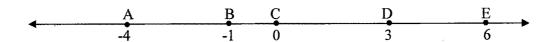
APPENDIX - I Final Draft of Parallel Test

Achievement Test

Name of the Student: Date:
Name of the School: Division:
Note: - Read the questions properly
- Number on the on the right side indicates total marks for each
Question
Q.I Fill in the blanks by selecting the correct alternative from the options
given on the right. (40)
1. A line is determined by distinct points.
(0,2,1)
2. If $\overrightarrow{AB} = \overrightarrow{BC}$ then B \overrightarrow{AC} .
(⊂,∉,∈)
3. Three distinct non-collinear points determines exactly
lines.
(3,2,1)
4. If $A \in \overline{BC}$ then A,B,C are
(equal, non-collinear, collinear)
5. Two distinct points A and B are on both the lines ℓ_1 and ℓ_2 . So ℓ_1
ℓ ₂ .
(=, ≠, ∈)
6. If $A \in \ell$ & $B \notin \ell$, then $\overrightarrow{AB} = \ell$.
(⊂, ≠, =
7. Two distinct intersecting lines are always lines.
(parallel, non-parallel, same)
8. IF $A \in \overrightarrow{BC}$ & $O \notin \overrightarrow{BC}$, then $\overrightarrow{AO} \cap \overrightarrow{BC} = \underline{\hspace{1cm}}$
({C}, {A}, {B})
9. For points A, B, C , AB+BC AC.
(=, ≤, ≥
10.For distinct collinear points A, B & C if CA+AB=BC, then
(A-B-C, C-A-B, C-B-A)
11. P & Q are the end points of
$(\overrightarrow{PQ},\overrightarrow{PQ},\overrightarrow{PQ},\overrightarrow{PQ})$


12. Line-segments having equal lengths are called line-segment	ts.
(same, congruent, paralle	el)
13. If A-B-C & then B is a midpoint of a line-segment \overline{AC} .	
(AB=BC, AB=AC, AC=B	C)
14. Every line-segment has mid-point.	
(0, 1,	2)
15. For A-B-C-D, $\overline{AC} \cap \overline{BD} = \underline{\hspace{1cm}}$	
$(\overline{AC}, \overline{BC}, \overline{BB})$	D)
16. For \overrightarrow{PQ} , is called the initial point.	
({P}, P, {Q	!})
17. For \overrightarrow{AB} , the ray extends infinitely towards	
(A, B, nowher	·e)
18. \overline{PQ} \overline{PQ} .	
(=, ⊂,	∈)
19. $\overline{RS} \cup \{P/R-S-P\} =$	
$(\overrightarrow{RS}, \overrightarrow{SR}, \overrightarrow{R})$	\vec{P})
20. For P-Q-R, will be the opposite rays.	•
$(\overrightarrow{RQ} \& \overrightarrow{QP}, \overrightarrow{QP} \& \overrightarrow{QR}, \overrightarrow{PQ} \& \overrightarrow{Q})$	\vec{R})
21. A has a bisector.	·
(line, ray, line-segmen	nt)
22. If AB=CD, then \overline{AB} \overline{CD} .	
(=,≅, ∘	⊂)
23 non-collinear points determines one and only o	ne
plane.	
(three, two, for	ır)
24. A contains atleast three non-collinear points.	
(point, line, plan	ıe)
25. If A & B are points of plane α then \overline{AB} $\underline{\hspace{1cm}}$ α .	
(=, ⊂,	∈)
26. Two intersecting distinct planes intersect in a	
(ray, plane, lin	•
27. Let $Y_1 \& Y_2$ be two half planes formed by line $\ell \& \text{plane}\alpha$, th $Y_1 \cap Y_2 = \dots$ (Y_1, ϕ, ℓ)	- ·
$Y_1 \cap Y_2 = \underline{\hspace{1cm}} (Y_1, \phi , \ell)$	

28. If P & Q are in the same half plane made by ℓ then $\overline{PQ} \cap \ell$ =
 (φ, P, ℓ)
29. For points A & B and a plane Y, $A \neq B$ & A, $B \in Y$; $Y \cap \overrightarrow{AB} = \underline{\hspace{1cm}}$
(Plane Y, $\{A,B\}$, \overrightarrow{AB})
30. If three non-collinear points P, Q, R are in plane X as well as in plane Y, then
$(P\neq Q, P=Q, P\subset Q)$
31. For an angle $\angle PQR$ if P-O-R, then O is in the of $\angle PQR$.
(interior , exterior, cross)
32. If S is in the of an angle $\angle PQR$, then \overrightarrow{QS}
intersects \overline{PR} .
(interior, exterior, intersection)
33. There measure of an angle between 0 & 180.
(is exactly one, are more than one, is no)
34. For point D in the interior of $\angle PQR$, $m \angle PQD + __ = m \angle PQR$.
$(m\angle DQR, m\angle RQP, m\angle RDQ)$
35. An angle has bisector.
(two, no, one)
36. For two supplementary angles, if they are congruent then each of
them is a angle.
(acute, right, obtuse)
37. If one angle of a pair of supplementary angles is obtuse then the other is angle.
(right, acute, obtuse)
38. The bisector of $\angle ABC$ is \overrightarrow{BO} . If $m \angle ABO = 45^{\circ}$, then $\angle ABO$ is to $\angle OBC$.
(complementary, obtuse, supplementary)
39. If O is in the interior of $\angle ABC$ then point A is in the exterior of
 (∠OBC,∠ABO, ∠ABC)
40. For a pair of complementary angles, each of the angles is
(obtuse, right, acute)

Q.II [A]

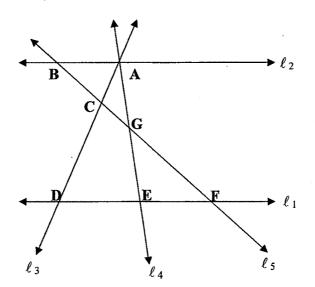
Look at the following figure of the number-line and answer the respective questions:

Figure – 1 (05)

1. Is $\overline{AB} \cong \overline{CD}$?

Ans. _____

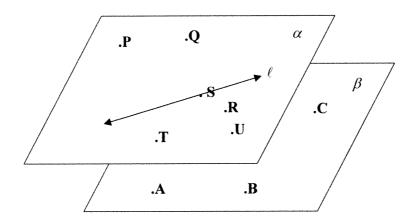
- 2. What will be the number corresponding to the mid-point of \overline{BD} ?
- 3. What will be AE?


Ans. _____

- 4. For the point F, if A-F-E and AF=5, then what will be the number corresponding to F?

 Ans. ______
- 5. For C-O-P-E, if OP=2=PE, then what will be CO?

Ans. _____


Q.II [B]
Look at the following figure and answer the respective questions:
Figure – 2 (15)

- 1. What is $\ell_1 \cap \ell_2$?Ans.2. Which are the points on line ℓ_4 ?Ans.3. Which four points are collinear?Ans.4. Which are the lines that intersect in A?Ans.5. If AE=6.5 & AG=3, then what is GE?Ans.
- 6. If E is a mid-point of \overline{DF} & numbers corresponding to D & F on ℓ_1 are -3 & 7 respectively, then what is the number corresponding to E?
- 7. Are lines $\overrightarrow{BG} \& \overrightarrow{DE}$ intersecting? Ans. _____
- 8. What is the intersection of \overline{CG} & \overline{FG} ? Ans. _____
- 9. What is $\overline{BG} \cap \overline{CF}$? Ans. _____
- 10. What is $\overline{AG} \cap \overline{EF}$?
- 11. What is the intersection of $\overrightarrow{FB} \& \overrightarrow{ED}$? Ans. _____
- 12. What is the intersection of \overrightarrow{FG} & \overrightarrow{AB} ? Ans. _____
- 13. Are $\overrightarrow{CB} \otimes \overrightarrow{GF}$ opposite rays? Ans. _____
- 14. What is the intersection of line ℓ_2 and \overrightarrow{BA} ? Ans.
- 15. What is $\overline{CD} \cap \ell_3$? Ans. _____

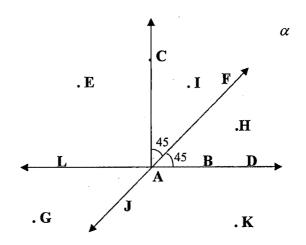

Q.II [C] Look at the following figure and answer the respective questions: Here α & β are parallel planes.

Figure - 3

1. Which all points are in the plane α ?	Ans
2. What is the intersection of the line ℓ and \overrightarrow{AC}	? Ans
3. Of which plane is \overline{AC} subset?	Ans.
4. Are \overrightarrow{PU} and ℓ intersecting lines?	Ans
5. $\overrightarrow{AC} \& \overrightarrow{PQ}$, are they coplanar or skew lines?	Ans.
6. Mention the points of α lying in the same half	plane?
	Ans
7. Are $\overrightarrow{PT} \& \overrightarrow{BC}$ intersecting each other?	Ans
8. What is the intersection of planes $\alpha \& \beta$?	Ans
9. Is ℓ a subset of closed half plane of α ?	Ans.
10. Are A, B & C coplanar points?	Ans

Q.II [D]
Look at the following figure and answer the respective questions:
Figure – 4 (15)

1.	Name the arms of $\angle DAF$	Ans
2.	List the points in the exterior of \angle FAB?	Ans
3.	List the points in the interior of \angle DAC?	Ans
4.	List the points on the ∠DAC?	Ans
5.	Which rays will intersect \overline{DC} ?	Ans
6.	Are ∠DAF & ∠AFD same?	Ans
7.	Are ∠DAF & ∠FAD same?	Ans
8.	Are \angle DAJ & \angle LAJ adjacent angles?	Ans
9.	Which is the bisector of \angle DAC?	Ans
10.	Which is the complementary angle to an $\angle DAF$?
		Ans
11.	Are \angle DAJ & \angle DAF supplementary angles?	Ans
12.	Is \angle DAC & \angle DAJ a linear pair of angles?	Ans
13.	Are \angle FAC & \angle LAJ congruent angles?	Ans
14.	Are \angle FAD & \angle JAC vertically opposite angles?	Ans
15.	∠DAJ is which type of angle?	Ans

- Q.III: Represent each of the following by a figure:
- (15)

1. $O \notin \overline{AB}$ but $P \in \overline{BO}$

2. $\overrightarrow{AB} = \overrightarrow{PR}$, but $\overrightarrow{AB} \neq \overrightarrow{PQ}$ & S $\in \overrightarrow{QR}$ & R-Q-S.

3. P-Q-R, R-S-O, P-T-O, S-U-P.

4. $O \in \overrightarrow{PQ} \& R \notin \overrightarrow{PQ}, \overrightarrow{PQ} \cap \overrightarrow{OR} = \{O\}.$

5. For distinct lines ℓ_1 , ℓ_2 , ℓ_3 ; $\ell_1 \cap \ell_2 = \{X\}$ and $\ell_1 \cap \ell_3 = \phi$.

6.
$$\overrightarrow{PQ} = \overrightarrow{RS} \neq \overrightarrow{RO}$$
.

7. A, B and C are collinear, ℓ is a line, B \notin ℓ , A \in ℓ , C \notin ℓ .

8. A,B,C & A,D,E are non-collinear triplets; but A,B,D & A,C,E are collinear points.

9.
$$\overrightarrow{AB} \subset \overrightarrow{PQ} \neq \overrightarrow{AC}$$
.

10. P, O, Q are 3 non-collinear points and $\overrightarrow{PO} \cap \overrightarrow{OQ} = \{O\}$.

11. ℓ_1 , ℓ_2 and ℓ_3 are three distinct lines and $\ell_1 \cap \ell_2 \cap \ell_3 = \{O\}$.

12. $B \notin \overrightarrow{PQ}$ but $A \in \overrightarrow{BQ}$.

13. A, B and C are non-collinear points and ℓ is a line, $A \in \ell$, $B \in \ell$ and $C \notin \ell$.

14. $\overrightarrow{PQ} \subset \ell_1$ and $R \in \ell_1$, R-P-Q.

15. $\overrightarrow{AB} \cap \ell_1 \cap \ell_2 = \{A\}; B \notin \ell_1, B \notin \ell_2$.