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Chapter 2

Optimization - At a Glance

2.1 Optimization Methods

In most of the engineering design problems the main objective is either to minimize the cost 

or to maximize the efficiency of production. An optimization algorithm is a procedure which 

is executed iteratively by comparing various possible solutions till an optimum or satisfactory 

solution is arrived at. Choice of a method depends mainly on the type of the problem to be 

solved due to the growing complexity of engineering design problems. Generally, global 

optimization algorithms can be divided into two basic classes i.e. deterministic and 

probabilistic algorithms.

(i) Deterministic Type: They have specific rules for moving from one solution to other and 

have been successfully applied to many engineering problems. Deterministic algorithms 

are mostly used if a clear relation between the characteristics of the possible solutions 

and their utility for a given problem can be observed.

(ii) Probabilistic Type: They are a new class of algorithms involving heuristics and are 

superior to the former type in certain aspects. If the relation between a solution 

candidate and its “goodness” however is not obvious or neighboring solution candidates 

may differ largely in their utility, it becomes harder to solve a problem deterministically. 

It would probably result in exhaustive enumeration of the search space, which is not 

feasible even for relatively small problems. Then, probabilistic algorithms come into 

play.

Further, optimization methods can be subdivided into two categories depending on the type 

of design variables i.e. continuous and discrete variable optimization methods. In continuous 

methods, the design variables can have any values in a specified range whereas in discrete 

variable methods they can only have values from a specified set of discrete values. The 

discrete variables methods are very useful for practical applications where such variables 

occur naturally. Sequential linear programming, sequential quadratic programming (SQP) 

and hybrid methods are some of the continuous variable optimization methods. The 

enumeration method, branch and bound methods, simulated annealing and genetic algorithms
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are some of the methods for discrete variable optimization. If an application has mixed 

variables, a combination of these algorithms can be used to solve it.

The existence of optimization methods can be traced to the days of Newton, Lagrange and 

Cauchy. The development of differential calculus methods of optimization was possible 

because of the contributions of Newton and Leibnitz to calculus. The foundation of calculus 

of variations, which deals with the minimization of functionals, was laid by Bernoulli, Euler 

and Lagrange. The method of constrained problem optimization, which involves the addition 

of unknown multiplier was invented by Lagrange and became popular by his name 

Lagrange’s multiplier method. The steepest descent method was first used by Cauchy to solve 

unconstrained optimization problems. Due of availability of high-speed computers in the 

middle of twentieth century, several well-defined new areas in optimization emerged.

The development in area of numerical optimization methods started with emergence of 

simplex method by Dantzig in 1947 for linear programming problems and the annunciation 

of the principle of optimality in 1957 by Bellman for dynamic programming problems. 

Although no single technique was found to be universally applicable for nonlinear 

programming problems, Carroll et. al. developed techniques to solve many difficult problems 

of unconstrained optimization. In 1960 Duffin et. al. developed well-known geometric 

programming. Gomory did pioneering work in one of the most exciting and rapidly 

developing area of optimization, the integer programming. The most real-world application 

fall under this category. Dantzig et. al. developed stochastic programming techniques. The 

Goal programming was proposed by Chames and Cooper in 1961 for linear problems but 

later became well-known for specific types of multi-objective optimization problems.

Simulated annealing, genetic algorithms, neural network and fuzzy logic form a new class of 

mathematical programming techniques that have come in to prominence during last two 

decades. These are all heuristic search methods which have become popular for solving vast 

variety of single and multi-objective optimization problems.

Thus optimization methods can be broadly classified in three classes: (i) Calculus based 

methods (ii) Numerical methods and (iii) Random search methods. Classical methods are not 

robust as they are applicable to only limited class of problems. However, numerous hybrid 

methods developed by the researchers have been able to solve many complex problems.
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Many newly evolved soft computing techniques cited above and their hybrid models have 

been and continue to be the best among all available methods for optimization problems.

2.2 Local and Global Optima

Optimization can be defined as the branch of applied mathematics that deals with the 

maximization or minimization of single or may be even multiple criteria. These criteria are

expressed as a set of mathematical functions F = ..... , fn}, the so-called objective

functions. The result of the optimization process is the set of inputs for which these objective 

functions return optimal values.

In the case of a single function, i.e. F = {f}, an optimum is either a maximum or a minimum. 

As illustrated in Fig. 2.1 local and global optima can be distinguished. A global optimum is 

an optimum of the whole domain X while a local optimum is only an optimum of one of its 

subsets.

____ maximum outeide
global maximum of the sub-domain

Fig. 2.1 Local and Global Optimum of a Two-Dimensional Function

2.3 Major Issues of Global Optimization

2.3.1 Premature Convergence to a Local Optimum

One of the greatest problems in global optimization is that most often it is difficult to 

determine if the best solution currently known is a local or a global optimum. In other 

words, it can not be said whether to concentrate on refining the current optimum or to
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examine other parts of the search space instead. A global optimization process is said 

to have prematurely converged to a local optimum if it is no longer able to explore 

other parts of the search space than the currently examined area and there exists such 

another region in the search space that contains a solution superior to the currently 

exploited one which could be found with reasonable effort. Figure 2.2 illustrates how 

an optimization algorithm prematurely converges. There are many features and 

parameter settings of optimization algorithms that influence the convergence 

behavior. Some of the important factors are self-adaptation and the operations that 

create new solutions from existing ones.

2.3.2 Exploration vs. Exploitation

All optimization algorithms have to trade-off between exploration and exploitation. 

Exploration in terms of optimization means finding new points in the search space. It 

is the only mean to find new and may be better solutions but leads to performance 

degradation at least until a new good solution is found - which is not guaranteed at 

all. Exploitation means trying to improve the currently known solution(s) by small 

changes which lead to new individuals very close to them. This way, performance 

improvements can be achieved. If another, maybe better solution exists in a distant 

area whatsoever, one will not be able to find it. Almost all parts of optimization 

strategies can either be used for increasing exploitation or in favour of exploration. 

While algorithms that favour exploitation have a fast convergence, they run a great 

risk of not finding the optimal solution and maybe get stuck at a local optimum. 

Algorithms that perform excessive exploration may find the global optimum but it
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will take them very long to do so. Exploration supports diversity whereas exploitation 

works against it. Diversity preservation is a major concern in optimization because the 

loss of it can lead to premature convergence to a local optimum.

2.3.3 Overfitting

Overfitting is fitting a model that has too many parameters. This phenomenon can 

often be encountered in the field of artificial neural networks or in curve fitting. The 

major problem that results from overfitted solutions is the loss of generality which can 

be explained as under.

A solution of an optimization process is considered to be general if it is valid for all 

possible inputs. An overfitted solution will not be able to produce valid results for 

inputs which differ from the training data used to create it. Figure 2.3 (b) shows 

overfitted solution and Fig. 2.3(c) shows correct solution for the sample input data of 

Fig. 2.3(a) illustrating generality.

(a) Sample Data (b) Overfitted Result (c) Correct Result

Fig. 2.3 Overfitting in Curve Fitting

2.3.4 Evolvability

Evolvability can be defined in the contexts of biology and global optimization. A 

biological system is evolvable if its properties show heritable genetic variation and if 

natural selection can change these properties or if it can acquire new characteristics 

via genetic change. The degree of evolvability in an optimization process in its current 

state defines how likely the reproduction operations will yield solution candidates 

with new fitness values.

2.4 Optimization Parameters and Problem Formulation

Optimization is the branch of Operation Research - the discipline of applying advanced 

analytical methods to help make better decision. It is the process of finding maximum

17



2. Optimization — At a Glance

benefits from minimum resources while satisfying various limitations or restrictions known 

as constraints. Benefits may be in the form of minimum cost and maximum profit in the 

business and maximum safety and serviceability in structural engineering projects. While 

formulating optimization problem following parameters should be judiciously thought of and 

selected.

2.4.1 Design variables

In general, design variables are quantities controlled to improve the objective which should 

completely describe the set of decisions to be made. The efficiency and speed of optimization 

algorithms depends mainly on the number of chosen design variables. Thus the first thumb 

rule in the optimum design problem formulation is to choose as few design variables as 

possible. In truss optimization problem, for example, the design variables are coordinates of 

the nodes, c/s areas of the members, number of nodes, number of members, position and type 

of supports etc. The second point is to select the working range of values for each of them 

since the optimization algorithm finds the best result from this range. This requires thorough 

knowledge of the problem under consideration.

2.4.2 Constraints

These are the limitations or restrictions on the values of the decision variables and functions 

of these variables. The constraint represents some function relationships among the design 

variables and other design parameters satisfying certain physical phenomenon and certain 

resource limitations.

CONSTRAINTS

' *

(i) Based on functions (ii) Based on relationship

(a) Behavior constraints (a) Equality constraints

(b) Side/Geometry constraints (b) Inequality constraints

(i) Based on functions

Behavior constraints are constraints, which are related to design variables implicitly. Usually
+■

structural analysis is necessary to evaluate them. These constraints represent limitation on the 

behavior or performance of system. Examples of behavior constraints are limitations on
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stresses, displacement and stability requirements. On the other hand, constraints that 

represent physical limitations on design variables such as availability, fabricability, and 

transportability are known as geometric constraints. The codal provisions of minimum or 

maximum values on design variables are the examples of these constraints. In the design of 

two-way slabs, for example, the ratio of longer span to shorter span should be less than 2.0.

(ii) Based on relationship

Equality constraints need the design variable or function of design variables to exactly match

a resource value, e.g. 8(x) = 5 i.e. deflection of a node must be equal to 5 mm. Equality

constraints are usually more difficult to handle. It may be possible to reduce the number of

design variables by using equality constraints. For example, in design of structures specific 
j

size/dimension of the structure or structural component may be held constant in terms of 

constraint.

In many engineering design problems it may be possible to relax an equality constraint by 

including two inequality constraints. For example the above deflection equality constraint can 

be replaced by two inequality constraints:

8(x) < 4and5 (x) > 6 ...(2.1)

Thus, the second important point in formulation of optimal design problem is that number of 

complex equality constraints should be kept as low as possible.

Inequality constraint requires the functional relationships among design variables to be either 

greater than or smaller than resource value. For example o(x) San0wabie i.e. stress developed 

in any component must be less than the allowable stress. Most of the constraints encountered 

in engineering design are of this type. One type of inequality constraint can be transformed 

into other type by multiplying both the sides by -1 or by interchanging the left and right sides, 

e.g. - o(x) ^ - Saliowable Or Sa]i0wab!e — Cf(x).

2.4.3 Objective Function

Objective function is the value measure used to rank alternative solutions to a given problem 

in the search space. This is the function in terms of the design variables and other problem 

parameters with respect to which the design is optimized. The common engineering

19



2. Optimization - At a Glance

objectives involve minimization of overall cost of manufacturing or weight of a component, 

or maximization of net profit earned or total life of a product. The choice of objective 

ftmction is governed by the nature of problem.

Most of the optimization problems have a single objective ftmction with the following two 

exceptions:

(i) No objective function: In some cases the goal is to find a set of variables that satisfies the 

constraints of the model. The user does not particularly want to optimize anything so 

there is no reason to define an objective function. This type of problems is usually called 

a feasibility problem

(ii) Multiple objective functions: Optimization techniques are not just applied to find the 

maxima or minima of single objective function f In many real-world design or decision 

making problems they are applied to sets F of n functions f which represent multiple 

criteria,

F = {/i (X) : 1 < i < n) ...(2.2)

Algorithms designed to optimize such a set F of objective functions are usually named 

with the prefix multi-objective, like multi-objective evolutionary algorithms. Usually, the 

different objectives are not compatible; the variables that optimize one objective may be 

far from optimal for the others. Thus, multi-objective optimization often means to 

compromise conflicting goals. In practice, problems with multiple objectives are 

reformulated as single-objective problems by forming a weighted combination g(x) of the 

different objective functions f(x) e F, given as,

g(x) = XwifiOO ...(2.3)
i=l

The weights w* represent the importance of the single functions and also determine if the 

function should be maximized (Wi > 0) or minimized (w; < 0). Alternative method to solve 

multi-objective optimization is Pareto optimization. Pareto optimization, Pareto efficiency or 

Pareto optimality, is an important notion in neoclassical economics with broad applications in 

game theory, engineering and the social sciences. It defines the front of solutions that can be 

reached by trading-off the conflicting objects in an optimal manner from which one can 

finally choose the configuration that, in his opinion, suits the best. The notation of Pareto 

optimal is strongly based on the definition of domination - An element xi dominates (is
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preferred to) an element x2 if xi is better than x2 in at least one objective function and not 

worse with respect to all other objective functions.

In structural engineering, the designer is interested in minimization of cost or weight. In the 

present work, for example, cost is considered as the objective function for R.C.C. structures 

and weight for the steel structures.

2.4.4 Variable Bounds

The final task of the formulation procedure is to set the minimum and the maximum bounds 

on each design variable. Certain optimization algorithms do not require this information. In 

these problems, the constraints completely surround the feasible region. Other problems 

require this information in order to confine the search algorithm within these bounds. In 

general, all N design variables are restricted to lie within the minimum and maximum bounds 

as follows:

(Xi)L < Xi < (Xi)u, for i = 1,2,..... ,N ... (2.4)

The determination of the variables bounds (X1)l and (Xi)u may be difficult. One way to 

remedy this situation is to make a guess about the optimal solution and set the minimum and 

maximum bounds so that the optimal solution lies within these two bounds. After simulating 

the optimization algorithm once, if the optimum solution is found to lie within the chosen 

variable bounds, there is no problem. On the other hand, if any design variable corresponding 

to the optimal solution is found to lie on or near the minimum or maximum bound, the chosen 

bound may not be correct. The chosen bound may be readjusted and the optimization 

algorithm may be simulated again. Although this strategy may seem to work only with linear 

problems, it has been found useful in many real-world engineering optimization problems.

2.4.5 Mathematical Modeling

After the above four tasks are completed, the optimization problem can be mathematically 

written in a special format as shown below:

xi

*2

Find, X =« x3 which minimizes, /(X)

x
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subject to the constraints,

g,(X) < 0, i— 1,2,......, m,

WX) = 0, j = 1,2,......,q,
X*L < Xk < X*u k= 1,2,........... , n, ... (2.5)

where X is » - dimensional vector called design vector, f(X) is the objective function, 

gi(X) and lj(X) are m inequality and q equality constraints respectively and XkL and 
X*u — upper and lower bounds of kth design variable. The following pseudo code shows the 

basic steps involved in optimal design procedure.

[Choose design parameters],
[Formulate objective function/s],
[Formulate design constraints],
[Set up variable bounds],
[Select Optimization algorithm],
[Obtain solution],
[Stop].
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