
CHAPTER 1

Introduction



Forest has been defined as a minimum area of land of 0.05-1.0 h&..with’ free5* 

crown cover, or equivalent stocking level, of more than 10-30%. jnd1 

containing trees with the potential to reach a minimum height of 2-5 m at 

maturity (UNFCC, 2001). The Global Forest Resources Assessment (GFRA) 

(FAO, 2010) was the most comprehensive assessment to date. GFRA (2010) 

reported that the world’s total forest area was just over 4 billion ha, 

corresponding to 31 percent of the total land area. Forests are important 

socially, economically and environmentally. Forests provide a wide range of 

goods and services in addition to their role in maintaining the ecological 

balance (Berlyn and Ashton, 1996). Forests are the renewable natural and 

ecological resources of earth. They occupy an unique position among the 

various natural resources as they support life on the earth in many ways 

(Jaykumar et al., 2002). Forest ecosystems cover large parts of terrestrial 

land surface and are major component of terrestrial carbon cycle (Lai, 2004). 

The world’s forests store an enormous amount of carbon - more than all the 

carbon present in the atmosphere (FAO, 2010). Forests play a crucial role in 

climate change mitigation and adaptation. Forests can play an important role 

in capturing and storing carbon from the atmosphere, thereby mitigating C02 

emissions (Watson, 2000; Houghton, 2005). Forest industries have the 

opportunity to maximize energy efficiency, spur innovation, create a reliable 

fiber supply and contribute to local economies (FAO, 2010). Forests are 

increasingly valued for their potential to contribute to the local economy 

through production, both timber and non-timber, and provision for attractive 

recreation and tourism facilities, to create an attractive environment for living 

and working, to maintain biodiversity and protect natural resources, and to 

preserve and enhance characteristics of rural landscapes and related cultural 

heritage (Elands and O’Leary, 2002). The world’s forests are prominent sites 

to study climate change, not only in terms of total net carbon emissions but 

also in terms of global carbon storage capacity, important for climatic 

regulation.

The structure, composition and functioning of forests are undergoing rapid 

changes because of anthropogenic activities. Due to the increase in human 

and cattle population and widespread rural poverty, forests are subjected to
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enormous pressure resulting in deforestation and degradation (Panigrahy et 

al., 2010). This is leading to significant loss of forest cover at an alarming 

rate. Depletion of forests affects many ecological, social and economic 

consequences leading to loss of biodiversity, soil erosion, global warming and 

loss in income to forest dwellers (Panigrahy et al,, 2010). The forest 

ecosystems can be optimally managed if timely information on their structure 

and function is available. An accurate and continuously updated resource 

data are a prerequisite for the present day forest ecosystem management. 

Assessing the health and function of forest ecosystems requires a long term 

inventory and monitoring effort (Brendeis and Rozo, 2005). Forest cover is an 

important natural resource which should be conserved on priority basis for 

sustainable environmental management (Panigrahy et al., 2010). The net 

change in forest area in the period of 2000-2010 was estimated at =5.2 

million hectares per year, down from=8.3 million hectares per year in the 

period of 1990-2000 (FAO, 2010). However, most of the loss of forest 

continued to take place in countries and areas in the tropical regions (FAO, 

2010).

1.1 Tropical forest cover

Tropical and subtropical dry forests occur in areas where the mean annual 

temperature is above 17°C, annual mean precipitation ranges from 250 to 

2,000 mm, and potential evaporation is greater than precipitation for a 

significant part of the year (Hoidridge, 1967; Murphy and Lugo, 1986). 

Tropical ecosystems are among the world’s hotspots of species richness and 

endemism (Myers et al., 2000). Tropical forest ecosystems are one of the 

richest terrestrial ecosystems storing approximately half of the world living 

terrestrial carbon. They play an important role in global carbon cycle and 

regulation of biospheric climate (Brown and lugo, 1982). The tropics strongly 

affect climate and atmospheric composition. These forest ecosystems also 

support a variety of life forms and maintain huge global biodiversity (Shi and 

Singh, 2002).Tropical forests are often called the “lungs” of the world, for their 

gas exchange (Malhi and Grace, 2000; Foley et al., 2007). With increasing
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threats of forest degradation in the tropics, biodiversity loss and the loss of 

environmental services, there has been an escalating need for in depth 

studies into forest dynamics and biophysical characteristics. This supports 

sustainable resource development and achieves environmental protection 

goals (Daily et al., 1997; Sanchez-Azofeifa et al., 2003, 2005). Rapid strides 

in the economy of developing countries such as India are putting tremendous 

pressure on tropical forests. Knowledge of the structure and chemistry of a 

tropical forest canopy would provide key insights into ecosystem function and 

ecological processes (Chambers etal., 2007).

1.2 Forest cover of India

The five countries with the largest forested area (China, Australia, Indonesia, 

India and Myanmar) accounted for 74 percent of the forests in the Asia and 

the Pacific region. India, one of the 17 mega diversity countries in the world, 

harbors a high level of biodiversity. This biodiversity is also unique: four of the 

34 global hotspots of biodiversity are located within the country (Bawa, 2006). 

Based on figures supplied in FAO (2010), some 25 percent of India’s land 

area was covered by forests, other wooded land or other land with tree cover. 

However, the pressure on existing forest resources is immense in India 

(Rawat et al., 2008). India’s immense biological diversity encompasses 

ecosystems, populations, species and their genetic make up. This diversity 

can be attributed to the vast variety in physiography and climatic conditions 

resulting in diversity of habitats. As a result, India represents two major 

realms (Palaearctic and Indo-Malayan) and three biomes (Tropical Humid 

Forests, Tropical Dry Deciduous Forests and warm and semi deserts) which 

includes 12 bio-geographical regions (MoEF, 2009). Biotic pressure and 

widespread economic growth are altering the natural vegetation cover and 

putting tremendous pressure on the sustenance of the few leftover tropical 

forest covers in India (Christian and Krishnayya, 2009). Indian forestry is in a 

phase of dismal scenario due to heavy pressure of burgeoning human 

population on land, growing demand of timber, fuel wood, fodder, grazing, 

encroachment, shifting cultivation, urbanization, industrialization and improper
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land management (Datta and Singh, 2007). There is a need to reassess the 

climate change mitigation opportunities in India in the context of sustainable 

and commercial forestry strategies. Therefore it is extremely essential to 

monitor natural resources like forests in developing countries such as India. 

An accurate and continuously updated resource data is a prerequisite for the 

present-day forest ecosystem management in India. Moreover, assessing the 

health and function of forest ecosystems requires a long-term inventory and 

monitoring effort. By means of remote sensing one can easily achieve 

requirements of continuously updated resource data and long term inventory 

and monitoring.

1.3 Introduction to remote sensing

Remote sensing is the science and art of obtaining information about an 

object, area, or phenomenon through the analysis of data acquired by a 

device that is not in contact with the object, area, or phenomenon under 

investigation (Liilesand and Kiefer, 2000). Although coarse-spatial resolution 

meteorological satellite data have been available since the 1960s, civilian 

remote sensing of the Earth’s surface from space at medium spatial 

resolutions (i.e. ,250 m) only began in 1972 with the launch of the first of a 

series of Earth Resource Satellites (i.e. Landsat) (Rogan and Chen, 2004). 

The last few years have seen a proliferation of satellite platforms with a large 

number of sensors (e.g. Terra,ENVISAT, Indian remote sensing Satellites) 

and increasing spatial resolutions (e.g. IKONOS, Quickbird and Cartosat). 

Indeed, the ever-expanding constellation of satellite platforms has acquired 

thousands of trillions of bytes of data invaluable for planning and land 

management applications (Jensen, 2000). Furthermore, high-resolution 

airborne data acquisition technology has developed rapidly in recent years. 

As a result, there is a large selection of remote sensing data of the Earth’s 

surface with respect to spatial, spectral and temporal sampling. Remote 

sensing technology is being increasingly used for the measurement of 

necessary attributes in the crop land monitoring for the purpose of precision 

farming and also in forestry. Remote sensing technology is offering
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tremendous opportunities especially for monitoring of forest ecosystems 

where large scale monitoring is vital.

Remote sensing deals with the detection of electromagnetic energy from 

hand held instruments and aircraft or spacecrafts. The electromagnetic 

spectrum can be divided into wavelength regions known as ‘optical’ and 

‘microwave’ (Figure 1,1). Optical remote sensing targets energy reflected and 

emitted by the Earth, typically at wavelengths between 400 and 2500 nm. 

Remote sensing sensors record the intensity of a signal within a wavelength 

interval, known as a ‘band’ or ‘channel’, of specified width within the 

electromagnetic spectrum. Data are often distributed to remote-sensing 

practitioners in a matrix of square picture elements (or pixels). The size of 

these pixels corresponds to the ‘spatial resolution’ of the sensor, which 

determines the smallest object detectable. So, ‘30 m data’ would refer to data 

in matrix of 30 x 30 m pixels. The matrix of pixels is often called a’ scene’. 

Data describing energy reflected or emitted from the surface of the Earth are 

statistically or visually analyzed to identify objects. The width of the bands of 

the electromagnetic spectrum detected by a sensor determines its ability to 

detect spectral differences and as such constitute the spectral resolution of 

that instrument. AH objects have spectral signature based upon how they 

reflect, absorb and emit electromagnetic radiation. Spectral bands of narrower 

width allow researchers to find more unique features within the spectral 

signature of an object that distinguish it from other objects. Temporal 

resolution, or ‘revisit time’, refers to the time period between repeat passes 

over an object being remotely sensed. For example, Landsat satellites pass 

over the same point on the surface of the Earth every 16 days. Thus, they 

have a 16-day revisit or repeat time. Systems that image wider areas might 

pass over the same point everyday but must usually sacrifice spatial 

resolution to do so (i.e. they can only detect much larger objects). Temporal 

resolution is especially important when one is trying to obtain a clear view of 

areas frequently obscured by clouds (or other atmospheric phenomena) 

because optical sensors cannot view through clouds.
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Figure 1.1 Electromagnetic Spectrum (Shippert, 2002)

1.4 Applications and significance of remote sensing

Remote sensing data applications have evolved as very useful tool in the 

characterization of the state of the biosphere at regional and global scales 

(Madugundu et al., 2008). Owing to its fast, non-destructive and relatively 

cheap characterization of land surfaces, remote sensing has been recognized 

as a reliable method for estimating various biophysical and biochemical 

vegetation variables (Cohen et al., 2003; Curran et al., 2001; Hansen and 

Schjoerring, 2003; Hinzman et al., 1986; Mc-Murtrey et al., 1994; Weiss and 

Baret, 1999). Remote sensing is a key tool for assessing vegetation 

periodically over larger areas, offering the possibility to analyze ecological 

issues at a wide range of spatial scales (Kokaly et al., 2003). Remote sensing 

plays an important role in meeting the needs of forest management, providing 

information on the extent, biophysical state, and structure of forests. Forest 

characteristics extracted from remotely sensed data are important for global 

atmosphere-biosphere models (i.e. water, energy and carbon dioxide flux) 

(Schlerf et al., 2005), the creation of environmental policies and conservation 

areas (Pfaff et al., 2000; Pfaff and Sanchez-Azofeifa, 2004) and secondary 

forest characterization (Arroyo-Mora et al., 2005). Remote sensing is very 

useful tool especially for tropical regions where it is very difficult to measure 

forest biochemical and biophysical attributes at large scale due to high
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species diversity and inaccessibility. In the last three decades, the 

technologies and methods of remote sensing have evolved dramatically to 

include a suite of sensors operating at a wide range of imaging scales with 

potential interest and importance to planners and land managers (Rogan and 

Chen, 2004). A range of optical airborne and space-borne sensors has 

acquired remote sensing data, with the number of sensors and their diversity 

of capability increasing over time. Today a large number of satellite sensors 

observe the Earth at wavelengths ranging from visible to microwave, at 

spatial resolutions ranging from sub-meter to kilometers and temporal 

frequencies ranging from 30 min to weeks or months. In addition, archives of 

remotely sensed data are increasing and provide a unique, but not complete, 

chronology of the Earth during this time period. New sensors are continually 

being launched and existing sensors are often replaced to ensure continuity 

in the data record (Rosenqvist et al., 2003). A number of optical remote 

sensing systems are available for researchers. Amongst all optical remote 

sensing systems two major ones are (1) Multispectral remote sensing system 

(MSS) and (2) Hyperspectral remote sensing system (HSS). MSS such as 

Landset TM .SPOT, Indian Remote sensing systems (IRS) sample the 

information content by making only few measurements in spectral bands up 

to several hundred nanometres wide (Jensen, 1996). This type of sensors is 

non contiguous type. MSS providing systematic observations at the 

regional/global level and at coarse (£1 km) spatial resolution include the 

NOAA advanced very high resolution radiometer (AVHRR) and SPOT 

VEGETATION. At finer spatial resolution (10-30 m), Landsat sensor 

(currently the Enhanced Thematic Mapper Plus or ETM+) and SPOT sensor 

(currently the high resolution visible infrared or HRVIR) data can be combined 

to provide regional and even continental level observations. HSS such as 

Hyperion, AVIRIS sample information in the form of number of measurements 

in spectral bands up to 10-20 nm wide (Jensen, 1996). These types of 

sensors are of contiguous type. A summary of the key characteristics of 

selected satellite sensors is presented in Table! .1.
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Table 1.1. Characteristics of selected remote sensing sensors

Sensor mission Organization
Spatial

resolution (m)

Spectral
coverage

(um)
Number of 

bands
Multispectral sensors

AWiFS ISRO.India 56 to70 0.52-1.70 4
AVHRR(NOAA 6- 

15) NASA,USA 1100 0.58-11.50 5
TM (Landset4,5) NASA, USA 30 0.45-2.35 7

HRV (SPOT1,2,3)
(SPOT) image, 

France 10(PAN) 20(MS) 0.50-0.89 3
LISS-I (IRS-1 A) ISRO.India 72.5 0.45-0.86 4
LISS-II (IRS-1 B) ISRO.India 36,25 0.45-0.86 4

SAR,OPS(JERS-1) NASDA,Japan 18 0.43-1.70 7
LISS-III (IRS- 

10,1D) ISRO.India 23 0.52-1.70 4
Panchromatic LISS- 

IV (IRS-1 D) ISRO.India 5.8 0.50-0.75 * 1

SPOT 4,5
(SPOT) image, 

France 1150 0.43-1.75 5

MODIS (EOS) NASA, USA

250(PAN)
500(NIR)1000(SW1

R) 0.620-2.155 36

ETM+ (Landset 7) NASA.USA 15(PAN) 30(MS)

0,45-
2.35,10.4-

12.50 7
Cartosat ISRO.India <1 0.5-0.85 1

IKONOS
Space

imaging .USA 1(PAN) 4(MS) 0.45-0.90 4

Quick Bird
Digital

globe.USA 0.82(PAN) 3.2(MS) 0.45-0.90 4
Air borne typerspectral sensors

HYDICE
Naval research 

lab, USA 20 0.40-2.50 210
AVIRIS JPL.USA 20 0.40-2.5 224

Space borne hyperspectral sensors
Hyperion (EO-1) NASA.USA 30 0.40-2.50 242
CHRIS (PROBA) ESA 18-36 0.40-1.05 19-63

HySi (Chandrayan - 
1) ISRO.India 80 0.40-0.95 64

PRISMA (2012) ASI, Italy 30 0.40-2.5 200

EnMAP (2013)
DLR and OHB 

systems 30 0.42-2.45 200
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1.5 Broadband Remote sensing systems

Multispectral remote sensing systems use parallel sensor arrays that detect 

radiation in a small number of broad wavelength bands. According to Smith 

(2001), most multispectral satellite systems measure between three and six 

spectral bands within the visible to middle infrared region of the electromag

netic spectrum. This is due to their (a) broad band widths (100-200nm) and 

(b) fewer wavebands (4-7 bands) which cover the visible, near and middle 

infrared regions of the electromagnetic spectrum (Jakubauskas and Price, 

1997). The new technology showed that although the information produced 

by broadband sensors was useful in many applications, still it had limitations. 

Data acquired from broadband multispectral sensors proved to be less 

accurate because of coarse spectral resolution (Ellis et al., 2006). That is, 

because of the limited number of bands and their relatively wide width, large 

amount of information about vegetation will be lost during averaging. 

Traditional broad band sensors not proved robust in providing more detailed 

species level maps because they average the reflectance over a wide range 

and so the narrow spectral features are lost or masked by other stronger 

features surrounding them. This greatly reduces the ability of the broad band 

sensor to spectrally discriminate between two objects on the ground. Too little 

spectral information, insufficient spatial resolution and soil brightness 

interference variability are cited as the dominant limitations with traditional 

sensors to improve surface biophysical mapping (Verstraete et al., 1996; 

Smith et al., 1990). Most of the natural features have special spectral signals 

that occur in a very narrow region of the electromagnetic spectrum. 

Consequently, for identification and recognition of these signals, narrow band 

sensors are needed. Many materials have diagnostic absorption features that 

are only 20-40 nm wide, the broad band sensors which have relatively large 

band width, may not be able to resolve these spectral differences (Jensen, 

1996). Hyperspectral sensors produce data with sufficient spectral resolution 

for direct identification of those materials with diagnostic spectral features. 

Therefore, hyperspectral remote sensing would be a better option for remote 

sensing of vegetation parameters. In terms of opportunities, hyperspectral
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data have provided new options for assessing biological diversity and 

contributed to assessments of dead and live carbon, measures of forest 

health, and understanding of ecosystem processes(e.g., through retrieval of 

foliar biochemicals) (Lucas et al., 2008).

1.6 Hyperspectral remote sensing systems

Imaging spectroscopy (Goetz et al., 1985), also known as hyperspectral 

imaging, is concerned with the measurement, analysis, and interpretation of 

spectra acquired from a given scene (or specific object) at a short, medium or 

long distance by an airborne or satellite sensor. The concept of imaging 

spectroscopy originated in the 1980's, when A. F. H. Goetz and his 

colleagues at NASA's Jet Propulsion Laboratory began a revolution in remote 

sensing by developing new instruments such as the Airborne Imaging 

Spectrometer (AIS), then called AVIRIS, for Airborne Visible Infra-Red 

Imaging Spectrometer (Green, 1998). This system is now able to cover the 

wavelength region from 400-2500 nm using more than two hundred spectral 

channels, at nominal spectral resolution of 10 nm. This is a major 

advancement over multispectral systems as they record earth surface 

information up to 10 spectral bands with 100nm bandwidth. The data 

produced by the Hyperspectral sensors is different from that of the 

multispectral instruments with regard to the number of wavebands in which 

data is recorded. Hyperspectral remote sensing data can provide a significant 

enhancement of spectral measurement capabilities over conventional remote 

sensor systems that can be useful for the identification and subsequent 

modeling of terrestrial ecosystem characteristics (Kumar et al., 2001; 

Thenkabail et al., 2004). Spaceborne / Airborne hyperspectral remote sensing 

technology, with its inherent high spectral resolving properties, has been 

applied in a variety of research fields in forestry, such as forest biochemistry 

(Grossman et al. 1996, Jacquemoud et al., 1996; Johnson and Billow, 1996; 

Zagolski et al., 1996; Martin and Aber, 1997; Kokaly and Clark, 1999) and 

stand structure characterization (Kalacska et al., 2007). With the advent of 

airborne (e.g. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and
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HyMap) and, more recently, experimental space borne imaging 

spectrometers [e.g. Compact High Resolution Imaging Spectrometer (CHRIS) 

and Hyperion], with high spectral and radiometric resolutions and signal: 

noise ratios, there have been opportunities to acquire vegetation reflectance 

spectra and test methods for imaging plant pigment concentrations 

(Blackburn, 2006).

The forests of the tropics and subtropics represent a diversity of habitats that 

vary both spatially and temporally. A large proportion of forests is also 

secondary and exists at varying stages of degradation or regeneration. For 

remote sensing scientists, this spatial and temporal variation represents both 

an opportunity and a challenge for the use of hyperspectral data. The latest 

and significant breakthrough in passive optical remote sensing has been the 

development of hyperspectral sensors on spaceborne platforms (e.g. EO-1 

Hyperion, CHRIS/PROBA) providing continuous narrow bands and high 

resolution in the visible and infrared spectral region (Stagakis et ai., 2010).

1.7 Challenges associated with spaceborne Hyperspectral 

remote sensing systems

Great power comes with great responsibility. This is true with Hyperspectral 

data. Although the information content in hyperspectral images is more as 

compared to multispectral images, there are some challenges to the image 

analysis. Hyperspectral imagery requires a more detailed image analysis. So, 

conventional image processing techniques of multispectral data cannot be 

applied. New image processing techniques are necessary for retrieval of the 

information from the Hyperspectral images. Following are the Challenges 

associated with spaceborne Hyperspectral remote sensing systems.

1.7.1 Data Volume: Tremendous increase in the data volume of 

hyperspectral remote sensing needs suitable data compression techniques 

for archival or transmission purposes. Following is the comparison of data 

volume of MSS and HSS data.
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Type of Number of Radiometric
Name of the sensor sensor Bands resolution

LISS 3
Landsat Thematic

MSS 4 7

Mapper MSS 7 8
AVIRIS HSS 224 10
Hyperion (EO-1) HSS 242 12

1.7.2 Redundancy: Data redundancy is a major concern in Hyperspectrai 

data. The increase in the data volume by 40 times seems to contain 40 times 

more information but that is not the case. Much of the information is 

redundant due to overlap between adjacent bands. Spectral redundancy 

means that the information content of one band can be fully or partly 

predicted from the other bands in the data.

1.7.3 The Need for Calibration (Atmospheric Correction): Hyperspectrai 

data shows atmospheric absorption features which get mixed up with 

absorption features of land cover. These absorption features of the 

atmosphere are to be removed to identify important land cover features.

1.8 Addressing Challenges associated with spaceborne 

Hyperspectrai remote sensing systems

Data handling become easier with the increase in storage and processing 

power of recent computational systems. Conventional statistical techniques 

cannot be applied to reduce redundancy problem of Hyperspectrai data. 

Many new statistical techniques have been developed and applied to spectra 

for obtaining relevant wavelengths easily from highly overlapping wavelengths 

of hyperspectrai reflectance spectra. Commonly tested techniques are the 

Minimum noise fraction (MNF), Linear discriminant analysis, Principle 

component analysis, Wavelet analysis, Multiple linear regression, Partial least 

square regression. FLAASH and ACORN are two most commen software 

modules available for correction of atomospheric effects on reflectance 

spectra of target materials.
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1.9 Reflectance spectra of vegetation

Hyperspectral sensors collect and provide unique reflectance spectra of 

vegetation. It is necessary to know that how different vegetation 

characteristics (biochemical and biophysical) affecting reflectance spectra of 

vegetation. Leaves represent the main surfaces of plant canopies where 

energy and gas are exchanged. Hence, knowledge of their optical properties 

is essential to understand the transport of photons within vegetation (Despan 

and Jacquemoud, 2004). The general shape of reflectance curves for green 

leaves is similar for all species (Figure 1.2). It is controlled by absorption 

features of specific molecules and the cellular structure of the leaf tissue 

(Ustin et al., 1998). Three spectral domains can be distinguished. In the 

visible domain (400-700 nm) absorption by leaf pigments is the most 

important process leading to low reflectance and transmittance values. The 

main light absorbing pigments are chlorophyll a and b, carotenoids, 

xanthophylls, and polyphenols. Chlorophyll a is the major pigment of higher 

plants and together with chlorophyll b account for 65 percent of the total 

pigments (Cunningham and Schiff, 1986). Chlorophyll a and b have 

absorption bands in the blue at around 430-450 nm and in the red domain at 

around 660-640 nm (Schierf, 2005). These strong absorption bands induce a 

reflectance peak in the green domain at about 550 nm. Carotenoids and 

xanthophylls absorb mainly in the blue and are responsible for the colour of 

flowers, fruits, and the yellow colour of leaves in autumn (Mlodzinska, 2009). 

Polyphenols (brown pigments) absorb with decreasing intensity from the blue 

to the red and appear when the leaf is dead (Verdebout et al., 1994). In the 

near-infrared domain (near-IR: 700-1300 nm) leaf pigments and cellulose are 

almost transparent, so that absorption is very low and reflectance and 

transmittance reach their maximum values (Schierf, 2005). The level of 

reflectance on the near-IR plateau increases with increasing number of 

intercellular spaces, cell layers, and cell size. Scattering occurs mainly due to 

multiple refractions and reflections at the boundary between hydrated cellular 

walls and air spaces (Guyot, 1990).In the mid-infrared domain (shortwave IR: 

1300-2500 nm), also called shortwave-infrared (SWIR), leaf optical properties
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are mainly affected by water and other foliar constituents. The major water 

absorption bands occur at 1450, 1940, and secondary features at 960, 1120, 

1540, 1670, and 2200 nm (Ustin et al., 1998). Water largely influences the 

overall reflectance in the mid-IR domain and also has an indirect effect on the 

visible and near-IR reflectance. Protein, cellulose, lignin, and starch also 

influence leaf reflectance in the SWIR. However, the absorption peaks of 

those organic substances are rather weak as they result from overtones or 

combinations related to fundamental molecular absorptions in the region of 

500 to 800 nm (Curran, 1989). The molecular absorptions are associated with 

certain chemical bonds, such as C-H, N-H, C-O, and O-H. In fresh leaves, 

spectral features related to organic substances are masked by the leaf water, 

so that estimation of leaf constituents is difficult (Verdebout et al., 1994). The 

optical properties of a vegetation canopy depend mainly on the optical 

properties of the canopy chemical constituents and on the canopy structure. 

The most important canopy elements are the leaves and the underlying soil. 

When a plant canopy grows, the contribution of the soil to the observed total 

signal progressively decreases as the reflectance spectrum of the bare soil is 

gradually replaced by that of the plant. When the amount of vegetation 

increases during growth, the canopy reflectance can reach saturation levels, 

the canopy structure is primarily defined by leaf area index (l_AI) and leaf 

angle distribution (LAD) (Barton et al., 2001). As a consequence, during 

growth the visible and middle-infrared (mid-IR) reflectance decreases and the 

near-infrared (near-IR) reflectance increases the reverse phenomenon is 

observed during senescence or selective cutting of trees (Guyot, 1990).
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Figure 1.2. The general shape of reflectance curves for green vegetation

1.10 Vegetation biophysical and biochemical attributes

Knowledge of the structure and chemistry of a tropical forest canopy would 

provide key insights into ecosystem function and ecological processes 

(Chambers et al., 2007). Many fundamental questions in tropical ecology 

revolve around the biochemistry, physiology, and biodiversity of forest 

canopies (Asner, 2008). Because canopies are a locus of biogeochemical 

processes in an ecosystem, canopy chemistry is core to understanding the 

spatial and temporal variability of carbon, nutrient, and hydrological cycling 

(Asner, 2008). Canopy physiology, which controls gross and net primary 

production, is also mediated by canopy biochemistry (Asner, 2008). In all, the 

biochemistry, physiology, and biophysical structure of the tree canopies are 

intimately linked and cannot be easily studied without acknowledging these 

linkages. Therefore, estimations of biochemical and biophysical attributes at 

canopy scale are useful inputs for understanding functioning of natural 

systems. Biochemical attributes such as Leaf pigments, Water, Nitrogen, 

Lignin, and Cellulose are vital for understanding the physiology and functional
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role of trees dominant at natural systems. Remote sensing is an important 

tool for assessing vegetation condition over large areas, offering the 

possibility to analyzing ecological issues at a wide range of spatial scales 

(Ustin et al., 1991; Hope, 1995). Many important biochemical attributes can 

be easily quantified and analyzed for their role in canopy scale dynamics by 

utilizing this tool. Each attribute has an important role. Leaf pigments are 

fundamental determinants of light capture and utilization. They provide 

protection against the harmful effects of high radiation, which is common in 

the tropics (Bjorkman and Demmig-Adams, 1995; Evans et al., 2004). Leaf 

water is another important factor regulating canopy temperature and moisture 

stress, both of which are particularly acute in tropical forest canopies 

(Williamson et al., 2000; Nepstad et al., 2002). Foliar nitrogen regulates 

physiological processes such as photosynthesis and leaf respiration (Field 

and Mooney, 1986; Reich et al., 1998, 2006). Nitrogen is also related to 

canopy and stand-level traits such as light use efficiency, wood growth and 

net primary production (Smith et al., 2002; Green et aj., 2003; Ollinger and 

Smith, 2005). It is an important indicator of photosynthetic rate and overall 

nutritional status (Curran, 1989; Field and Mooney, 1986). Structural 

components like cellulose and lignin indicate about the quality and quantity of 

wood. Lignin plays a key role in both terrestrial and oceanic carbon cycles 

(Opsahl et al., 1997). Estimates of these constituents can also help in looking 

at different kinds of inputs to litter decomposition. Developing estimates to all 

these listed characteristics helps in the overall assessment of the functioning 

of tropical ecosystems. .

Vegetation biophysical parameters such as the size, distribution of trees in a 

tropical forest conveys much information about site-to-site differences in 

growth and mortality rates stem density, canopy architecture and forest 

structure (Chambers et al., 2007). There is greater need for accurate and 

detailed information about their biophysical characteristics along different 

stages of ecological succession (Kalacska et al., 2004). Above ground 

biomass (AGB) is an important biophysical parameter to be estimated for 

forest covers. This helps in monitoring the harvest time, carbon cycle studies 

(Ponzani et al., 2010). Information about forest stand structure and
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aboveground biomass (AGB) is used to assess forest ecosystem productivity, 

determine carbon (C) budgets, and support studies of the role of forests in the 

global carbon cycle (Kurz and Apps, 1999; Cihlar et al., 2002; Lu et a!., 2005; 

Palacios-Orueta et al., 2004; Zeng et al., 2004). It is critical to understand the 

role canopy species play in determining tropical forest responses to climate 

change (Clark, 2004). Leaf Area Index (LAI) is considered to be a key 

vegetation biophysical parameter (Asner, 2008). Various eco-physiological 

processes of a forest ecosystem such as interception of light (Vargas et al.,

2002) , precipitation (Van dijk and Bruijnzeel, 2001), and transpiration (Granier 

et al., 2000) are controlled by LAI, Canopy spread and LAI are two important 

biophysical attributes in assessing forest production.

1.11 Contribution of Hyperspectral remote sensing in 

estimation of vegetation biochemical and biophysical 

attributes

Many researchers have shown the significance of hyperspectral data for the 

estimation of chlorophyll (Curran et al., 1991; Vogelmann et al., 1993; 

Gitelson artd Merzlyak, 1994; Datt, 1998; Gitelson and Merzlyak, 1997; 

Blackburn, 1998; Broge and Leblanc 2001; Sims and Gamon 2002; le Maire 

et al., 2004; Haboudane et al. 2008). All these studies were performed using 

laboratory spectra. Recently researchers have estimated chlorophyll with the 

help of pixel level (Air borne or Space borne) hyperspectral reflectance 

spectra (Jago et al., 1999; Asner and Martin 2008; Darvishzadeh et al., 2008; 

le Marie et al., 2008; Schlerf et al., 2010; Stagakis et al., 2010). Asner et al. 

(2005, 2006) used Hyperion (EO-1) satellite sensor to estimate spatial 

variation in upper-canopy pigments across substrate age and precipitation 

gradients, and among native and invasive tree species in Hawaiian forests. 

Foliar Nitrogen for temperate vegetation was estimated by Smith et al. (2002,

2003) using air borne hyperspectral data. Schlerf et al. (2010) estimated foliar 

nitrogen from coniferous tree species using leaf level hyperspectral data. 

Martin et al., (2008) have estimated foliar nitrogen from temperate and 

tropical vegetation using space borne hyperspectral data. Earlier, Huang et al.
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(2004) have used air borne hyperspectral data for estimation of nitrogen. 

Similarly, Asner and Martin (2008) have estimated foliar nitrogen using air 

borne hyperspectral data with high accuracy. Foliar nitrogen is yet to be 
estimated with high accuracy using space borne hyperspectral data for 

tropical forests. Many studies were found for estimation of foliar water content 

through air borne or space borne hyperspectral data (Gao, 1996; Huete et al, 
1997; Peneules et al., 1997; Serrano et al., 2000; Ustin et al., 2004; Cheng et 

al., 2006). However, accuracy of these studies across wide range of 

ecological condition is Uncertain. Leaf level Hyperspectral studies (Serrano et 
al., 2002 and Kokaly et al., 2009) for estimation of lignin and cellulose were 

carried out. No study has been carried out for estimation of lignin and 
cellulose using canopy level hyperspectral data for tropical regions.

Many studies have investigated the ability of remote sensing data to estimate 

forest biomass, many problems have been encountered, including the 
generalization constrains due to the lack of methodological uniformity and the 
availability of reliable radiometric and biophysical data (Foody et al., 2003). 

Quantifying AGB in tropical forest cover becomes difficult owing to the 
variations in canopy spread and its architecture. This increases the levels of 
uncertainty and errors in estimates. Availability of remote sensing data during 

leaf shedding season (deciduous period) is likely to give reasonable 
estimates. The greatest uncertainty in understanding the role of tropical 

forests in the carbon cycle is associated with AGB estimation (Houghton et al. 
2000; Keller et al., 2001). Prediction of AGB estimates in tropical ecosystems 
gains importance because of the sudden spurt seen in land use land cover 
changes across these regions. Recently Cho et al. (2007) estimated biomass 

of tropical herbaceous vegetation with high accuracy. Such types of studies 
were not conducted for tropical tree covers. A Number of Hyperspectral 

studies have been found out for estimation of LAI for agricultural crops 
(Spanner et al., 1990; Elvidge and Chen, 1995; Broge and Leblanc, 
2001;Broge and Mortensen 2002; Zhao et al., 2007). Few studies were found 
in which researchers have estimated LAI of tree species using pixel level 

hyperspectral data (fe Marie et al., 2008; Darvishzadeh et al., 2008; Delaieux 
et al., 2009).
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Taken as a whole, number of Hyperspectral studies have been applied to 

quantify biochemical and biophysical attributes such as leaf pigments, water, 

nitrogen, lignin, cellulose, biomass, LAI. Data from imaging spectrometers 

have been applied to quantify various vegetation biochemical and biophysical 

parameters at leaf level (summarized by Sims and Gamon, 2002; Ustin et al., 

2004 and Ollinger, 2011; Martin and Aber, 1997; Ustin et al., 1998; Kokaly 

and Clark, 1999; Haboudane et al., 2008). Researchers have also tried to 

estimate different biochemical and biophysical parameters of tropical 

vegetation using air borne and space borne hyperspectral data (Thenkabail et 

al., 2004; Zhang et al., 2006; Cho et al., 2007; Kalacska et al., 2007; Martin et 

al., 2008; Asner and Martin, 2008). However, canopy-level hyperspectral 

measurements are frequently lower in precision and accuracy compared to 

those of leaf-level studies (Asner and Martin, 2008). Scaling issue is a major 

concern in these studies. A number of hyperspectral studies are available for 

detecting changes in canopy biochemical concentration at the pixel level in 

temperate forests, but it has proven difficult on tropical ecosystems 

characterized by greater structural variability. Cross application of generated 

data is an important task and many a times generated models do not work 

across. The validity of the models may be limited to the local environmental 

conditions (Asner et al., 2003). Tropical forest canopies are yet to be explored 

for retrieval of diverse biochemical and biophysical attributes using space 

borne hyperspectral reflectance spectra. Strong linkages between ecological, 

remote sensing and human influence on tropical dry forest research are 

necessary to achieve sound sustainable development policies (Bawa et al., 

2006). It becomes imperative to have a focused study for evaluating attributes 

of tropical vegetation covers. Hyperspectral remote sensing has been 

recognized as a reliable method for estimating biochemical and biophysical 

attributes of vegetation.
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1.12 Algorithms for estimation of vegetation attribute

Algorithms are used for calculation, data processing, and automated 

reasoning. Algorithm is a step by step procedure for calculations. Many 

algorithms were developed for estimation of biochemical and biophysical 

attributes of vegetation using hyperspectral data. Diverse statistical 

techniques are used to develop algorithms. Two important approaches are,

1. Univariate analysis (Computation of Vegetation indices)

2. Multivariate analysis (Stepwise linear regression/Partial least square 

regression)

Vegetation indices are computationally fast and require little expertise 

(Haboudane et al. 2008). Originally, the purpose of spectral vegetation 

indices was to minimize variability due to external factors such as illumination 

and atmospheric condition and internal factors such as underlying soil and 

leaf angle distribution (Darvischzadeh, 2008). Researchers have shown that 

narrow band vegetation indices can be crucial in providing essential 

information for quantifying the biochemical (Broge and Leblanc, 2001; 

Ferwerda and Jones.,2005; Gamon et al., 1992; Gitelson and Merzlyak, 1997; 

Sims and Gamon, 2002; Mutanga et al., 2005; Haboudane et al., 2008) and 

biophysical characteristics of vegetation (Blackburn, 1998; Elvidge and 

Chen,1995; Gong and Miller., 1992; Lee et al., 2004; Mutanga and Skidmore, 

2004; Schlerf et al., 2005; Zhao et al., 2007). For development of vegetation 

indices a limited number of spectral wavelengths from the massive spectral 

contents of hyperspectral data are used. In contrast, several studies have 

addressed statistical techniques such as Discriminant Analysis (DA), step 

wise multiple linear regression (SML) and partial least square regression 

(PLS) that integrate spectral information of several spectral wavelengths for 

discrimination of vegetation and for estimation of vegetation biochemical 

biophysical properties (Curran, 1989; Kokly and Clark, 1999; Curran et al., 

2001; De jong et al., 2003; Hansen and Schjoerring, 2003; Huang et al., 

2004; Atzberger et al. 2003; Cho et al., 2007; Asner and Martin, 2008). 

Several studies have also focused on statistical techniques such as stepwise 

multiple linear regression (SMLR) which make use of the spectral information
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of several spectral wavelengths to estimate vegetation biochemical properties 

(Curran ,1989; Curran et al., 2001; Grossman et al.,1996; Huang et al., 2004; 

Kokaly and Clark 1999; Darvishzadeh et al. 2008) and biophysical properties 

(Atzberger et al., 2003; De Jong et al., 2003; Darvishzadeh et al., 2008), PLS 

regression analysis has proven to be one of the most successful empirical 

approaches for deriving different foliar characteristics from canopy spectral 

data (Ollinger et al. 2002; Smith et al. 2003, 2002; Cho et a!., 2007; Martin et 

al., 2008; Darvishzadeh et al., 2008; Asner and Martin, 2008). Huang et al. 

(2004) stated that PLS regression method reduces the effects of background 

and avoids the potential of over fitting problem typically associated with 

stepwise regression analysis. PLS regression technique can extract the 

relevant part of the information from very large data matrices and produce the 

most reliable models compared to others (Thomas and Haaland, 1990). 

Atzberger et al., (2003) has stated that PLS regression is known to be 

suitable for analyzing multi-collinear spectral data. Carrascal and Gordo. 

(2009) have stated that PLS regression is especially useful when the number 

of predictor variables is similar to or higher than the number of observations 

(i.e. overfitting) and/or predictors are highly correlated (i.e. there is strong 

collinearity). PLS regression produces more stable results with regard to the 

identification of the relevant variables and their magnitudes of influence 

independent of the sample size in the analyses, a situation in which other 

regression approaches fail (Carrascal et al., 2009). PLS regression uses the 

entire spectrum as a single measurement rather than a band-by-band 

analysis. Values generated by PLS calculation relate the features of the 

spectra to the constituents analyzed (Haaland and Thomas, 1988).

1.13 Significance of present study

Given the key role of the tropical forest biome in the global carbon cycle and 

in terms of biodiversity and environmental services, intensified research is 

urgently needed to establish what is currently happening to these forests and 

to provide the process-level understanding needed to project their likely 

future (Clark et al., 2004). In developing countries like India rapid economic
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development and increase in population is creating tremendous pressure on 

natural resources like forests, Gujarat is one of the most rapidly developing 
states of India. Gujarat has a territory of 196,024 km2 and is endowed with a 

great diversity of natural ecosystem ranging from desert, semi-arid, 

mangroves, coral reef-rich coast and forests with dry deciduous, moist 

deciduous and evergreen trees. The angiosperm flora of Gujarat is mostly 

varied in extent and composition. There are 2198 species of higher plants 

belonging to 902 genera and 155 families which represent 12.91 per cent of 

the flora of the India (Singh et al., 2007). Some of the dominant and 

economically important species are planted at large scale in the state of 

Gujarat. Accurate estimates of canopy biochemical and biophysical properties 

of these important species of these regions can help in evaluating the healthy 

status of these vegetation covers. Teak (Tectona grandis Linn.) belongs to 

family Verbenaceae and Bamboo (Dendrocalamus strictus Nees.) belongs to 

family Poaceae are two important species of tropical regions. Teak and 

Bamboo are spread across (both naturally and through human intervention) 

larger areas in tropics. Both are important because of their commercial and 

conservation values. At many regions both species are being planted under 

social forestry programme. Both the species are known for their commercial 

and conservation values. Wider distribution and larger utility value of both 

these species makes it necessary to monitor them at larger spatial scales. 

Keeping the importance of these two species in mind the present study has 

carried out.

Teak is a fine quality timber-yielding deciduous species, suitable for rapid 

production of large volume of timber, poles and fuel wood (Kaul et al., 

2010).Teak timber is of high value, and the species is easily established in 

plantations. This makes teak one of the most promising species for 

plantations in the tropics (Keogh, 1996). Today it is widely planted in South 

East Asia, and as exotic species in Africa, South and Central America (Ball et 

al., 1999). Tree improvement activities have been initiated in several 

countries, e.g. Tanzania (Madoffe and Chamshama, 1989), Thailand (Kaosa- 

ard, 1993; Kaosa-ard et al., 1998),India (Kumaravelu, 1993; Subramanian et 

al., 1994), Indonesia (Harahap and Soerianegara, 1977; Indonesia Forest
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State Enterprise, 1993), Myanmar (Htun and Kaufmann, 1980), Bangladesh 

(Banik, 1993),Papua New Guinea (Cameron, 1968), Sri Lanka (Maddugoda, 

1993), China (Bingchao and Shuzhen, 1993) and Costa Rica (Gamboa and 

Montoya, 1992). Teak is an obvious choice for intensive domestication 

activities, because it is used as timber on a large scale in many countries. 

Teak easily establishes in plantations. In tropical countries like India Teak 

occurs across the region (Kaul et al., 2010).

Bamboo occurs in many types of forests in this continent. Bamboo is a 

member of Poaceae growing as a large woody grass. Bamboo species is 

widely distributed in dry deciduous forests and grows rapidly in all climatic 

conditions across India (Reddy, 2006). Bamboo, popularly known as giant 

grass, with more than 1575 species in 111 genera in the world, occurring in a 

great variety of soil and climatic conditions, plays important role in providing 

livelihood, ecological and food security of man kind (Bystriakova, 2003). 

Bamboo has a wide spread distribution in other countries of Asia such as 

China. It provides natural habitat to giant Panda. India is second to china in 

bamboo, resources with 23 genera and 128 species (Nimachow et al., 2010). 
India has a vast bamboo cover of about 100,000 km2 which constitutes 

about12.8% of the country’s forest area (Nimachow et al., 2010). Bamboo has 

its own unique economic importance. Tribes utilize bamboo stem for making 

their homes as well as for making baskets and carry boxes etc, A few species 

of bamboo are edible and are also of medicinal value. Keeping this as a 

background this study has been carried out to address the following 

objective.

• To examine the utility of space borne Hyperspectral remote sensing data 

(EO-1 Hyperion) for developing algorithms for accurate prediction of 

biophysical and biochemical characteristics of teak and bamboo.

24


