CONTENTS

			Page No.	
ABSTRACT				
LIST OF PRINCIPAL SYMBOLS			(iii)	
CHAPTER I	INTROD	UCTION	1 -	26
CHAPTER II	SYSTEM	REQUIREMENTS AND SHAPING		
	OF POL	AR CHARACTERISTICS	27 -	52
	2.1	Introduction	27	
	2.2	Power System Requirements	27	
	2.2.1	Requirements of zone-1	28	
	2.2.2	Requirements of zone-2	28	
	2.2.3	Requirements of zone-3	29	
	2.3	Distance Schemes	30	
	2•4	Factors Influencing the		
		Discriminative Properties of		
		Distance Protection Schemes	3 3	
	2.5	Discrimination against		
		Maximum Circuit Loading		
		Conditions	35	
	2.6	Power Swing Requirements	38	
	2.7	Distance Protection Scheme		
ı		Requirements	40	
	2.8	Application to Protection		
	_	of Compensated Lines	46	
	2.8.1	Directional Distance Relay		
		for Compensated Lines	48	

	2.8.2	Distance relay monitored	
		phase comparison schemes	50
CHAPTER III	A GENE	RAL APPROACH TO SINE	
	COMPAR	ATORS	53 - 86
	3.1	Introduction	53
•	3.2	Analysis of Distance Relays	54
	3•3	Mathematical Basis of	
		2-Input Sine Comparators	56
	3.3.1	Basic equations	56
,	3.3.2	Graphical construction for	
		circular characteristics	60
	3.3.3	Rectilinear characteristics-	
		basic equations	61
	3.3.4	Graphical construction	63
	3.4	A General Analysis of Sine	
		Comparators	64
	3.4.1	2-input comparators	64
	3.4.2	Multi-input comparators	69
	3.5	Static Distance Relay With	
		Unsymmetrical Comparison	
		Limits	71
	3.5.1	Input signals	71
	3.5.2	Principle of the relay	73
	3.5.3	Relay circuitry	75

		Pulse forming circuits	75
	•	Monostable multi-vibrator	
-		circuits	7 8
	3.5,4	Complete Relay	83
	3.5.5	Performance Tests	83
CHAPTER IV	DEVELO	PMENTS IN SEQUENCE COMPARATORS	87 - 111
	4.1	Introduction	87
	4.2	Principle of the Comparator	88
	4.3	Mathematical Basis	90
	4.4	Selection of Inputs with	
_		The Direct Approach	91
	4.5	Sequence Detection Relay	
		With Quadrilateral	
		Characteristic	92
	4.5.1	Input signals	92
	4.5.2	3-input sequence detector	94
	4.5.3	First zone relay	94
	4.6	Three Step Distance Relay	
`		Schemes	97
	4.6.1	3-step characteristics with	
		single fault detector	98 .
-		Scheme- 1	98
		Scheme-2	103
	4.6.2	Third zone monitored relay	
		scheme	106
	4.7	Performance Tests	109

	CHAPTER V	DEVELOPMENTS IN HYBRID COMPARATORS				
		TO YIE	LD CONIC CHARACTERISTICS	112 - 129		
		5.1	Introduction	112		
		5.2	Principle of Operation	113		
		5.3	Mathematical Basis	115		
•		5.3.1	Ellipse	115		
		5.3.2	Parabola	116		
	•	5.3.3	Limacon	118		
		5.3.4	Cardioid	119		
		5.4	Relay Circuitry For			
			Elliptical Characteristic	119		
		5.4.1	The phase comparator	120		
		5.4.2	The function generator	120		
	-	5.4.3	Rectifying and Filtering			
			Circuits	124		
		5.4.4	Output stage	126		
		5.5	Performance Tests	127		
	CHAPTER VI	EFFECT	OF POLARISATION ON COMPARATOR			
	•	MODELS	•	130 - 152		
		6.1	Introduction	130		
		6.2.1	Multi-input phase comparator	131		
		6.2.2	Relay polar characteristics	133		
		6.3.1	Sequence Comparator	141		
		6.3.2	Polar characteristics	144		
		6.4.1	Hybrid comparator	148		
		6.4.2	Polar characteristics	149		
			V			
			~			

-

CHAPTER VII	A NEW	SELF ADJUSTING DISTANCE	
	RELAY		153 - 175
,	7.1	Introduction	153
/	7.2	Principle of Operation	154
	.7•3	Directional Characteristic	159
	7.4	Relay Analysis	161
	7.4.1	Healthy and overload	
		conditions of the system	161
	7.4.2	Power swings	163
	7.4.3	Effect of faults on relays	
		on unfaulted phase(s)	165
		Ground Fault Relays	165
		Line to ground faults	167
		Phase to phase faults	168
		Phase To Phase Fault Relays	<u>1</u> 68
		Line to ground faults	169
		Phase to phase faults	169
	7.4.4	Faults on the protected	
		phase(s)	169
		External faults	170
		Reverse faults	170
		Internal faults	170
	7.5	Selection of K ₁ ,K ₂ and K ₃	
	-	to Yield Desired Characteris-	
		-tics	171

-tics

	7.5.1	Selection of K	171
•	7.5.2	Selection of ${ m K_2}$ and ${ m K_3}$	172
	7.5.3	Effect of Z $_{ m S}$ / Z $_{ m L}$ ratio and	
		fault location on the shape	
		of the characteristic	174
	7.6	Performance Tests	174
CHAPTER VIII	DEVELO	PMENTS IN PILOT - WIRE	
	DI FFER	ENTIAL PROTECTION	176 - 210
	8.1	Introduction	176
•	8.2	Principle of the Protection	
		Scheme	178
	8.3	Choice of Stable Zone	182
	8.4	Inversion Chart	184
	8.4.1	Construction	184
	8.4.2	Method of use	186
•	8.5	Shaping of Stable Zone	187
	8.6	Application of Sine Type	
		Phase Comparator	191
	8.6.1	Mathematical basis of	
		2-input sine comparators	191
	8.6.2	Graphical construction	19 5
		Rectilinear characteristics	195
		Circular characteristics	196
-	8.6.3	Derivation of inputs to the	
-		comparator	196

	8.6.4	Relay circuitry	199
	8.7	Application of Instantaneous	
		Amplitude Comparator	200
	8.7.1	Principle of the comparator	200
	8.7.2	Comparator Circuit	207
-	8.7.3	Output stage	208
CHAPTER IX	REȘTRI	CTED ZONE PROTECTION OF	
	SHORT T	RANSMISSION LINES	211 - 245
	9.1	Introduction	211
	9.2	Scheme- 1	213
	9.2.1	Analysis	213
		Basic equations	213
		Attenuation And Phase	
		Shift Ignored	216
		Through faults and healthy	
r		conditions	216
		Internal faults	217
		Effects of Attenuation And	
		Phase Shift	217
		Healthy condition of the	
		system .	218
		Through faults	218
		Internal faults	220
	9.2.2	Power swing equation	221
		End voltages equal	221
		End voltages unequal	223

	9.2.3 The shape of the stable zone	223
	9.3 Scheme 2	232
	9.3.1 Analysis	232
	Basic equations	2 3 2
	Internal faults	234
	Healthy condition	234
	Through fault condition	235
	9.3.2 Power swing equation	235
	End voltages equal	235
	End voltages unequal	237
	9.3.3 Shape of the stable zone	237
•	9.4 Relay Circuitry	239
	9.4.1 Scheme 1	239
	9.4.2 Scheme 2	242
-	9.5 Pilot Monitoring	245
	9.5.1 Scheme 1	245
	9.5.2 Scheme 2	245
CHAPTER X	CONCLUSIONS	246 - 253
APPENDICES		254 - 294
CHAPTER XI	THE DYNAMIC TEST BENCH	255 - 257
CHAPTER XII	TESTING OF THE RELAY EMPLOYING	258 - 261
	MULTI-INPUT SINE COMPARATOR	
	Dynamic polar curve	258
	Transient over-reach V/s angle of	,
	switching	260

CHAPTER XIII	TESTING OF HYBRID COMPARATOR	
	YIELDING CONIC CHARACTERISTICS	262 - 266
CHAPTER XIV	RESULTS OF COMPUTER PROGRAMMES	
	AND TESTS CONDUCTED ON THE	
	COMPARATOR YIELDING SELF-ADJUSTING	
	CHARACTERISTIC	<i>2</i> 67 - 280
	Ratios V _b /E _p for line to ground	
	faults on phase 'A'	267
	Determination of K	268
	Effect of the location of the	
	fault and $Z_{ m S}/Z_{ m L}$ ratio on the shape	
	of the characteristic	270
•	Steady state and Dynamic Testing,	271
~	Static Polar curves	271
	Transient Over-reach	273
	Time contour curves	275
CHAPTER XV	INPUT ADMITTANCE DIAGRAM FOR A	
	4 - TERMINAL NETWORK	281 - 283
CHAPTER XVI	DERIVATION OF PROPAGATION CONSTANT	284 🗕 285
REFERENCES		286 🗕 294

•

.