
i ^OCa t

Chapter 3
o c

WSN Simulators

Chapter 3 WSN Simulators

This chapter depicts Simulation platform for Wireless Sensor Network (WSN) and

Network Simulation using OPNET. The aim of Simulation platforms for WSN is to describe

the characteristics of WSN simulation, briefly describe the current popular WSN simulation

tools, detail the OPNET and simulate a comparative simulation study regarding nature of

wired and wireless network.

3.1 Simulation Platforms for WSN
WSN is one of the most worthwhile communication network and simulation tools

for WSN are increasingly being used to study sensor webs and to test new applications

and protocols in this evolving research field. There is always an overriding concern when

using simulation that the results may not reflect accurate behavior. However due to the

associated cost, time and complexity involved in implementation of such networks,

developers prefer to have first-hand information on feasibility and reflectivity crucial to

the implementation of the system prior to the hardware implementation [1]. This is

especially true in sensor networks, where hardware may have to be purchased in large

quantities and at high cost. Even with readily available sensor nodes, testing the network

in the desired environment (running real experiments on a test-bed) can be a time

consuming and difficult task.

Besides, repeatability is largely compromised since many factors affect the

experimental results at the same time. It is hard to isolate a single aspect. Simulation-

based testing can help to indicate whether or not the time and monetary investments are

worthwhile. Simulation is, therefore, the most common approach to developing and

testing new protocol and applications for sensor networks. This leads to the recent boom

of simulator development [2]. There are a number of advantages to this approach

including lower cost, ease of implementation, and practicality of testing large-scale

networks.

3.2 The Characteristics of WSN Simulation
Wireless sensor network is a highly application-oriented network type. The

characteristics of the simulation in the following areas described in Table 3.1 are different

from the existing wired and wireless network simulation [3].

In order to effectively develop any protocol based on simulations, it is important

to know the different tools available and their benefits and drawbacks. Given the facts

that simulation is not perfect and that there are a number of popular sensor network

simulators available, thus making different simulators accurate and most effective for

different situations/applications. It is crucial for a developer to choose a simulator that

21

Chapter 3 WSN Simulators

best fits the application [4]. However, without a working knowledge of the available

simulators, this can be a challenging task. Additionally, knowing the weaknesses of

available simulators could help developers to identify drawbacks of their own models,

when compared with these simulators, thus providing an opportunity for improvement. It

is thus imperative to have a detailed description of a number of the more prominent

simulators available. In this chapter, several main-stream WSNs simulators are described

in more detail.

Sr.

No.

Characteristics Comments

1. Simulation Scale For the traditional wired network, the entire network

performance can be greatly simulated by the use of the

limited and represented node topology. However, due to the

disadvantages of large redundancy wireless sensor network

and high-density node topological structure types, the overall

performance of WSN cannot be analyzed by the limited

number of nodes [5], So, in the WSN simulation scale, a large

number of nodes in parallel computing must be considered [6,

7],

2. Simulation Target The traditional wired and wireless network simulation

analysis mainly focus on quality of service (QoS), such as

network throughput, end-to-end delay, and packet loss rate,

which is not the main target of the analysis in most

applications of wireless sensor networks [6]. The life and

energy consumption analysis of the node are the most

important objectives of the analysis [6, 8].

3. Node

Characteristics

The WSN nodes are influenced not only by the noise,

interference, and known destruction factors, but also affect

the instability of the nodes [5]. This is because of the limited

capability of the node itself, coupled with the easy to fail

feature (e.g. node energy exhausted), which have exacerbated

the uncertainty of the network, and they are rarely seen in the

previous network system [6, 7].

Table 3.1 Characteristics of WSN Simulations

22

Chapter 3 WSN Simulators

3.2.1 NS-2
NS-2 (Network Simulator-2) [9, 10, 11] is a well-known network simulator for

discrete event simulation. Simulations are based on a combination of C++ and OTcl [12].

NS-2 includes a large number of simulated network protocols and tools used for

simulating transport control protocol (TCP), routing algorithm, multicast protocol over

the wired or wireless (local connection or via satellite connection) networks [9]. NS-2 is

committed to OSI model simulation, including the behaviour of physical layer and it is a

free open source software and available for free download [11]. NS-2 has a number of

limitations [13]:

1) It puts some restrictions on the customisation of packet formats, energy models,

MAC protocols, and the sensing hardware models, which limits its flexibility.

2) The lack of an application model makes it ineffective in environments that require

interaction between applications and the network protocols.

3) It does not run real hardware code.

4) It has been built by many developers and contains several inherent known and

unknown bugs.

5) It does not scale well for WSNs due to its object-oriented design.

6) Using C++ code and OTcl scripts make it difficult to use.

Actually, NS-2 was not initially designed to simulate wireless sensor network, but

a few research groups had extended NS-2 in order to enable it to support wireless sensor

network simulation, including sensor model, batteiy model, a small stack, and hybrid

simulation tools [14]. It is extensible, but not very scalable because of the split­

programming model and object-oriented structure. In addition, because NS-2 can

simulate very detailed data packet close to the exact number of running packets, it is

unable to carry out large-scale network simulation [9].

To overcome the above drawbacks the improved NS-3 simulator [15] was

developed. NS-3 supports simulation and emulation. It is totally written in C++, while

users can use python scripts to define simulations. Hence, transferring NS-2

implementation to NS-3 require manual intervention. Besides the scalability and

performance improvements, simulation nodes have the ability to support multiple radio

interfaces and multiple channels. Furthermore, NS-3 supports a real-time schedule that

makes it possible to interact with real systems [15]. For example, a real network device

can emit and receive NS-3 generated packets.

23

Chapter 3 WSN Simulators

3.2.2 GloMoSim
Global Mobile Information System Simulator (GloMoSim) [16-18] is a scalable

simulation environment for large wireless and wired communication networks.

GloMoSim follows the idea of the OSI reference model by using a layered approach. For

the communication between the different simulation layers a standard API is used so that

new models and layers can be rapidly exchanged and integrated. The node aggregation

technique is introduced into GloMoSim to give significant benefits to the simulation

performance. In GloMoSim, each node represents a geographical area of the simulation.

Hence the network nodes which a particular entity represents are determined by the

physical position of the nodes.

GloMoSim uses the parallel discrete-event simulation capability provided by

Parsec (Parallel Simulation Environment for Complex Systems) [19], a c-based

simulation language for sequential and parallel execution of discrete-event simulation

models. Both, GloMoSim as well as Parsec were developed by the Parallel Computing

Lab at UCLA. GloMoSim can be run on Windows as well as Unix derivates.

As in NS-2, GloMoSim uses an object-oriented approach, however for scalability

purposes; each object is responsible for running one layer in the protocol stack of every

node. This design strategy helps to divide the overhead management of a large-scale

network. Though it is a general network simulator, GloMoSim currently supports

protocols designed purely for wireless networks. GloMoSim is effectively limited to IP

networks because of low level design assumptions and it is not capable of simulating

sensor networks accurately [20]. Therefore, it suffers the same problems as Ns-2, the

packet formats, energy models, and MAC protocols are not representative of those used

in wireless sensor networks.

Moreover, GloMoSim does not support phenomena occurring outside of the

simulation environment, all events must be gathered from neighbouring nodes in the

network. Finally, GloMoSim stopped releasing updates in 2000 and released a

commercial product called QualNet.

3.2.3 QualNet
QualNet (Quality Networks) work from Scalable Network Technologies (a spin

out company from UCLA) is a commercial network simulator tool [21] that is derived

from GloMoSim. QualNet significantly extends the set of models and protocols

supported by GloMoSim. It has a dedicated and fully 'implemented protocols and

modules for both the wired and wireless scenarios including ad hoc, cellular and satellite

24

Chapter 3 WSN Simulators

models. QualNet is a discrete-event simulator, as such, it is event driven and time aware.

It uses a layered architecture that is run by each node. When a protocol resides in a

particular layer at one node, the packets are passed down crossing the remaining layers at

the sending node, across the network, and then up to the protocol stack at the receiving

node. The basic version of QualNet software comes with the standard library which

offers the most common models and protocols necessary for both wired and wireless

network modelling for research and industrial purposes. Many other libraries can be

purchased separately including the MANET library which provides specific components

for ad hoc networks, energy and mobility models other than those already present in the

standard library; and a QoS library which includes specialised protocols for implementing

quality of service. The authors of QualNet claim it to be the most complete network

simulator, in terms of available protocols, models and tools for mobile ad hoc networks.

Another key advantage is that the authors provide the C source code for all the

components, modules, models and protocols; this allows the customers to fully modify or

tweak the models as well as to better understand the working of models.

QualNet has a modular design and an intuitive GUI that make it easy to use to

learn and modify. The QualNet Developer software suite consist of five different

components put together to form a complete solution for any type of network analysis.

3.2.4 TOSSIM
TOSSIM (TinyOS Mote Simulator) [22] is an open-source operating system

specially developed for the wireless embedded sensor networks. There are few hardware

platforms available for TinyOS, some commercial and some non-commercial. TinyOS

release includes a simulator called TOSSIM. It is built especially for Berkeley Mica Mote

platform. TOSSIM is an emulator rather than a simulator, as it runs actual application

code. Simulated application code can be transferred directly to the platform, but it might

not run in a mote as it runs in a simulation due to the simplifying assumptions in

TOSSIM.

Figure 3.1 shows the working flow of TOSSIM. The TOSSIM architecture is

consisted of 5 segments: Frames, Components, Models, Services and Events.

TOSSIM is a very simple but powerful emulator for WSN. Each node can be

evaluated under perfect transmission conditions, and using this emulator can capture the

hidden terminal problems. As a specific network emulator, TOSSIM can support

thousands of nodes simulation. This is a very good feature, because it can more

accurately simulate the real world situation. Besides network, TOSSIM can emulate radio

25

Chapter 3 WSN Simulators

models and code executions. This emulator may be provided more precise simulation

result at component levels because of compiling directly to native codes.

Event Queue

Figure 3.1: TOSSIM Architecture [23|

TOSSIM is a bit-level discrete event network emulator built in Python [24], a

high-level programming language emphasizing code readability, and C++. People can run

TOSSIM on Linux Operating Systems or on Cygwin on Windows. TOSSIM also

provides open sources and online documents.

Developers had set four requirements for TOSSIM: scalability, completeness,

fidelity and bridging. To be scalable, a simulator should manage networks of thousands

of nodes in a wide variety of configurations. To achieve this, each node in TOSSIM is

connected in a directed graph where each edge has a probabilistic bit error. For

completeness, a simulator must capture behavior and interactions of a system at a wide

variety of levels. And for fidelity, a simulator must capture behavior of a network with a

subtle timing of interactions on a mote and between motes. Requirement for bridging is

met as the simulated code runs directly in a real mote. [23]

The goal of TOSSIM is to study the behavior of TinyOS and its applications

rather than performance metrics of some new protocol. Lienee, it has some limitations, for

instance, it does not capture energy consumption. Another drawback of this framework is

that every node must run the same code. Therefore, TOSSIM cannot be used to evaluate

some types of heterogenous applications.

26

Chapter 3 WSN Simulators

3.2.5 Avrora
Avrora is a command-line framework capable of simulating and analysing

programs developed for MEMSIC Mica2 and MicaZ sensor platforms. In the simulation

each node has its own separated thread [25, 26].

Avrora, a research project of the UCLA Compilers Group, is an open-source cycle

accurate simulator for embedded sensing programs. Unlike other simulators, that are able

to simulate only specific platforms, Avrora has language and operating system

independence. It provides a framework for program analysis, allowing static checking of

embedded software and an infrastructure for future program analysis research. Avrora

simulates a network of motes, runs the actual microcontroller programs (rather than

models of the software), and runs accurate simulations of the devices and the radio

communication [27].

Avrora [28-30] is an instruction-level simulator instead of just simulating

software models. This approach provides an accurate simulation of devices and radio

communication so that, for example, the energy usage can be predicted according to the

number of clock-cycles needed for the used instructions, which removes the gap between

TOSSIM and ATEMU. The codes in Avrora run instruction by instruction, which

provides faster speed and better scalability. Avrora can support thousands of nodes

simulation, and can save much more execution time with similar accuracy. Avrora is

implemented in Java which offers great flexibility and portability because the simulation

of machine code is operating system independent.

Avrora lacks an integrated graphical user interface so that everything has to be

done manual on the command line.

3.2.6 OMNET++
The Objective Module Network Test-bed in C++ (OMNeT++) [31] is a

component-based, modular and open-architecture simulation environment with strong

GUI support and an embeddable simulation kernel. OMNeT++ is a public source

component-based discrete event network simulator [32]. The simulator mainly supports

standard wired and wireless IP communication networks, but some extensions for WSN

exist. Like NS-2, OMNeT++ is popular, extensible and actively maintained by its user

community in the Academia who has also produced extensions for WSN simulation.

OMNET++ is becoming a popular tool and its lack of models is being cut down

by recent contributions. For instance, a mobility fi'amework has recently been released for

OMNET++ [33], and it can be used as a starting point for WSN modelling. OMNeT++

27

Chapter 3 WSN Simulators

provides a hierarchical nested architecture. The modules are programmed in C++; the

GUI of OMNeT++ is created using the Tk library. The modules are assembled into

components and models by using a high-level language (NED). Modules communicate

by sending messages. The simulation configuration is managed by .ini files. There are

several OMNeT++ based WSNs simulation frameworks, e.g., Castalia, MiXiM, NesCT,

PAWiS, SENSIM (SensorSimulator).

Additionally, several new proposals for localization and MAC protocols for WSN

have been developed with OMNET++, under the Consensus project [34], and the

software is publicly available. Nevertheless, most of the available models have been

developed by independent research groups and do not share a common interface, what

makes difficult to combine them. As an example, not even the localization and MAC

protocols developed in the Consensus project are compatible.

3.2.7 SENS
SENS [35] was developed to solve the deficiencies of the traditional network

simulators, which has been used in the field of wireless sensor network. It came after NS-

2 providing some necessary changes [4]. SENS uses the system structure in the module

which can be reused, as long as the interfaces between modules meet the requirements.

Then both modules can be reused and replaced, even the new simulation programs can be

fully developed on the basis of SENS. The differences between SENS and other

simulators are that SENS uses parallel simulation and serial simulation optional modes.

The system default is the serial simulation. This is to consider parallel simulation in many

cases caused low efficiency, thus giving users opportunity to choose according to their

needs.

SENS is a customizable sensor network simulator for WSN applications [1],

Multiple component implementations in SENS offer varying degrees of realism. Users

can assemble application-specific environments; such environments are modelled in

SENS by their different signal propagation characteristics. The same source code that is

executed on simulated sensor nodes in SENS may also be deployed on actual sensor

nodes, this enables application portability.

Simulation/Programming language is written in C++. There exists a thin

compatibility layer to enable direct portability between SENS and real sensor nodes.

3.2.8 MATLAB: TrueTime toolbox
TrueTime [36] is a freeware Matlab/Simulink-based simulator for networked and

embedded real-time control systems. This toolbox facilitates co-simulation of controller

28

Chapter 3 WSN Simulators

task execution in real-time kernels, network transmissions and continuous plant

dynamics.

This toolbox provides possibility to write tasks as M-files, C++ functions or call

Simulink block diagrams from within the code functions. TrueTime blocks include

generally used networks as Ethernet, CAN, TDMA, FDMA, Round Robin or Switched

Ethernet. It supports simulation of Wireless networks (802.1 lb/g WLAN and 802.15.4

ZigBee) and battery-powered devices. In a brief description, TrueTime is a small library

of simulation blocks which extends usability of Matlab/Simulink to simulate discrete

network process control.

Every TrueTime toolbox simulation scheme should contain three crucial parts:

TrueTime kernel (computer, I/O device or some embedded system), TrueTime network

(network model) and a controlled process. There is also an optional part TrueTime

battery (all blocks are shown on Figure 3.2).

TrueTime kernel is responsible for I/O and network data acquisition or data

processing and calculations. It can realize a control algorithm/logic and it is the “brain” of

every device. It uses several simple M-files (modified by us to satisfy our needs) which

handle all mentioned operations. In the kernel can be executed several independent tasks

(periodic, non-periodic) which can cooperate on the same goal.

Figure 3.2: The TrueTime toolbox

One of its main features involves the possibility of co-simulation of the

interaction between the real-world continuous dynamics and the computer architecture in

the form of task execution and network communication. Some fundamental features in

the context of this work include [37]: i) emulation of a wireless network and transmission

29

Chapter 3 WSN Simulators

models; it) representation of the kernel of a mobile node communicating through the

implemented network; Hi) representation of battery-powered devices and some basic

consumption models.

In contrast to other co-simulation tools such as State flow/Simulink or Ptolemy II

[38], TrueTime is not based on a mathematical modelling formalism. Rather, a TrueTime

simulation is programmed in much the same way as a real embedded system. The

application is written in Matlab code or in C++. The main difference from real

programming is that the execution/transmission times must be specified by the developer.

This approach makes TrueTime a very flexible co-simulation tool. Also, the step from

simulation code to production code is not that large. The main drawback is that the
Q

simulation models are not amenable to analysis.

3.2.9 OPNET
Optimised Network Engineering Tools (OPNET) [39] is an event-driven, network

simulation tool, which allows an easy implementation of the all model elements. A

Graphical User Interface supports the configuration of the scenarios and the development

of network models. Three hierarchical levels for configuration are differentiated:

network, node and process. The network domain consists of nodes, links and subnets. A

node represents a network device and groups of devices, i.e. servers, workstations etc.

and WLAN nodes, IP clouds etc. Links represent point-to-point and bus-links between

the nodes. The node domain covers the building of blocks, also referred to as modules,

including processors, queues and transceivers as well as the specification of interfaces

between the modules. The process model defines the underlying protocols, is represented

by finite state machines (FSMs) and is created with states and the state transitions of the

node model elements. It abstracts the behavior of the network element. The packet format

generator allows building any packet consisting of a real byte oriented packets on named

unsorted fields. The packets definition can follow exact protocol specifications. It is easy

to deploy network elements in the project editor. All parameters can be configured easily.

OPNET includes available tools for link setup and mobility profiling. Simulation results

can be processed and analyzed with advanced functions. The analysis of simulated data is

supported by a variety of built-in functions. The source code is based on C/C++.

To build a network model the workflow centres on the Project Editor. This is used

to create network models, collect statistics directly from each network object or from the

network as a hole, execute a simulation and view results. See Figure 3.3.

30

Chapter 3 WSN Simulators

3.2.9.1 Specification Editors

OPNET Modeler supports [39] model specification with a number of tools, called

editors, which capture the characteristics of a modeled system's behavior. Because it is

based on a suite of editors that address different aspects of a model, OPNET Modeler is

able to offer specific capabilities to address the diverse issues encountered in networks

and distributed systems. To present the model developer with an intuitive interface, these

editors handle the required modeling information in a manner that is parallel to the

structure of real network systems. Therefore, the model-specification editors are

organized hierarchically. Models built in the Project Editor rely on elements specified in

the Node Editor; in turn, when working in the Node Editor, you use models defined in the

Process Editor and External System Editor. The remaining editors are used to define

various data models, typically tables of values that are later referenced by process- or

node-level models. This organization is reflected in the following list.

X Project Editor—Develop network models. Network models are made up of

subnets and node models. This editor also includes basic simulation and analysis

capabilities.
i

X Node Editor—Develop node models. Node models are objects in a network

model. Node models are made up of modules with process models. Modules may

also include parameter models.

X Process Editor—Develop process models. Process models control module

behavior and may reference parameter models.

X External System Editor—Develop external system definitions. External system

definitions are necessary for cosimulation.

X Link Model Editor—Create, edit, and view link models.

X Packet Format Editor—Develop packet formats models. Packet formats dictate

the structure and order of information stored in a packet.

31

Chapter 3 WSN Simulators

K ICI Editor—Create, edit, and view interface control information (ICI) formats.

ICIs are used to communicate control information between processes.

N PDF Editor—Create, edit, and view probability density functions (PDFs). PDFs

can be used to control certain events, such as the frequency of packet generation

in a source module.

3.3 Network Simulation using OPNET
As networks are being upgraded from scratch all over the word, network planning

is becoming most important. Computing the viability and performance of networks in real

can be very expensive and painstaking task. To ease and comfort the process of

estimating and predicting a network techniques are widely used and put into practice. A

variety of simulation tools (discussed above) like QualNet, NS-2, Matlab and OPNET are

available for the purpose of modelling and simulation but the choice of a simulator

depends upon the features available and requirements of network application. Among the

various network simulators, OPNET provides the industry’s leading environment for

network modelling and simulation. It allows to design and study communication

networks, devices, protocols, and applications with flexibility and scalability. It provides

object oriented modelling approach and graphical editors that mirror the structure of

actual networks and network components.

The analysis in [40] helped to estimate and optimize the performance of wired and

wireless networks using proposed optimization techniques. In [41], performance of

wireless and wired networks as well as comparison is evaluated using OPNET simulation

tool.

3.4 Simulation Setup and Results
Simulation was carried out for wired, wireless and hybrid network. For wired

network, collision count, traffic received, delay, throughput is studied while for wireless

network, data dropped, traffic received, media access delay, and throughput is studied.

For comparison of both wired and wireless networks, the performance parameter,

throughput is investigated. All these performance is carried out by varying number of

users. For hybrid network, delay and throughput are investigated for both wired and

wireless network part by varying traffic in terms of packet bytes.

32

Chapter 3 WSN Simulators

3.4.1 Wired and Wireless Network Comparison1
The Ethernet is a multi-access network, meaning that a set of nodes sends and

receives frames over a shared link. It implements the capability of transmitting and

monitoring a connected bus link at a same time. It has full duplex capability. Here

Ethernet network model with star topology and data rate of 10Mbps using OPNET [39]

with 25, 50,100 users is setup. Scenario for wired network, created for Ethernet using 50

nodes, is shown in Figure 3.4(a). The Wireless LAN model suite includes the features of

the IEEE 802.11 operating at a data rate of 10Mbps in a star topology using OPNET

Modeler 14.5 is as shown in Figure 3.4(b). The network also expanded for the 25 and 100

users.

Figure 3.4(a) : Ethernet network model Figure 3.4(b) : Wireless network model
for 50 Ethernet stations for 50 users

The performance metrics evaluated are throughput, delay, data dropped, traffic

received, collision count, retransmission attempts [39],

X Throughput: Network throughput is the average rate of successful message

delivery over a communication channel. It is measured in bits per second (bit/s or

bps) or in data packets per second or data packets per time slot.

i

Published a paper, Ms. Sonal J. Rane, Prof. Satish K. Shah, Ms. Dharmistha D Vishwakarma
“Performance Evaluation of Wired and Wireless Local Area Networks”, International Journal of
Engineering Research and Development ISSN: 22 78-06 7X, Volume I, Issue II PP.43-48, July 2012.
KWh’, ijerd. com.

33

Chapter 3 WSN Simulators

X Retransmission attempts: Total number of retransmission attempts by all

WLAN MAC in the network until either packet is successfully transmitted or it is

discarded as a result of reaching short or long retry limit.

X Collision Count: Total number of collisions encountered by this station during

packet transmissions.

X Data Dropped: Total higher layer data traffic (in bits/sec) dropped by the all the

WLAN MACs in the network as a result of consistently failing retransmissions.

This statistic reports the number of the higher layer packets that are dropped

because the MAC couldn't receive any ACKs for the (re)transmissions of those

packets or their fragments, and the packets' short or long retry counts reached the

MAC'S short retry limit or long retry limit, respectively .

From the Figure 3.5 it is observed that the received bit rate for wired network is

approximately equal to the sent bit rate for small number of users. As the number of user

increases, more traffic was sent and received. As the number of users increases the hub

switch becomes overloaded and cannot deliver all the traffic that it received.

rigure 3.5(a) : Traffic sent (bits/sec) of
different scenarios having 25,50,100
users

Figure 3.5(b) : Traffic received (bits/sec)
of different scenarios having 25, 50, 100
users

Discrepancies between send and receive rates can be accounted for by inspecting

the collision count statistic as shown in Figure 3.6. In Figure 3.7, it is observed that

maximum throughput is achieved in the case when less number of users is deployed. As

the number of users increases, more number of the higher layer packets that are dropped

because the MAC couldn’t receive any ACK for the (re) transmissions of those packets or

34

Chapter 3 WSN Simulators

their fragments, and the packets’ short retry limit or long retry limit, respectively. With

less number of users, the overall performance of the system increases as data

transmission will be faster.
♦i (MtiW /t o4 (OTnpvi !4»twork EM)

■ »tp)

Figure 3.6 : Collision count in Wired Figure 3.7 : Throughput (bits/sec) of
Network Different scenarios on node 21 for

Ethernet

As the number of users increases in WLAN, data dropped in wireless LAN

increases. Some of the packets that were sent collided and require retransmissions. So as

the users increases, retransmission rate increases for the more number of users which is

shown in Figure 3.8(a) and Figure 3.8(b) respectively.

Figure 3.8 (a) : Data dropped for Figure 3.8(b) : Retransmission attempts
different scenarios for W LAN of different scenarios for W LAN

As the number of user increases, collision between the user data increases and the

retransmissions of the user increases which cause for the degradation in the performance

35

Chapter 3 WSN Simulators

of wireless network. It can be observed from Figure 3.9 that as the number of users

increases from 25 to 100 the performance of WLAN decreases.

different scenarios for WLAN Ethernet and WLAN on node 07

Throughput comparison of wired and wireless network is performed for the

number of users of 25, 50, and 100 with the data rate of 10 MBPS for both the network.

The performance of the networks measured using perfonnance of the random node

present in the network. While comparing throughput of Ethernet (wired) in blue color and

WLAN (wireless) in red color in Figure 3.10(a), (b), (c) for 25 users on node_07, for

node 37 in 50 users scenario and node 97 for the scenario with 100 users respectively,

with less number of users, the overall perfonnance of the system increases as data

transmission will be faster.

Figure 3.10(b) : Throughput of Ethernet Figure 3.10(c) : Throughput of Ethernet
and WLAN on node 37 and WLAN on node 97

36

Chapter 3 WSN Simulators

Also it is observed that the throughput of Wireless LAN is greater than

throughput of Ethernet for less number of users. As the number of user increases,

throughput of WLAN becomes poor because of slow transmission speed and data

dropped. When the number of users is increased, the throughput decreases for wireless

systems, these effects associated with wireless transmission limit the SNR (Signal to

Noise Ratio) and bandwidth of the received signal, and therefore the maximum number

of bits that can be sent.

3.4.2 Hybrid Network
As discussed in chapter 2, the interoperability in heterogeneous networks with

hybrid structure is in doubtfully a major requirement, when implementing communication

scenarios for home and industrial applications. As IEEE 802.3 and IEEE 802.11 are

becoming the most common and widely used LAN/WLAN standards, an interoperable

architecture is required in order for communication to be treated transparently at the

higher-levels. However, it has to be pointed out that from the user point of view, the

entire system is seen as a black box and is expected to function equally well,

independently from network heterogeneity.

It is already discussed that Hybrid networks implementation uses both ad hoc

connectivity and access points. Access points receive or transmit data between both wired

and wireless networks. In short, wireless networks don’t replace wired networks because

some wiring is still required to deploy even a simple model so an implementation of a

simple hybrid network is done to evaluate the performance of global network

performance and QOS tenability.

3.4.2.1 Model Outline
The proposed scenario consists of a wireless and a wired network (hybrid

network). Figure 3.11 shows the structure of the model or the deployment. The purpose

of the scenario is to demonstrate the inter-communication between the wireless and wired

network.

Figure 3.11: Hybrid Network

37

Chapter 3 WSN Simulators

Two data traffic patterns were simulated; heavy traffic and light traffic (by

adjusting packet size in bytes) as shown in Table 3.2.

Traffic Type Packet Size (in bytes)

Light Traffic 1000

Heavy Traffic 10000

Table 3.2 Traffic Specification

As shown in Figure 3.12(a) and (b), it is obvious that the throughput for light

traffic in wired and wireless network performance same but for heavy traffic, throughput

in wired network is somewhat greater than wireless network part by considering

segmentation.
modeler modeler BE®

I Object: node_2 of Enterprise Network. Wired_Network
I time_average (in Ethernet.Traffic Received (bits/sec))
I Object: node_2 of Enterprise Network. Wireless_Net work
I time_average (in Wireless Lan. Throughput (bits/sec))

I Object: node_2 of Enterprise Network.Wred_Network
I time_average (in Ethernet.Traffic Received (bits/sec))
I Object: node_2 of Enterprise Network. Wireless_Network
I time_average (in Wireless Lan.Throughput (bits/sec))

’ I---------- '-----------1-----------1-----------1----
Oh Oh 40m lh 20m

Figure 3.12(a) : Light Traffic Figure 3.12(b) : Heavy Traffic

Figure 3.13 (a) : Delay for Light Traffic Figure 3.13(b) : Delay for Heavy Traffic

38

Chapter 3 WSN Simulators

Same thing can be observed in below Figure 3.13(a) and (b), analysing delay for

wired and wireless network part. For light as well as heavy traffic there is less delay in

wired network.

Summary:
In this chapter, different network simulators like NETWORK SIMULATOR NS-

2, OPNET, OMNET++, GLOMOSIM, and QUALNET are surveyed. OPNET

simulation tool was used to evaluate the performance of the Wireless and Wired Network

in terms of different number of users, traffics. For high traffic and users wired network

outperforms than Wireless network due to the transmission limit, SNR (signal to noise)

and bandwidth of the received signal. So to improve the overall performance of the

system it is better to use hybrid network which is the combination of both wired and

wireless network.

39

