


Globally, forests cover ~4.1 billion hectares (30%) of the Earth’s land surface (Mygatt, 2006). 

Ecologically, forest is said to be the plant community dominated by trees and other woody 

vegetation with a closed canopy and their species composition varying in different parts of the 

world. Forests, one of the most important features in natural resources are fundamental to the 

healthy functioning of the biosphere and the main depositors of biodiversity. They are renewable, 

natural and valuable ecological resources of earth (Jaykumar et al., 2002). Forests are increasingly 

valued for their potential to contribute to the local economy through production of both timber and 

non-timber products and provision for attractive recreation and tourism facilities, to create an 

attractive environment for living and working, to maintain biodiversity and protect natural resources, 

and to preserve and enhance characteristics of rural landscapes and related cultural heritage 

(Elands et al., 2002). Forests maintain ecological balance by providing environmental stability, 

carbon sequestration, soil moisture and conservation which is vital for preserving life supporting 

system of the globe. In an era of global concern about the sources and sinks of greenhouse gases, 

forests are seen as an important biome in the health of the planet. Forests are an important 

repository of carbon, an attribute that can be determined from knowledge of forest biomass. Dixon 

and Turner (1991) had reported that the world’s forests contain up to 80% of all above ground C 

and ~ 40% of all below-ground (soils, litter, and roots) terrestrial C. Thus multiple-use of forestry is 

aimed at achieving an appropriate balance between the various needs of society. Any interruption 

to this ecological balance brings the unimaginable miseries to life on earth.

Based on extensive ecological research it is now clear that the flora and fauna on the surface of 

the Earth are rapidly changing (McCarty, 2001; Hughes, 2000). Driving these biological changes 

are global climate change (Nemani et al., 2003; Parmesan & Yohe, 2003) and human activity 

(Turner et al., 1990). With regard to climate change, increases in global temperature and global 

land precipitation have been documented (Kerr, 2006; Hansen et al., 1999; Hulme et al„ 1998), 

both of which are expressed in spatial and temporal variations (Doherty et al., 1999, Hansen et al., 

1999). Climate change is likely to cause increasing forest damage and tree mortality from direct 

and indirect causes. It has been estimated that the composition of one-third of the planet’s forests 

could be altered markedly due to climate changes (Melillo, 1999; Shriner & Street, 1998). 

Additionally warming trend due to the increasing concentrations of carbon dioxide (CO2) and other 

greenhouse gases in the Earth’s atmosphere would cause major changes in all living systems,
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including forests. Concerning human activity, land cover has been changing rapidly throughout the 

twentieth century and at the start of the twenty-first century (Foley et al., 2005). In particular, many 

regions have experienced forest cover decline and desertification while other areas have 

experienced reforestation, intensification and/or expansion of agriculture (Xiao and Moody, 2004). 

Hence, the structure, composition and functioning of forests undergo changes as a result of 

natural processes or on account of human and livestock intervention (Bhatt et al., 2000). It is 

reported that over the last five years, the world suffered a net loss of some 37 million hectares (91 

million acres) of forest, according to data from the United Nations Food and Agriculture 

Organization. Nowadays conservation of forests is one of the prime objectives among the 

environmentalists, as forests are being depleted at an unprecedented and alarming rate due to 

current global climate warming, loss of biodiversity, environmental degradation, and increased 

need for forest products.

1.1 Tropical forests - Global scenario

Among different types of forests, tropical forests constitute about half of the world’s forests 

(Rahman et al., 2004) and which are mostly occurring in developing country like India, Brazil, 

Burma, and Srilanka. Tropical forests have the intrinsic property of being extremely rich in terms of 

species richness, density (Clark et al., 2005; Leigh et al., 2004; Wright, 2002; Hubbell, 1997; 2001) 

& high standing biomass (Ravindranath, 1997). Tropical forests cover approximately 17% of the 

terrestrial biosphere, yet they account for an essential 43% of global net primary productivity (NPP) 

and 27% of the carbon stored in forest soils (Melillo et al., 1993). Tropical forests are exceptionally 

rich in biodiversity. Almost half of all vertebrates, 60 percent of known plant species and possibly 

90 percent of world’s total species are found in tropical forest. At individual crown to landscape 

scales, tropical trees have a dominant role in maintaining rich biota because they define the 

horizontal and vertical substrate, food resources, and gradients of light, moisture and temperature. 

Furthermore, these forests are major players in the world's carbon cycle. Tropical tree biomass 

represents major pool of terrestrial carbon (Clark et al., 2003; Dixon et al., 1994; Lugo & Brown, 

1992). They harbor globally significant amounts of carbon both in the vegetation and in the soil 

(Dixon et al. 1994), and they annually process vast amounts of carbon in photosynthesis and 

respiration (Field et al., 1998; Melillo et al., 1993). Changes in tropical forest carbon cycling can 

therefore affect the pace of climate change (Clark, 2004a).
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Countries within the tropics are developing rapidly and inevitably this often places great pressure 

on natural resources, perhaps most noticeable on forests (Foody, 2003). Over the past few 

decades tropical forests are suffering because of rapid land use changes (Achard et al., 2002). 

Recent studies have suggested that land use changes are likely to have a greater impact on 

biodiversity reduction. Moreover, Geist & Lambin (2002) reported that agricultural expansion, 

commercial logging, plantation development, mining, industry, urbanization and road building are 

all causing deforestation in tropical regions. Uncontrolled deforestation processes threaten the 

large biodiversity resources present in tropics and remove the protective shield of earth. Currently 

tropical forests are experiencing high rates of deforestation and play an important role in 

determining the atmospheric concentration of carbon dioxide (Malhi and Grace, 2000; Myers et al., 

2000). Global ecosystem-process models based on current understanding (White et al„ 2000; 

Cramer et al, 2001; Fung et al., 2005) have projected declining productivity for the world’s tropical 

forests as warming proceeds, in spite of physiological benefits from increasing atmospheric CO2 

(Clark, 2007). Scientists have reported that warmer global temperatures are linked to greenhouse 

gas emissions which may alter tree growth rates, recruitment and mortality, thereby creating new 

assemblages of trees as global temperatures increase (Laurance et al., 2004; Clark et al., 2003). It 

is expected that biodiversity will decline if these altered tree communities fail to sustain the 

complex interactions among trees, pollinators, seed dispersers, herbivores, symbiotic fungi and 

other species that are common in tropical forests (Laurance et al., 2004). It is reported that tropical 

forest is being destroyed at the rate of 40,000 square miles per year at global level which is due to 

slash-and-burn agriculture in areas of high population growth (Srivastava, 2004) The rate is about 

10,000 times as high as the rate prior to the existence of human being. One recent global scale 

study concluded that climate-change effects on tropical forests over the next 50 years may pose as 

much risk to species survival as deforestation (Thomas et al, 2004). Hence there is a growing 

interest in quantifying habitat characteristics such as forest structure, floristic composition and plant 

species richness in intact and degraded forest fragments and forest landscapes (Myers et al,, 

2000; Laurance and Bierrengaard, 1997; Bierregaard et al., 1992).
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1.2 Indian forests - a fast changing landscape

India is the second most populous and the seventh largest country in the world with an existing 

forest cover of 678,333 km2 which is 20.64% of the geographical area of the country (FSI, 2003). 

India having only 2.5% of the world’s geographic area is at present supporting 16% of the world’s 

population and 18% of the cattle population (Singh et a!., 2002). But the per capita forestland 

available is just 0.08 ha, which is the lowest in the world. India is rich in biodiversity which 

possesses a rich flora of flowering plants (17,000 species) with a high degree of endemics (33.5%). 

India is one of the 12 mega diversity countries of the world. 12% of the world’s recorded flora and 

about 7.3% of the world's recorded faunal species are in the Indian subcontinent. The vegetation in 

Indian sub-continent is distributed mainly in four geographically distinct mountain ranges viz. 

Himalayas, Vindhyans, Western and Eastern Ghats (Srivastava, 2004). India’s immense biological 

diversity encompasses ecosystems, populations, species and their genetic make up. This diversity 

can be attributed to the vast variety in physiography and climatic situations. India represents two 

major realms (Palaearctic and Indo-Malayan) and three biomes (Tropical Humid Forests, Tropical 

Dry Deciduous Forests and warm desert and semi deserts) which includes 12 bio-geographical 

regions (MOEF, 1994). India, with a large forest cover contains a variety of climatic zones such as 

tropical evergreen forests, alpine forests, semi-evergreen forests, dry-moist deciduous forests, and 

sub tropical to temperate forests (Bahuguna, 1999).

In India luxuriant vegetation compositions have undergone changes over the past few decades due 

to introduction of agriculture, commercial forestry, mining, hydropower plants and other biotic 

pressures inside the forest ecosystem (Srivastava, 2004). After independence, rapid 

industrialization led to increased pressure on India’s forests. Due to large human population, cattle 

population and widespread rural poverty, the forest of the country is subject to enormous pressure 

resulting in deforestation and degradation. Land degradation impacts on critical environmental 

issues such as food security, loss of biodiversity, and global climate change. The major factors 

contributing to this phenomenon are large scale timber extraction, over-grazing, over-exploitation 

for fuelwood, forest fire, shifting cultivation, diversion of forest land by encroachment and infra 

structure development. As a result the structure, composition and functioning of these forests is 

undergoing rapid changes. Biotic pressure, wide-spread economic growth are altering natural 

vegetal cover and putting tremendous pressure on the sustenance of few leftover tropical forest
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covers in India. It is reported that the area under closed forest category is presently half of what it 

was about fifty years ago and only 11.73% of India's land area has reasonably good forests (FSI, 

1996), In addition to this the increasing requirements of timber, estimated at 68,857 m tonnes in 

1980, would rise to 181,270 m tonnes by 2025, is yet another area of concern (Navalgund et al., 

2007). Bhatt et al. (2000) have also reported a lot of spatial and temporal variation in the values of 

species richness, composition and productivity. Hence the ecological status and the production 

capacity of these forests could not keep pace with exponential growth rate of human and livestock 

population and their requirements.

Fire is a significant and an important contributory factor for the degradation of forests in our 

country. Forest Survey of India reported that 50% of forest areas, in the country are fire prone and 

most of the forest fires occur between February and June (dry summer months). According to an 

assessment of the Forest Protection Division of the Ministry of Environment and Forests, 

Government of India, fires affect annually 3.73 million ha of forests. Forest fires are mainly of 

anthropogenic origin on account of rampant biotic pressure. The majority of the forest fires (99%) in 

the country are caused by humans. Bahuguna (1999) reported that the ecological and socio

economic consequences of wildland fires include: loss of timber, loss of bio-diversity, loss of 

wildlife habitat, global warming, soil erosion, loss of fuel wood and fodder, damage to water and 

other natural resources, loss of natural regeneration.

Considering resource richness and the mounting problems, there is a pressing need to monitor the 

rate and extent of changes in tropical forest cover of countries like India for sustainable 

development. Monitoring changes in forest cover for efficient management has become an 

important aspect for forest department. Sustainable planning and management of forests requires 

vital information about forest resources, mapping and monitoring of existing natural resources and 

forecasting the future scenarios.

1.3 Forest monitoring - Need of the hour

Since 1970s it has been realized that forest monitoring is required not only at national but also at 

regional and global levels as forests are the major contributors to the flora and fauna which 

preserves the bio-diversity of the planet. The need for global data has further increased in the
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context of environmental conventions (e.g. Convention on Biological Diversity) and of growing 

interest in global climate modeling. As tropical deforestation is considered a major environmental 

problem, many studies have aimed at measuring the extent of the phenomenon and modeling the 

drivers of change (Geist & Lambin, 2002). In recent years developed countries have maintained an 

abiding interest in the extent, quality and management of tropical forest resources (Fuller, 2006). It 

becomes even more important in view of the fact that the increasing human and cattle population is 

far greater than the available forest resources. In this context, Singh et al. (2002) reported that the 

vegetation maps are the key for any planning, such as protected area management, sustainable 

development, social forestry, agroforestry, development without destruction, ecodevelopment, etc. 

This data can be obtained through monitoring, although access limitations may make the cost of 

direct monitoring prohibitive (Rosso et al., 2005). Added to this our understanding for monitoring, 

conservation and management of tropical forests is greatly hindered by a lack of spatially and 

temporally extensive information of tree floristic composition, species richness and structure. There 

is an urgent need to develop a reliable database for forest cover of India.

Traditionally, forest cover maps were developed mainly by foresters who used field and aerial 

surveys and scaled these figures to reflect the extent of national forest cover as a whole. These 

national figures were then transmitted to international agencies, which compiles global estimates of 

forest cover every 10 years (Zhu & Waller, 2003). In most cases sampling methods and standards 

adopted by different national agencies change and forest monitoring was never harmonized. Due 

to prohibitive costs and inaccessibility, most of the available data comes from relatively small field 

plots with infrequent re-sampling intervals. It is difficult to generalize such field data to the 

landscape, regional and global scales which is needed for understanding the important processes 

affecting biodiversity (Foody et al., 2003; Tuomisto et al., 2003). Another critical constraint for field 

survey and photointerpretation is the requirement for intensive human involvement. De Fries & 

Townshend (1999) further reported large discrepancies among widely used global cover maps and 

emphasized the need for a more consistent use of remote sensing technology. International efforts 

to establish remotely sensed forest monitoring have emerged recently such as Global Observation 

of Forest Cover and Land Cover Dynamics (GOFC-GOLD), which aims at to provide ongoing 

space based and in situ observations of forests to assist the sustainable management of terrestrial 

resources. Largely due to the launch of earth-observation sensors in the 1970s, operational
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satellite sensors have supplanted the traditional estimation of forest cover from field samples and 

aerial surveys, and more routine application of satellite imagery suggest that the traditional 

approach is no longer the most efficient or accurate means to map forest cover at regular intervals. 

However traditional field ecological data do not translate readily to regional or global extents, and 

models derived purely from such local data are unlikely to predict the global consequences of 

human activities. Therefore, ecologists and conservation biologists are turning to rapidly 

developing discipline of remote sensing to provide the techniques and data sources necessary to 

prepare scientific responses to environmental change. With remote sensing technology, one can 

produce independent and up to date estimates of both forest cover and cover change (Mayaux et 

a!,, 2005).

Remote sensing is a key tool for assessing vegetation condition periodically over larger areas, 

offering the possibility to analyze ecological issues at a wide range of spatial scales (Kokaly et al., 

2003; Ustin et al., 1991). Remotely sensed data also can be used as inputs in ecosystem models 

that are used to assess functional changes brought by climate variability and land use change 

{Scholes & Archer, 1997). In addition to change measurements, remote sensing observations can 

be useful in revealing gradients in vegetation cover that can be further shown in relation to 

precipitation, groundwater, or edaphic factors across the landscape (Smith et al., 1990). Likewise 

there is considerable interest in the use of remote sensing to estimate variables affecting the rate 

of operation of forest ecosystem processes, such as evapotranspiration, photosynthesis and 

nutrient cycling (Running et al., 1989), and those affecting the state of the forest ecosystem such 

as leaf area index (LAI) and foliar chemistry (Wessman et al., 1988; Peterson et al., 1988, 1987). 

Remote sensing of the earth can potentially provide a wide array of information not easily acquired 

from ground surveys. For example, remote sensing can be used to investigate vegetation for leaf 

water, chlorophyll, cellulose, and leaf structure (Green et al., 1998). Ecological remote sensing now 

encompasses a wide range of applications including vegetation mapping, land-cover change 

detection, disturbance monitoring, and the estimation of biophysical and biochemical attributes of 

ecosystems (Asner et al., 1998a). Hence remote sensing is widely viewed as time and cost 

effective way to map vegetation which is one of the important motivations for its utilization in land 

use planning with large scale monitoring (Kokaly et al., 2003). Scientific management of tropical 

forests needs a large amount of reliable information that can only be obtained in a time and cost
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effective way as fieldwork is difficult or impossible at scales useful for management (Tueller, 1987), 

Currently concerns over global land use and land cover change are rising as we strive to 

understand the impact of human activities on our planet. Remote sensing has been widely used to 

monitor land cover changes such as those associated with deforestation. The ability to map land 

cover and infer its properties was shown to be important in a number of key scientific areas, such 

as biodiversity conservation and carbon cycling (Foody, 2003). Indeed, remote sensing techniques 

and technologies are likely to afford the best opportunities to proceed with regional-or global-scale 

environmental change detection.

1.4 The technique of remote sensing

Remote sensing is the science and art of obtaining information about an object, area, or 

phenomenon through the analysis of data acquired by a device that is not in contact with the 

object, area, or phenomenon under investigation (Liilesand & Kiefer, 2000), Such measurements 

would require medium for interaction. Remote sensing deals with electro-magnetic radiation 

(sunlight) as a medium of interaction which refers to the identification of earth features by detecting 

the characteristics of electro-magnetic radiation that is emitted/reflected by earth’s surface. Every 

object reflects/scatters a portion of the electro-magnetic radiation incident on it depending on its 

physical properties. Remote sensing of Earth resources is based on the principle of characteristic 

spectral response of the Earth’s surface features. Reflectance/emittance pattern at different 

wavelengths for each object is different which enables identification and discrimination of objects 

possible.

Remote sensing usually refers to the technology of acquiring information about the earth’s surface 

and atmosphere, using airborne (aircraft, balloons) or space-borne (satellites, space shuttle) 

sensors. Remote sensing employs passive and active sensors. Sensors which sense natural 

radiations, either emitted or reflected from the Earth, are called passive sensors. It is also possible 

to produce electromagnetic radiation of a specific wavelength or band of wavelengths and 

illuminate a terrain on the Earth’s surface. The interaction of this radiation with the target could be 

then studied by sensing the scattered radiation from the targets. Such sensors which produce their 

own electromagnetic radiation are called active sensors.
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1.5 Evolution of remote sensing - An international scenario

The detection of electromagnetic radiation can be done either electronically or by photography. 

Balloons were the first ‘elevated platforms’ used for photography in 1858, especially during the 

American civil war. Aerial platforms were used for reconnaissance and imaging for strategic plan 

during World War I & II. After the war scientists developed ingenious use of such imaging from 

'heights’ - especially for surveying and mapping-thus giving rise to modern aerial photography and 

its applications (Kasturirangan, 2004). But aerial photography did not receive much emphasis 

during the ensuing decades because the process was cumbersome and risky and the results 

uncertain (Lillesand & Kiefer, 2000). With the advent of satellites, space-based imaging became an 

essential tool to look at Earth in its totality and address issues of environment, disasters, global 

change, and natural resources management and many other applications of day-to day relevance. 

So the application of satellite imagery for forest mapping has increased greatly over the past 

decade (Fearnside & Barbosa, 2004) owing to their own characteristics such as being able to cover 

large areas, their revisit frequency, their constant spatial resolution and finally their possibility of 

automatic analysis. Indications are that estimates of tropical forest cover may be converging with 

more routine application of satellite imagery {Zhu & Waller, 2003; Hansen & Reed, 2000; Skole et 

al., 1994). However, global land cover maps derived from satellite imagery may disagree 

substantially as to the extent and distribution of tropical forest. For example, Giri et al. (2005) found 

important differences in forest distribution between two prominent land cover products, namely the 

Global Land Cover-2000 (available at http;//www.qvm.irc.it/qlc2000) and MODIS (Moderate 

Resolution Imaging Spectrometer) land cover prepared by a researcher at Boston University. At 

regional to national scales, the adoption and application of satellite technology lags in certain 

countries in the tropics that are faced with scarcities of technology, funding and human capital.

Since 1960s, Images from space were available with various levels of detail (low resolution) and 

often at oblique angles. Since the advent of the Landsat satellite program in the 1970s and SPOT 

satellite programme in 1980s, near vertical images with resolutions useful for earth resources 

mapping have become available. Launch of earth-observation sensors in the 1970s have 

supplanted the traditional estimation of forest cover from field samples and aerial surveys. Routine 

application of satellite imagery currently suggests that the traditional approach is no longer the 

most efficient or accurate means to map forest cover at regular intervals. According to Barrett &
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Curtis (1999), the most important satellite family is the Landsat family. There are many other 

equally important satellite series as well.

In the studies of tropical forest, the literature suggests that Landsat imagery has been the most 

commonly applied one. Since the launch of the first earth-observing civilian Landsat satellite in 

1972, satellite remote sensing has been used for gathering synoptic information on forest (Iverson, 

1989). The Landsat satellite platforms have carried three main sensors: the MSS (Multispectral 

Scanner), TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus). These imageries 

are inexpensive and have permitted mapping of general forest cover classes for calculating the 

rate and extent of regional deforestation and forest fragmentation (Roberts et al., 2002; Steininger 

et al., 2001; Cochrane et al., 1999; Skole & Tucker, 1993). Thus, remote sensing applications in 

the tropics have relied upon medium spatial resolution imagery from multispectral space-borne 

sensors (Landsat Thematic Mapper with 30-m resolution, 6 optical bands).

Several factors explain the widespread use of ETM+ imagery-including its moderate cost relative to 

previous Landsat imagery, improved online search (Arvidson et al., 2001), a spatial resolution 

(30m) appropriate for the detection of change in canopy condition and land use around forested 

areas (Fuller, 2006). In recent years, several Landsat data archives have greatly improved the 

availability of imagery over tropical areas to the user community, including the Global Land cover 

Facility (http://qlcf.umiacs.umd.edu/index.shtml) at the University of Maryland. Such increased 

availability of inexpensive Landsat imagery has stimulated a number of change detection studies 

that have helped identify drivers of land cover change in the tropics (Dennis & Colfer, 2006; Pereira 

et al., 2002). Landsat imagery generally provides a clear delineation between forest and non-forest 

cover type (Townshend et al., 1995). They also have their limitations. Owing to their coarser 

resolutions, they are unable to go for finer level details of forest attributes. Another principal 

limitation of the use of Landsat and other optical imaging systems is that these technologies cannot 

penetrate clouds which persist over many parts of the tropics. This effectively reduces the number 

of Landsat passes that researchers may use to map and monitor tropical forest as months or years 

may transpire before cloud-free Landsat imagery becomes available for certain cloudy locations 

(Trigg et al., 2006). Thus low temporal coverage over cloudy regions can render Landsat and 

similar polar-orbiting systems virtually useless for periodic forest monitoring. Researchers have
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therefore turned increasingly to cloud penetrating radar imagery provided by such satellite 

platforms as the Japanese Earth Resources Satellite (JERS -1) and the European Remote Sensing 

Satellite (ERS) as an alternative to study tropical forest cover. Sgrenzaroli et al. (2002) have 

reported that JERS-1 mosaics provide a robust measure of canopy texture and allow detection of 

forest vegetation at 100 m spatial resolution. Although such radar imagery generally do not provide 

as much spatial detail on land use and cover as cloud-free Landsat imagery. Despite the all 

weather capability of radar imagery, moderate to fine resolution optical imagery is still more 

frequently used in studies of tropical forests than space-borne radar. Reasons for this include the 

greater spatial detail on land cover type; numerous image classification algorithms and software 

that apply to optical imagery, and its greater availability in image archives. However, some sources 

of optical imagery are clearly more suitable than others for tropica! forest classification. For 

example, Thenkabail et al. (2004) evaluated four optical sensors - Hyperion, IKONOS, ALI 

(Advanced Land Imager) and ETM+ for classifying complex moist forest vegetation such as young 

fallow, old fallow, secondary forest and primary forest in the Congo Basin. The 30m Hyperion 

sensor, which consists of 220 individual narrow spectral bands, performed best and was able to 

distinguish nine different vegetation classes with an overall accuracy of 96.1% when 23 to 157 

usable bands were employed in a discriminate model. The other three sensors, including the 4m 

multispectral IKONOS imagery, performed relatively poor and were able to distinguish the same 

classes with overall accuracies of 42-51%. These results underscore the limited information 

content of multispectral (usually less than eight broad spectral bands) relative to hyperspectral 

imagery.

Additionally, in the tropical forest domain, AVHRR (Advanced Very High Resolution Radiometer) 

1.1 km data were also used for producing pan-tropical forest maps, with classification techniques 

adapted to the ecological conditions (Achard et al., 2001; Mayaux et al., 1998). But the AVHRR 

dataset had shown its radiometric and geometric limitations for land-cover mapping at 1 km 

resolution and was not appropriate to national or continental studies.

1.6 Indian imaging system: the technology evolution

In view of the vast potential of space technology in the development of the country, Department of 

Space, Government of India, launched the ambitious programme to harness the benefit of space
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technology for the betterment of the fellow countrymen in the year 1962. The main thrust of the 

progrmme was to design and develop the sensors and satellites and associated technology and 

also to demonstrate the utility of satellite data in management of natural resources of the country. 

Starting from Bhaskara, the first experimental EO (Earth Observation) satellite launched in 1979, to 

the recently launched Cartosat-2 in 2007, a range of spatial resolution ability from 1 km to better 

than 1m has been achieved and operationalized. The evolution of the Indian EO satellites can be 

classified into three broad categories, viz. first generation of experimental satellites (Bhaskara-1 

and 2), second generation of operational satellites (IRS series) and present generation of theme 

specific satellites (Oceansat-1, Resourcesat-1, Cartosat-1 and 2). The first Earth Observation 

Satellite of India (BHASKARA-I) was launched in 1979. This was followed by BHASKARA-II in 

1981. The spatial resolution of the image from the Bhaskara satellite was about 1 km and the data 

was used for specific applications in geology, forestry, land use etc. India entered operational 

remote sensing arena by launching indigenously built satellite IRS-1A in 1989 and the second 

follow-up was IRS-1 B in the year of 1991, having two payloads employing Linear Imaging Self 

Scanner (LiSS) sensors. The second generation India satellite (IRS-IC & ID), launched in 1995 and 

1997 carried the panchromatic camera, multispectral camera and a wide-field-of-view (WiFS) 

sensors. The new generation satellite, such as Resourcesat-I launched in the year of 2003, carried 

three different sensors (LISS-III, LISS-IV & AWiFS). ISRO's Polar Satellite Launch Vehicle-C6 

(PSLV-C6) successfully launched CARTOSAT-1 and HAMSAT satellites in the year of 2005. 

CARTOSAT 1 and newly launched CARTOSAT-2 satellites are state-of - the-art remote sensing 

satellites intended for cartographic applications. The present IRS systems discussed so far, gave 

an idea of application-driven development of imaging technology, within a span of two and half 

decades (Navalgund et al., 2007). In addition to the present EO missions, there are specific remote 

sensing satellites planned in future to address issues of monitoring disasters, ocean observations, 

atmospheric profiles and global change. The planned EO missions include Oceansat-2, INSAT-3D, 

RISAT, Megha-Tropiquesand resourcesat-2.

Indian Earth Observation (EO) programme has been application-driven and national development 

has been its prime motivation. From Bhaskara to Cartosat, India’s EO capability has increased 

manifold. Today, India is one of the major providers of the earth observation data in the world in a 

variety of spatial, spectral and temporal resolutions, meeting the needs of many applications of
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relevance to national development (Navalgund, 2006). Some of the major operational application 

themes, in which India has extensively used remote sensing data are agriculture, forestry, water 

resources, land use, urban sprawl, geology, environment, coastal zone, marine resources, snow 

and glacier, disaster monitoring and mitigation, infrastructure development etc (Navalgund et al,, 

2007).

1.7 Broadband sensors & forest cover assessment

Globally satellite remote sensing has been used extensively to map forests of the tropics where up 

to date data about spatial distribution are absent or lacking. A number of studies have used 

sensors such as the Landsat Thematic Mapper (TM) and Multispectral scanner (MSS), the airborne 

Thematic Mapper Simulator (TMS), SPOT HRV, and the AVHRR for land cover identification and 

to classify forest type with varying degrees of success (Schriever & Congalton, 1995; White et al., 

1995; Franklin, 1994; Frank, 1988). Landsat Thematic Mapper (TM) and SPOT-HRV have been 

widely used to estimate percent canopy cover, canopy height, tree volume and tree biomass using 

empirical approaches. Indices such as spectral vegetation index, simple ratio, and normalized 

difference vegetation index (NDVI), obtained from satellite data have been shown to be useful 

predictors of leaf area index (LAI), biomass and productivity in grasslands and forests (Steininger, 

2000; Jakubauskas, 1996). Earlier many efforts also have been made to develop the fuel map 

using multispectral data (de Vasconcelos et al, 1998; Jain et al., 1996; Quigley et al., 1996; Mark et 

al., 1995; Ottmar et al., 1994).

In India use of aerial photographs in working plans for stock mapping was started during seventies 

(Tiwari 1978; Tomar 1976; Maslekar 1974). However, aerial photographs could not become 

popular due to difficulty in their procurement. For a subcontinent like India, survey of mapping 

vegetation and other land cover using conventional techniques is too complex and demands a 

huge amount of human resource and time. Satellite remote sensing has played an important role in 

generating information about forest cover, vegetation type and the land use changes (Roy, 1993; 

Malingreau, 1991; Botkin et al., 1984; Houghton & Woodwell 1981). Several studies have been 

done for Indian tropical forests using broad band multispectral instruments like Indian Remote 

sensing satellite (IRS) 1 C/1 D, LISS III, Wifs, Multispectral Scanner (MSS), Thematic Mapper (TM), 

ETM+, SPOT, etc. with varying degrees of success (Goparaju et al., 2005; Sudhakar et al., 2004;

17



Balaguru et a!., 2003; Singh et al., 2002; Bhat et al., 2000; Murli et a!., 1998). It can be said that the 

remote sensing with broad band multi-spectral and multi-temporal data collection systems allows 

one to perform the work for different forest attributes more quickly and effectively. Multispectral 

imagery has demonstrated its strength in discriminating and mapping physical vegetation variables 

(biomass, LAI, cover) and in monitoring vegetation condition which has opened up new 

opportunities for conservation and sustainable use of forest resources.

1.9 Limitations of broad band sensors

A major limitation of traditional broadband remote sensing products is that they use average 

spectral information over broadband widths resulting in loss of critical information available in 

specific narrowbands (Thenkabail et al., 2000; Blackburn, 1998). In this process, narrow spectral 

features are lost or masked by other stronger features surrounding them (Koger et al., 2004; 

Schmidt & Skidmore, 2003). This makes them unable to explain a large proportion of the variability 

present in spectral reflectance of vegetation. For example, the spectral shift of the red-edge (670- 

780nm) slope associated with leaf chlorophyll content, phenological state and vegetation stress, is 

not accessible with broadband sensors (Horler et al., 1983). This is owing to their (a) broad band 

widths (100-200nm) and (b) fewer bands (4-7 bands) covering the visible, near and middle 

infrared regions of the electromagnetic spectrum (Jakubauskas & Price, 1997). This greatly 

reduces the ability of broad band sensor to spectrally discriminate between two objects on the 

ground. Too little spectral information, insufficient spatial resolution and soil brightness interference 

are cited as the dominant limitations with traditional sensors (Smith et al., 1990). Addition to this 

sensor saturation is a problem with the older generation of sensors (Thenkabail, 1999; Curran et 

al., 1997; Foody et al., 1996; Steininger, 1996; Moran et al., 1994; Sader et al., 1994) and is still 

present in the new generation broadband sensors such as IKONOS and ETM+, and to a lesser 

extent in the ALI (Advanced Land Imager) sensor (Thenkabail et al., 2004). It is reported that the 

earlier generation sensors have these known limitations with respect to their suitability for studying 

complex biophysical and biochemical characteristics of vegetation (Salas et al., 2002; Sampson et 

al., 2001; De Jong et al., 2000; Steininger, 2000). Equally sustainable ecosystem management 

requires the comprehensive understanding of species composition and distribution (Nagendra, 

2002). In this context, proper discrimination between species is necessary to map and monitor the 

spatial distribution of certain species, but this is not possible using traditional multispectral images

18



of moderate spectral resolution and hence there is a need to evaluate the new generation of

sensors.

1.10 Species discrimination - an increasingly crucial task

Plant species is the main building block of almost all ecosystems, and sustainable management of 

any ecosystem requires a comprehensive understanding of species composition and distribution 

(Nagendra, 2002). Characterizing the spatial distribution of tree species in forest ecosystems is 

central to a wide range of scientific and land management issues. State of the art monitoring 

systems aimed at forest tree species identification are potentially key tools for the development of 

sustainable development policies (Sanchez-Azofeifa et al., 2003). Moreover, accurately defining 

the spatial distribution of species and species groups is fundamental to the management of any 

conservation area. In this context, Plourde et al. (2007) reported that the effective and reliable 

methods for characterizing the spatial distribution of tree species through remote sensing would 

represent an important step towards better understanding of changes in biodiversity, habitat 

quality, climate, and nutrient cycling. To reveal species composition and distribution by using 

remotely sensed data, species-level discrimination of plants is essential, which in turn can make it 

viable to recognize the succession process of the ecosystem. Tree species mapping has long been 

of interest to managers concerned with biodiversity and habitat quality (Chokkalingam & White, 

2001; Puttock et al., 1998; Spetich et al., 1997), and some of our most pressing present-day 

environmental concerns stem from the loss of native species, the spread of exotics, or shifts in 

distribution brought about by climate change (Allison & Vitousek, 2004; Drohan et al., 2002; 

Iverson et al., 1997). In order to develop a sustainable protection strategy, research has also been 

undertaken to discriminate invasive species from the native vegetation (Hunt et al., 2004; Parker- 

Williams & Hunt, 2004; Hunt et al., 2003; Lass et al„ 2002). In tropical forests tree species 

identification has also become important due to their dominant role in maintaining rich biota. Tree 

species identification, their spread, forest produce and biogeochemistry have become important in 

the application of forestry to understand different processes.

A number of studies have made important progress on this general topic of species level 

discrimination (Leckie et al., 2003; Gilabert et al., 2000; Woodcock et al., 1994). Traditionally, 

species discrimination for fioristic mapping has involved exhaustive and time-consuming fieldwork,
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including taxonomical information and the visual estimation of the percentage cover for each 

species (Kent & Coker, 1992}.Given the importance of species-specific ecological interactions and 

potential consequences of changes in species distributions, reliable methods for remote sensing of 

forest composition at the species level would be a significant advancement towards understanding 

present dynamics. Given the additional spectral detail provided by imaging spectrometers, 

hyperspectral remote sensing has emerged as a potentially useful approach for distinguishing 

composition at the species level (Kokaly et al., 2003; Ustin & Xiao 2001; Roberts et al., 1998; 

Martin et al., 1998; Gong et al., 1997).

1.11 What Is Hyperspectral imaging/ imaging spectroscopy?

Hyperspectral imaging/imaging spectroscopy is the study of the interaction between radiation and 

matter. In the remote sensing community, the term “imaging spectroscopy” has many synonyms, 

such as imaging spectrometry and hyperspectral or ultraspectral imaging (Clark, 1999). 

Hyperspectral imaging/imaging spectroscopy can best be described as a system that collects and 

provides a unique reflectance signature of many materials reflecting electromagnetic energy from 

the surface of the Earth in hundreds of bands with 10nm bandwidth. It is reported that the 

Hyperspectral images are spectrally over determined (Jacobsen, 2000; Shippert, 2002; Boardman 

et al., 1995) and so they provide ample spectral information to identify and distinguish spectrally 

unique materials. Hyperspectral sensors (also referred as imaging spectrometers) are instruments 

that acquire images in many very narrow, contiguous spectral bands throughout the Visible, Near- 

IR, and Short Wave IR portions (400-2500nm) of the spectrum (Figure 1). This is a major 

advancement over multispectral systems as they record earth surface information up to 10 spectral 

bands with 100nm bandwidth. Furthermore, hyperspectral sensors can discriminate among earth 

surface feature that have diagnostic absorption and reflection characteristics over narrow 

wavelength intervals that are “lost” within the relatively coarse bandwidths of the various bands of 

conventional multispectral scanners (Lillesand & Kiefer, 2000) such as those acquired from 

Landsat ETM+ which has 8 broad spectral bands (Figure 2).

Hyperspectral imaging is a technology based on the phenomenon of electromagnetic spectrum and 

its underlying principles. It studies light as a function of wavelength that has been absorbed, 

reflected or scattered from a solid, liquid or gas. Atoms and molecules are constantly
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communicating messages and signing their name with specific spectral signatures. The reflectance 

behavior of the surface as a function of wavelength throughout the optical portion of the spectrum 

is commonly referred as a spectral reflectance signature or spectral fingerprint. Most natural 

objects have unique spectral signatures that distinguish them from others and many of these 

signatures occur in a very narrow wavelength region. The concept of Hyperspectral remote sensing 

has been used to detect and map a wide variety of materials having characteristic reflectance 

spectra (Shaw & Bruke, 2003) (Figure 3). These systems typically collect 200 or more bands of 

data, which enables the construction of an effectively continuous reflectance spectrum for every 

pixel in the scene (Figure 4) (Shaw & Bruke, 2003). This can be compared directly to laboratory or 

field collected spectra (Shipped, 2002). Hyperspectral data have details and accuracy that permit 

investigation of phenomena and concepts that greatly extend the scope of remote sensors. The 

Hyperspectral images are normally visualized in a 3-dimensional data set with two spatial and one 

spectral dimension. This data set is referred to as an image cube (Figure 4). During the past 

decade, though, hyperspectral image analysis has matured into one of the most powerful and 

fastest-growing technologies in the field of remote sensing.

The hyperspectral era began with airborne mineral mapping in the late 1970s and early 1980s. In 

1989, a major advancement occurred with the arrival of the NASA/JPL Airborne Visible/IR Imaging 

Spectrometer (AVIRIS) (Green et al„ 1992). It collects imagery in 224 spectral bands over the 

spectral range from 400 to 2500nm. Spurred by the success of this instrument, other hyperspectral 

instruments came into being. Some other examples of hyperspectral sensors in operation are 

HYDICE (NRL), AISA (Specim ltd.), CASI (Itres Research, Canada), DAIS (GER), AIS (JPL), MISI 

(RIT), Probe-1 (ESSI), TRW Hyperion (EO-1), Mightysat II and many others. Detailed description 

for these sensors is given in table-1.

1.12 Use of Hyperspectral data in different applications

The principles of spectroscopy employed in hyperspectral image data collection and processing 

are well known and have been used for many years (Goetz et al. 1985). Spectroscopy measures 

the electromagnetic radiation from objects as a spectrum, with different materials having different 

characteristic spectra based on their chemical composition. Relative to the broadband sensors, 

finer levels of details and more subtle changes in the landscape are captured by the Hyperspectral
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sensor {Thenkabail et al., 2004) which offers considerable potential for discriminating earth surface 

(Lewis et aiM 2000). High spectral resolution reflectance spectra collected by imaging 

spectrometers allow direct identification of individual materials based upon their reflectance 

characteristics which successfully applied in many fields (Aspinall et al., 2002) including minerals 

(Clark & Swayze, 1995; Boardman & Kruse, 1994; Kruse et al., 1993; Boardman, 1993; Crowley, 

1993), atmospheric constituent gases (Carrere & Conel, 1993; Gao & Goetz, 1990), Vegetation 

(Ustin et al., 1999; Gamon et al., 1993; Roberts et al., 1993), Snow and Ice (Clark & Swayze, 1995; 

Nolin & Dozier, 1993), soils (Palacios-Oreuta & Ustin, 1996), Geobotanical studies (Ustin et al., 

1999) and dissolved and suspended constituents in lakes and other water bodies (Hamilton et al., 

1993; Cardner et al., 1993) with great potential and bright prospects (Lewis et al., 2000). 

Hyperspectral data is also used for monitoring the quality of water (Kallio et al., 2001). Vegetation 

analysts are using hyperspectral imagery to identify species (Clark & Swayze, 1995), to study plant 

canopy chemistry (Martin & Aber, 1997) and to detect vegetation stress (Merton, 1992). 

Additionally, hyperspectral images have a definite advantage over the conventional systems as 

they are capable of separating bare soil surfaces from senescent vegetation (De Jong, 2000). They 

can also analyse biophysical and chemical information that is directly related to the quality of 

wildfire fuels, including fuel type, fuel moisture, green live biomass and fuel condition (Roberts et 

al., 2003). They have also been used to estimate more permanent fuel properties, such as fuel 

load and fuel structure, commonly through the classification of fuel types (Roberts et al., 1997; 

Wilson et al., 1994).
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Figure 1: Electromagnetic spectrum Example, visible light has wavelengths between 400 

and 700 nm, while radio waves have wavelengths greater than about 30 cm (Shippert, 2002)
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Figure 2: (A) Contiguous spectrum of healthy green vegetation using Spaceborne EO-1 

Hyperion data and (B) the same spectrum re-sampled to 8 bands of Landsat ETM+ imagery
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Figure 3: Representative spectral reflectance curves for several common Earth surface 

materials over the visible light to reflected infrared spectral range. The spectral bands used 

in several multispectral satellite remote sensors are shown at the top for comparison. 

Reflectance is expressed as a percentage, as in this graph. When spectral measurements of 

a test material are made in the field or laboratory, values of incident energy are also 

required to calculate the materials reflectance. These values are either measured directly or 

derived from measurements of light reflected (under the same illumination conditions as the 

test material) from a standard reference material with known spectral reflectance
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Figure 4: The concept of imaging spectroscopy: An airborne or spaceborne imaging sensor 

simultaneously samples multiple spectral wavebands over a large area in a ground-based 

scene. After appropriate processing, each pixel in the resulting image cube contains a 

sampled spectral measurement of reflectance, which can be interpreted to identify the 

material present in the scene. The graphs in the figure illustrate the spectral variation in 

reflectance for soil, water, and vegetation. A visual representation of the scene at varying 

wavelengths can be constructed from this spectral information (Shaw & Burke, 2003)
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Figure 5: Reflectance spectra of green vegetation. Different portions of the spectral curves 

for green vegetation are shaped by different plant components, as shown at the top
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Table 1: Current and Recent Hyperspectral Sensors, manufactures, with the number of bands and Spectral Range of 

the sensors.

Sensors Manufacturer Number of Bands Spectral Range

FTHSI on
Mighty Sat II

Air Force Research
Lab

256 0.35 to 1.05 mm

Hyperion on EO-1 NASA Goddard
Space
Flight Center

220 0.4 to 2.5 mm

AVIRIS {Airborne Visible
Infrared Imaging Spectrometer)

NASA Jet Propulsion 
Lab

224 0.4 to 2.5 mm

HYDICE (Hyperspectral
Digital Imagery Collection
Experiment)

Naval Research Lab 210 0.4 to 2.5 mm

PROBE-1 Earth Search
Sciences
Inc.

128 0.4 to 2.5 mm

CASI (Compact Airborne
Spectrographic Imager)

ITRES Research 
Limited

228 0.4 to 1.0 mm

HyMap Integrated
Spectronics

100-200 Visible to thermal 
infrared

EPS-H (Environmental Protection 
System)

GER Corporation 76 (VIS/NIR), 32 
(SWIR1),
32 (SWIR2), 12 (TIR)

VIS/NIR (.43 to 1.05 
mm),
SWIR1 (1.5 to 1.8 mm), 
SWIR2 (2.0 to 2.5 mm), 
and TIR (8 to 12.5 mm)

DAIS 7915
(Digital Airborne Imaging
Spectrometer)

GER Corporation 32 (VIS/NIR), 8 
(SWIR1),
32(SWIR2),1 (MIR),
6 (TIR)

VIS/NIR (0.43 to 1.05 
mm),
SWIR1 (1.5 to 1.8 mm), 
SWIR2 (2.0 to 2.5 mm), 
MIR (3.0 to 5.0 mm),
TIR (8.7 to 12.3 mm)

DAIS 21115 (Digital Airborne
Imaging Spectrometer)

GER Corporation 76 (VIS/NIR), 64 
(SWIR1),
64 (SWIR2), 1 (MIR),
6 (TIR)

VIS/NIR (0.40 to 1.0 
mm),
SWIR1 (1.0 to 1.8 mm), 
SWIR2 (2.0 to 2.5 mm), 
MIR (3.0 to 5.0 mm),
TIR (8.0 to 12.0 mm)

AISA (Airborne Imaging Spectrometer Spectral Imaging <288 0.43 to 1.0 mm
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1.13 Limitations of imaging spectroscopy

These sensors also have their disadvantages as well, including an increase in the data to be 

processed, relatively poor signal-to-noise ratio and an increased susceptibility to the effects of 

unwanted atmospheric interference. The high spectra! resolution of hyperspectral data, which is the 

key feature and is essential for capturing and discriminating subtle differences in the targets, also 

contains redundant information at band level (Bajwa et a!., 2004). The increase of band number 

and decrease of bandwidth mean that the spectral resolution of hyperspectral data is very high. 

The information increases greatly with the increase of band number. However, the number of 

image channels is not simply equal to the number of information dimensions because of the 

existence of band correlation and data redundancy (Dai & Lei, 1989). This high data dimensionality 

makes computation difficult for classification and discrimination. Therefore dimensionality reduction 

is necessary to remove Hughes Phenomena during classification procedure.

1.14 Leaf optical properties: A state of the art

The optical properties of leaves have been shown to be correlated with their photosynthetic 

performance (Vogelmann, 1993) and thermal energy budgets. Moreover, an understanding of the 

leaf structural components that influence leaf reflectance is important for interpreting remotely 

sensed data, such as in the identification of plant functional types (Knipling, 1970). Vegetation 

reflectance spectra are often quite informative, containing information in the visible region, NIR 

(Near Infra Red) region, and in the MIR (Middle Infra Red) region of the electromagnetic spectrum. 

Detailed leaf reflectance properties are shown in III 5. Leaf - scale reflectance spectra are 

controlled by 1) leaf biochemical properties (water, photosynthetic pigments, structural 

carbohydrates), which create wavelength specific absorption features, and 2) leaf morphology (cell- 

wall thickness, air spaces, cuticle wax), which affects photon scattering (Roberts et al., 2004; 

Asner, 1998). VIS spectral variability among species is low due to strong absorption by chlorophyll 

(Cochrane, 2000; Poorter et al., 1995). High NIR transmittance and reflectance result from photon 

scattering within leaf air-cell wall interfaces, such as in spongy mesophyll (Grant, 1987; Gausman, 

1985). At the transition from red to NIR wavelengths, leaf reflectance greatly increases, producing 

a distinct spectral feature referred to as the red edge. The positioning of this edge has been 

correlated to chlorophyll content, plant phenological stages, as well as plant stress (Gitelson et al., 

1996; Carter, 1993). In SWIR 1 (Short Wave Infra Red-I) and SWIR 2 (Short Wave Infra Red-ll)
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water absorption tends to obscure other absorption features produced by biochemical constituents 

(lignin and cellulose) (Asner, 1998; Gausman, 1985). These properties can help to identify tree 

species if these characteristics can be determined for each species of interest and so the challenge 

lies in being able to spectrally distinguish tree species from each other. Active research into the 

use of hyperspectral sensors includes vegetation structure and dynamics (Miller et al., 1991), 

vegetation biochemical composition (Kumar et al., 2001; Wessman et al., 1989), stress detection 

(Merton, 1998) and species identification (Cochrane etal., 2000; Kokalyetal., 1998).

1.15 Vegetation spectroscopy

With the introduction of imaging spectroscopy both quantitative and qualitative remote sensing of 

vegetation improved significantly. Hyperspectral imagery has great potential for monitoring 

vegetation type and vigor. As ecological studies require the quantification of biochemical and 

biophysical attributes (Asner, 1998), the high spectral resolution of hyperspectral data is vital for 

yielding quality information about vegetation health, biomass and other physico-chemical 

properties (Zarco-Tejada et al., 2005; Mutanga & Skidmore, 2004; Mutanga et al., 2004; Mutanga 

et al., 2003; Zarco- Tejada et al., 2003; Soukupova et al., 2002; Asner et al., 2000; Kokaly & Clark, 

1999; Todd et al., 1998; Green et al., 1998; Pefiuelas et al., 1997; Curran et al., 1992). Moreover, 

hyperspectral data have made it possible to measure more accurately both the quantity and 

particularly the quality of the vegetation.

Measuring vegetation quantity (or biomass) at field level is a difficult and destructive process 

(Gower et al., 1999). In addition, it is expensive and can rarely be extended to cover large areas 

(Scurlock & Prince, 1993). With the arrival of remote sensing, quantifying biomass became a reality 

(Daughtry et al., 1992; Elvidge, 1990). Various vegetation indices (i.e., NDVI, SR, TVI, SAVI) had 

been developed and successfully used to measure vegetation quantity and leaf area index (LAI). In 

spite of these successes, vegetation indices can be unstable, owing to the underlying soil color, 

canopy and leaf properties, and atmospheric conditions (Todd et al., 1998). However, most of 

these problems have been tackled or at least reduced since the appearance of hyperspectral 

sensors. New indices such as red-edge position (REP) are able to measure biomass much more 

accurately than NDVI (Cho & Skidmore, 2006; Curran et al., 1995).
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Measuring the biochemicai parameters necessary for uncovering vegetation quality is more difficult 

than remote sensing of biomass or LAI (Johnson et at., 1994; Curran, 1989). In plant tissue, the 

absorption of energy from radiation has been attributed to the energy transition of the molecular 

vibration in C-H, N-H, O-H, C-N and C-C bonds, which are the building blocks of all organic 

compounds (Elvidge, 1990). Hence any reflection from a plant at a specific wavelength is a 

function of the chemical composition of that plant (Foley et al,, 1998). However after the 

introduction of spectrometry, a whole new branch of science started to develop. Scientists began to 

measure in plant materials the contents of various chemicals, including nitrogen and phosphorus, 

which are directly related to such plant qualities as pigment concentration, plant health, stress and 

damage (Ferwerda et al., 2006; Ferwerda et a!., 2005; Mutanga et al., 2004; Gamon & Surfus, 

1999; Kraft et al., 1996; Penuelas et al., 1995).

1.16 Contribution of Hyperspectra! data in species discrimination

Traditionally, species discrimination for floristic mapping involved exhaustive and time-consuming 

fieldwork, including taxonomical information and the visual estimation of percentage cover for each 

species (Kent & Coker, 1992). Other studies that have attempted tree species classification have 

found and outlined tree crown radii using aerial photography and high resolution multispectral 

videography. This delineation uses different types of pattern recognition to separate the images 

into individual tree crowns. The species can either be determined by the tree crown shape and 

size, or the crown can be classified using the digital counts of its spectral reflectance to determine 

which species it is (Brandtberg, 1999; Pinz, 1998). Yet all these methods usually require manual 

delineation or verification of automatic edges. Such work could be just as time consuming as 

having the tree studies on the ground, thus nullifying its usefulness as an aid (Sphere, 2005). 

Technological advancement and the advent of hyperspectral sensors with both high spectral and 

spatial resolutions have raised new expectations about the species level discrimination (Clark et 

al., 2005; Schmidt & Skidmore, 2003; Cochrane, 2000).

In past studies importance of spectral reflectance characteristics for species discrimination and its 

alteration due to the influence of biochemical and biophysical parameters, plant stress, disease, 

moisture level etc. is well documented (Van Aardt & Wynne, 2001; Cochrane, 2000; Demarez et 

al., 1999). Researchers have been able to discriminate and classify species based on their leaf
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reflectance (Vaiphasa et al., 2005; Schmidt & Skidmore, 2001; Cochrane, 2000; Knapp & Carter, 

1998; Kumar & Skidmore, 1998; Gong et al., 1997), canopy reflectance (Schmidt & Skidmore, 

2003; Yamano et al., 2003; Penuelas et al., 1993a) and hyperspectral imagery (Clark et al., 2005; 

Thenkabail et al,, 2004; Silvestri et al., 2003; Bajjouk et al., 1996). However, even after successful 

applications of reflectance spectra for discriminating between species, some researchers claim that 

the leaf reflectances of different species are highly correlated because of their similar chemical 

composition (Portigal et al., 1997). Many studies reported within species and among species 

variability (Cochrane, 2000, Price, 1994) due to difference in the pigment concentration, 

microclimates, soil characteristics, topography (Portigal et al., 1997), stress factors such as air 

pollution, drought (Westman & Price, 1987), foliage age (Roberts et al., 1998; Gausman, 1985) and 

canopy position (Danson, 1995).

1.16.1 Species discrimination among conifer species using Hyperspectral data

Hyperspectral approaches have been applied to various forestry related research questions, but to 

a far lesser degree than was done in agriculture and mining (mineralogical) applications. 

Hyperspectral technology, with its inherent resolving properties, does appear to be ideally suited to 

a task as difficult as species separation on a spectral basis. The use of hyperspectral data 

collected with a spectroradiometer for conifer species recognition has been explored to a certain 

extent. Studies done by Gong et al., (1997) had showed very good spectral differentiation for the 

six coniferous species such as sugar pine (Pinus lambertiana), ponderosa pine (Pinus ponderosa), 

white fir (Abies concoior), Douglas fir (Pseudotsuga menziesii), incense cedar (Calocedrus 

decurrens), giant sequoia (Sequoiadendron giganteum), and one hardwood species, California 

black oak (Quercus keioggii). The data were collected using a ground-based spectroradiometer 

with a wavelength range of 250-1050 nm and spectral resolution of 2.6 nm. The analysis methods 

consisted of two approaches, namely an artificial neural network algorithm and a discriminant 

analysis, after initial pre-processing (smoothing and derivative analysis) was done on the data. In 

some cases, an accuracy of greater than 91% was obtained using sunlit samples alone. The 

effects of site background and illumination changes on species’ spectra were found to be large 

(influenced by conditions as well as leaf properties). Their study also found that the visible bands 

had higher discriminating power than near-infrared bands (blue-green the best followed by the red- 

edge). Lawrence et al. (1993) found distinct visual differences between coniferous and deciduous
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vegetation using AVIRIS imagery acquired over hemlock-spruce-fir (Tsuga spp., Picea spp. and 

Abies spp.) hemlock-hardwood {Tsuga spp. and hardwoods) and aspen-birch (Populus, spp and 

Betula spp.) mixed stands. Although no quantitative result is given, the possibilities of linear 

mixture modeling and distinct spectral differences (especially in the near infrared region of the 

spectrum) are mentioned. A classification of AVIRIS data into 11 different forest cover types, 

including red maple (Acer rubrum), red oak (Quercus rubra), white pine (Pinus strobus), red pine 

(Pint/s resinosa), Norway spruce (Picea abies), and pure hemlock (Tsuga canadensis), as well as 

mixtures there of, has been attempted and also yielded very promising results (Martin et al., 1998). 

This approach implemented a maximum likelihood classifier and was based on 11 AVIRIS bands 

previously used to derive relationships between foliar chemistry (nitrogen and lignin concentration) 

and hyperspectral data. It was shown that both nitrogen and lignin information were important for 

species discrimination. The bands corresponding to these chemicals are 620 - 820 nm, 1640 - 

1740 nm, and 2140 - 2280 nm. The overall classification accuracy was 75% (Martin et al., 1998). 

Van Aardt & Wynne (2001) investigated the inherent canopy spectral separability among three 

southern pine species, -namely loblolly pine (Pinus taeda), Virginia pine (Pinus virginiana), and 

shortleaf pine (Pinus echinata), using high spectral resolution spectroradiometer reflectance data 

(350-2500 nm). Discriminant techniques were used to reduce data dimensionality and test spectral 

separability among species. They had also shown that the VIS, NIR SWIR-I regions are useful for 

discriminating species of temperate forest conifer and hardwood species when using in situ crown 

scale hyperspectral data (sunlit sides of crown). Spectral derivatives provided the best overall 

classification accuracies, which were 85% for conifer species and 93% for hardwood species. A 

study by Wulder et al. (2004) used local maxima filtering for the identification of individual trees on 

1m spatial resolution IKONOS satellite images with 67% overall accuracy.

1.16.2 Species discrimination among tropical species using Hyperspectral data

Little is known about the potential for identifying tropical tree species using hyperspectral data. 

Some of the earlier reports on tropical vegetation used either lab spectra or airborne data. Clark et 

al. (2005) have opted for 7 tree species classification using field spectrometer and airborne 

hyperspectral data. They have used SAM, linear discriminate analysis and maximum likelihood 

classification. The study represents an important breakthrough for identifying tropical tree species. 

They could obtain an overall classification accuracy of 92% for 7 species using 30 reflectance
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bands optimally-selected by linear discriminant analysis. Different levels of accuracy also were 

reported at pixel scale. They have reported importance of near infrared and short wave infrared 

spectral region for the discrimination of tree species. Importance of the spectral angle between two 

spectra also was reported to quantify the similarity between spectra from different tree species. 

Cochrane (2000) provides the investigation of Tropical Rain Forest (TRF) crown-scale 

hyperspectral data for automated species recognition (350-1050nm). The study used laboratory 

spectra for 11 tree species to simulate branch and crown scale. It is anticipated that the 

classification of tropical species may be possible with Hyperspectral imagery that is fine enough to 

resolve objects and measure pertinent discriminatory spectral features from 400 to 2500nm. Fung 

et al. (1999) used a spectroradiometer with range 210-1050 nm, but only used the portion of the 

spectrum between 400-900 nm. A hyperspectral database was constructed for the species being 

studied by collecting spectral samples from each species during all four seasons. These species 

included slash pine (Pinus elliottii), baldcypress (Taxodium distichum), tailowtree (Sapium 

sebiferum), punktree (Melaleuca quinquenervia) and bottletree (Firmiana simplex). The first and 

second derivatives of the spectra were used in a linear discriminant analysis. An overall accuracy 

was 84% where producer's accuracy varied from 56-91%. The original spectra tended to produce 

better results than the first and second derivatives. Summer and spring accuracies were found to 

be significantly lower than those obtained for winter and autumn, which can be attributed to leaf 

color changes and hence lower reflectance in the green and near-infrared reflectance for the latter 

two seasons. More importantly, little research to date has been conducted on the identification of 

tropical tree species at the crown level using airborne hyperspectral imagery, a problem that is 

compounded by the strong control of canopy structure in addition to leaf-level spectral reflectance 

on canopy level information (Asner, 1998). However this has remained untested with spaceborne 

Hyperspectral sensor in tropical forests of India.

1.17 Drawbacks of airborne sensor over space-borne sensor

Most hyperspectral sensors are airborne, with two exceptions: NASA’s Hyperion sensor on board 

the EO-1 satellite with 242 bands (Goodenough et al., 2003) and the U.S. Air Force Research 

Lab’s FTHSI sensor on board the Mightysat II satellite with 256 bands (Shipped, 1992). Imaging 

spectroscopy has evolved substantially during the past two decades (Rock et al., 1994; Vane & 

Goetz, 1988) and today the highest performance instruments, such as the Airborne Visible/Infrared
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Imaging Spectrometer (AVIR1S), have stability and S/N capabilities approaching laboratory 

spectrometers (Green et al., 1998). Airborne imaging spectroscopy has been successfully applied 

to map vegetation cover (Martin et al., 1998; Roberts et al., 1998). But Wulder et al. (2004) have 

reported the disadvantages of aerial photos and airborne data due to inherent geometric artifacts of 

the camera or sensor optics along with the relatively small area of the ground they typically cover. 

Airborne hyperspectral sensors are clearly disadvantaged by the limited spatial coverage they can 

provide. Unlike airborne sensors, space-based sensors are able to provide near global coverage 

repeated at regular intervals with consistent quality and provides suitable information for both 

visual and digital analysis. Moreover, hyperspectral analyses of seasonal changes in vegetation 

have been limited due to the restricted abilities of aerial platforms to repeatedly sample larger 

areas (Gracia & Ustin, 2001; Merton, 1998; Roberts et al., 1997; Elvidge & Portigal, 1990). Aplin et 

al. (1997) described the potential of satellite sensors to negate some of the common problems 

associated with airborne data and to facilitate the detailed information on forest attributes over 

larger areas.

Hyperion is a major advancement in space-based hyperspectal instruments. It was designed as a 

technology demonstration to build and maintain a science grade instrument for validating push 

broom performance and to initiate hypespectra! application on a global scale (Pearlman et al., 

2003). However, it is also true that hyperspectral sensor data requires more sophisticated data 

analysis procedures (Landgrebe, 1999).

1.18 Analysis of Hyperspectral data

Almost all studies utilizing hyperspectral data require some form of data analysis techniques which 

are as follows:

• Reduction of data dimensionality

• Class separability

• Types of classifier/matching algorithm

The reduction of data dimensionality makes valid statistical inferences possible, as the ratio of 

variables and sample size is usually very large in the case of hyperspectral data and has to be 

reduced (Hoffbeck & Landgrebe, 1996). To reduce redundancy or dimensionality, various
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univariate and multivariate band reduction techniques have been developed, such as multiple 

stepwise and partial least square regressions, discriminant analysis, principal component analysis, 

Minimum Noise Fraction transformation (MNF) and artificial neural network.

Derivative analysis is a common tool used to suppress the effects of background and brightness 

differences and enhance subtle spectral difference amongst spectra (Fung et al., 1999; Martin et 

at., 1998; Shawetal., 1998; Bubieretal., 1997; Gong etal., 1997; Martin & Aber, 1997b; Niemann, 

1995). The main reason for this is that derivatives of spectral data should be relatively insensitive 

to variations in illumination intensity caused by sun angle, cloud cover and topography (Tsai & 

Philpot, 1998). The effect of band separation on second order derivatives has also been studied 

(Tsai & Philpot, 1998) and it was concluded that derivatives extract different information from 

spectra at different wavelength scales. Some studies in vegetation analysts have focused on the 

use of a subset of channels using continuum removal spectra which corresponds to the principal 

absorption features of vegetation (Kokaly, 2001; King et al., 2000; Kokaly & Clark, 1999; Kokaiy et 

al., 1998) that offers the greatest separability between materials (Asner S-Lobell, 2000). Another 

way of matching curve shape and not differences in reflectance magnitude is by normalizing 

spectra. Many studies utilize ratios between known key-feature points in vegetation spectra, such 

as the red-edge inflection point, the chlorophyll absorption well, the green reflectance peak, or 

vegetation indices such as the normalized difference vegetation index or NDV! (Ray et al., 2006; 

Pu et al., 2003). Some of these curve features (e.g., the red-edge position) show variations with 

different vegetation ages (Niemann, 1995).

Numerous approaches have been taken to compare remotely sensed hyperspectral image data to 

known reference spectra. In matching algorithm, statistical approaches include one-way analyses 

of variance (Luther & Carroll, 1999), correlation analyses (Shaw et al., 1998), linear discriminant 

analysis (Fung et al., 1999; Gong et al., 1997; Niemann, 1995) and canonical discriminant analysis 

(Palacios-Orueta & Ustin, 1996). Other ways of matching different spectra include distance 

functions, which calculate the relative fit of one spectrum vs. a reference spectrum (Drake et a!., 

1999), K-means clustering (unsupervised classification), and maximum likelihood classifiers 

(Supervised classification) (Martin et al, 1998; Volden et al., 1998; Hoffbeck & Landgrebe, 1996). 

Correspondingly classification algorithms such as ML (Maximum Likelihood), SAM (Spectral Angle
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Mapper), SCM (Spectral Correlation Mapper) and LDA (Linear Discriminant Analysis) have been 

optimized for distinguishing trees in temperate forests (Buddenbaum et a!., 2005, Kokaly et a!., 

2003) and also in tropical forests (Zhang et al., 2006; Clark et al., 2005) using airborne 

hyperspectral data. It is unclear that how these algorithms will perform on a complex scene of 

tropical forest collected by spaceborne hyperspectral data (EO-1, Hyperion). Every method has its 

particular prerequisites, strengths, and weaknesses.

1.19 Importance of this study

Understanding the Earth system, in all of its fascinating complexity, is the most important scientific 

adventure of our time. We should get on with it, as free as possible from our preconceptions of the 

way the world ought to work (Kirchner, 2002).

Given the key roles of the tropical forest biome in the global carbon cycle and in terms of 

biodiversity and environmental services, intensified research is urgently needed to establish what is 

currently happening to these forests and to provide the process-level understanding needed to 

project their likely future (Clark, 2004a). In a developing country like India, biotic pressure, 

widespread economic growth are altering these landscapes and putting tremendous pressure on 

the sustenance of leftover tropical forest cover. Consequently, there is a pressing need to monitor 

the rate and extent of changes in forest cover for efficient planning and management leading to 

sustainable development at both large and small scales. To date, advances in tropical remote 

sensing research have focused primarily on developing sound methods to quantify large-scale 

tropical deforestation (Sanchez-Azofeifa et al., 2001; Skole & Tucker, 1993). While there have 

been major advances in remote sensing research of boreal and temperate ecosystems, research 

on tropical systems currently is lacking the fundamental scientific understanding and potential for 

routine applications observed in other parts of the globe. This gap is due in part to the complexity 

of tropical forest ecosystems. Tropical vegetation has unique features as compared to temperate 

vegetation. Besides having larger diversity, the vegetal cover is not as uniform as is normally seen 

in temperate region. This makes the discrimination process more challenging. However this has 

remained untested with space-borne Hyperspectral sensor in tropical forests of many parts of the 

world. In recent years, advances have been made in spectral reflectance characteristics using red- 

edge, derivative spectra, continuum removal and , narrow band indices but no one knows what the
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applicability of such techniques will be in a complex scene such as the one presented by a tropical 

forest. Doing this exercise for Hyperion data becomes more difficult. It is also unclear that how 

classification algorithms such as ML (Maximum likelihood) and SAM (Spectral Angle Mapper) will 

perform on a complex scene of tropical forest. Spaceborne sensors are cost effective. 

Consequently, they are more appropriate for vegetal cover monitoring in countries like India. 

Keeping all these in view the current study was undertaken to look into the utility aspect of space- 

borne hyper data for spectral reflectance characteristics and species level classification of trees 

growing in a sanctuary in Gujarat, India.

1.20 Objectives

To achieve the overall objective of this study, specific objectives were addressed are:

1. To develop spectral signatures for selected/dominant tree species

2. To describe distinct absorption pattern in the vegetation spectra of dry and wet season 

imagery by applying continuum removal spectra

3. To look at within-species variation based on size and topography

4. To look at the importance of uniformity/homogeneity in patch size & phenology of vegetal 

cover in affective accuracy assessment for wet and dry season data.

5. To highlight the potential of Hyperion data in deciphering floor cover characteristics from 

soil in dry season.
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