Results emphasize the 

importance of spectral and temporal variations in quantifying biochemical and
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biophysical attributes of a tropical dry forest. PLS analysis fared well in estimating 

biochemical attributes with spectral subset. Whole spectrum (of 165 bands) did 
better for biomass and canopy area estimates. R2 values reported here are highly 

appropriate as they are coming from space borne data. PLS analysis of this study 

can be extrapolated to other regions having predominant coverage of teak and 

bamboo.

Historically, the potential of remote sensing for ecological studies remained limited 

for a variety of reasons, including the insufficient spatial, spectral, or temporal 

resolution of most remote sensing data (Gamon, 2008). Results of this study 

illustrate that the space borne hyperspectral remote sensing presents a wealth of 

possibilities for expanding understanding of tropical ecosystems. Earlier, Blackburn 

and Milton, (1995) stated that hyperspectral technology would allow for more 

accurate quantification of forest biophysical and biochemical attributes, which is 

essential for biodiversity assessment, land cover characterization, biomass 

modeling, and carbon flux estimation. Results obtained in present study support 

these views. Ecosystem information (forest biophysical and biochemical attributes) 

obtained in resent study can be used in forest disaster detection, species mapping, 

Kyoto Protocol information products, monitoring forest health, ecosystem protection, 

and global change. Results obtained in present study have provided a platform for 

measurement of spatial variation of plant pigments accurately using space borne 

hyperspectral data. Earlier, Blackburn (2006) said that information concerning the 

temporal dynamics and spatial variations of plant pigments can provide key 

contributions to a wide range of scientific investigations and 

environmental/agricultural management endeavors. Observations of present study 

can be extended to these lines.

4.8 Laboratory spectra

Considerable variation in reflectance at NIR and SWIR regions of electromagnetic 

spectrum was observed between average leaf level laboratory reflectance spectra of 

teak, bamboo and other mixed vegetation tree species. Similar pattern of variation 

was observed in leaf level spectra of seven tropical tree species by Clark et al.
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(2005). They stated that several factors can cause leaf spectral variation within a 

given species, including leaf thickness, necrosis, maturation of the mesophyll, and 

the concentration of chlorophyll and water. In present study it was observed that 

increase in leaf thickness values cause increase in reflectance of NIR region. Many 

studies reported that the NIR spectral range is dominated by variation in leaf water 

content and leaf thickness, related to specific Leaf area (SLA) (Thomas et a!., 1971; 

Hunt et al., 1987; Jacquemoud and Baret, 1990; Ceccato et al., 2001). Thin leaves 

are compact and have fewer air-cell wall refractive discontinuities causing lower 

NIR-SWIR reflectance (Gausman, 1985). Results in present study clearly illustrated 

the relationship between number of palisade layer and reflectance in NIR region. 

Earlier, Ourcival and Joffre (1999) reported that palisade mesophyll and total 

thickness were strongly correlated with reflectance spectra. Vogelmann and Martin 

(1993) showed that long, cylindrical palisade mesophyll cells propagate visible 

wavelengths deeper into the leaf interior, whereas the more spherical spongy 

mesophyll cells tend to scatter radiation. Present study tried to establish relationship 

between leaf structure and reflectance. Earlier, Slaton et al., (2001) stated that this 

relation between leaf structure and reflectance may be useful in the interpretation of 

remote sensing data measured from satellite or aircraft, or with standard field and 

laboratory instrumentation. Variation in the SWIR region is caused by leaf water 

concentration, with important contributions from protein N, cellulose and lignin 

(Curran,1989).

SDA identified 10 wavelengths from laboratory spectra of five selected species 

showing variation in reflectance values. Of the 10 identified wavelengths, five came 

from visible region, three from NIR region and two bands from SWIR region. The 

most frequently selected wavebands in present analyses were in the blue-green 

region (410,520,550, nm) and red region (630,670 nm) of electromagnetic spectrum. 

These findings are similar to Fung et al. (1999), who used stepwise linear 

discriminant analysis for feature selection and found selected bands to lie mainly in 

the green peak and red edge regions. However, the bands selected depend on the 

data used and therefore differ from one suite of species to the next to optimize 

separability in each case.
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Range of total chlorophyll (leaf level) values tested in this study is similar to the ones 

published by le Maire et al. (2004) and Zarco-Tejada et al. (2004), for different broad 

leaf tree species and few open canopy tree crops respectively. Range of chlorophyll 

a and b values (leaf level) is similar to range provided by Cao (2000) from leaves of 

few tropical woody tree species. Results indicate that red edge index developed by 

Vogelmann et al. (1993) , ZTM index developed by Zarco Tejada et al. (2001) and 

Red Edge index 750~700 developed by Gitelson and Merzylak (1997) gave better 

results for estimation of both total chlorophyll and chlorophyll a. All the three 

vegetation indices were calculated from the reflectance coming from red edge region 

(680-750 nm) (Horler et al., 1983; Fiiella and Penuelas, 1994). In this study testing 

of different indices reaffirmed the importance of REP for estimation of total 

chlorophyll and chlorophyll a.
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