List of Figures

1.1	Three different types of fibroadenoma breast tissues. $(4; 5)$	5
1.2	Normal cervical tissue and stages of its cancer	7
1.3	Cervix with invasive cancer	8
2.1	(a)Interaction of light with tissues and (b) Tissue Simplistic view:	
	Highly scattering and absorbing medium	19
2.2	Fluorescence Spectra of Endogenous Tissue Fluorophores	19
2.3	Jablonski Energy diagram	20
2.4	Energy level diagram illustrating the phenomena of absorption and	
	fluorescence	24
3.1	Experimental set-up.	38
3.2	Optical diagram of the 1450 tunable excitation filter	40
3.3	Experimental Setup (Fluorolog-3, Model FL3-22).	42
3.4	Monochromator.	43
3.5	L-Format Polarization.	46
3.6	Time and frequency resolutions.	49
3.7	Multi-resolution analysis.	53
3.8	Pictorial demonstration of Discrete Wavelet Transform	54
4.1	Typical autofluorescence intensity plots for parallel & perpendicu-	
	lar component and their differences for (a)Cancer, (b) Benign and	
	(c) Normal tissues.	62

4.2	Represents, (a) the fluorescence spectrum (parallel component) of	
	a normal tissue, whose high-pass wavelet coefficients are displayed	
	in (b) level-1, (d) level-2, (f) level-3, (h) level-4 and (c), (e), (g),	
	(i) showing the corresponding low pass coefficients.	63
4.3	Represents, (a) the fluorescence spectrum (parallel component) of	
	a cancer tissue, whose high-pass wavelet coefficients are displayed	
	in (b) level-1, (d) level-2, (f) level-3, (h) level-4 and (c), (e), (g),	
	(i) showing the corresponding low pass coefficients.	64
4.4	Represents, (a) the fluorescence spectrum (parallel component) of	
	a benign tissue, whose high-pass wavelet coefficients are displayed	
	in (b) level-1, (d) level-2, (f) level-3, (h) level-4 and (c), (e), (g),	
	(i) showing the corresponding low pass coefficients.	66
4.5	Histogram of the normalized wavelet coefficient for (a) cancer, (b)	
	benign and (c) normal tissues of level-1.	67
4.6	Plots of low pass coefficients of cancer and normal tissues for (a)	
	level-3 (b) level-4 and (c) level-5 average coefficients. The fourth-	
	level coefficients highlight the 630 nm weak emission peak in can-	
	cerous tissue. 6(d) shows a typical low pass power plot of the	
	difference of parallel and perpendicular components of the fluores-	
	cence spectra of cancer and normal tissues. The rate of decrease	
	of low pass power, as a function of levels, is slower in cancer tissues.	68
4.7	Typical (a) Local maxima at third quarter of fourth level low-pass	
	coefficients of cancer and normal breast tissues and (b) Standard	
	deviations of the spectral fluctuations of the cancer and normal	
	tissues, captured through the high pass coefficients at level-1	69
4.8	Continuous wavelet transform scalograms of (a), (b) parallel, (c),	
	(d) perpendicular components and (e), (f) of difference of parallel	
	and perpendicular components of the fluorescence spectra, respec-	
	tively for cancer and normal tissue samples using Morlet wavelet.	74
4.9	Plots of the prominent periodic modulations of the Morlet wavelet	
	coefficients of (a) a normal and its (b) cancer counterpart, (c)	
	the plot of the dominant wavelet coefficient showing significantly	
	different behavior for cancer and normal tissues.	76

4.10	Plots of (a) the cumulative sum of the CWT coefficients over all the	
	wavelengths, over 1-50 scales, for the differences of the intensities	
	of parallel and perpendicular components of fluorescence spectra	
	of a typical Ductal sample and (b) autocorrelation of wavelet co-	
	efficients, corresponding to the scale of local maxima. \ldots .	77
4.11	Plots of the cumulative sum of the CWT coefficients over all the	
	wavelengths, over 1-50 scales, for the differences of the intensities	
	of parallel and perpendicular components of fluorescence spectra	
	of a typical (a) Cystosarcoma sample and (b) Lobular sample. $\ .$.	78
4.12	Correlation matrices of cancer and normal tissue samples: (a) and	
	(b) parallel, (c) and (d) perpendicular components, and (e) and (f)	
	difference of parallel and perpendicular components of polarized	
	fluorescence data. The nature of correlations, as seen through	
	different sized domains, are clearly different for cancer and normal	
	fluorescence intensities. The difference of intensities yields much	
	stronger correlations in the 500- to 700-nm range for normal breast $$	
	samples	81
4.13	Plots of the entries in the eigenvectors corresponding to the three	
	highest eigenvalues (from left to right) for (a) cancer and (b) nor-	
	mal parallel components. The x axis corresponds to the wavelength	
	range of 500 to 700 nm. The observed domain type structures in	
	the correlation matrices give rise to similar structures in the entries	
	of the eigenvectors.	82
4.14	Plots of the entries in the eigenvectors corresponding to the three	
	highest eigenvalues (from left to right) for (a) cancer and (b) nor-	
	mal perpendicular components. The x axis corresponds to the	
	wavelength range of 500 to 700 nm. In the larger eigenvalues,	
	one sees a domain-type structure. For the largest one, the normal	
	sample shows much more correlation over the entire wavelength	
	domain, since all the entries have almost identical values. For the	
	normal component, one sees dominant contribution from certain	
	wavelength sectors in the eigenvalues λ_2 and λ_3 , as seen through	
	the presence of peaks	83

4.15	Plots of the entries in the eigenvectors corresponding to the three	
	highest eigenvalues (from left to right) for (a) cancer and (b) nor-	
	mal tissue intensity differences of parallel and perpendicular com-	
	ponents. The x axis corresponds to the wavelength range of 500	
	to 700 nm. For cancer and normal cases, we find only a few large	
	eigenvalues. The correlation domains are much bigger, since the	
	entries in the eigenvector are almost identical over the entire wave-	
	length domain.	85
4.16	Histogram plots of the level spacing distribution for the unfolded	
	eigenvalues. Histograms (a) and (b) correspond to the eigenvalues	
	of cancer and normal tissues, respectively, in the parallel channel.	
	(c) and (d) give the histogram plots for the eigenvalues of cancer	
	and normal tissues in the perpendicular channel. Solid lines depict	
	the fit of the $ ho_c(\lambda)$ on the eigenvalues. One sees an extremely good	
	fit for the perpendicular case.	86
4.17	Correlation matrices of benign intracanalicular and pericanalicular	
	tissue samples, (a), (c) parallel, and (b), (d) perpendicular com-	
	ponents of polarized fluorescence data. The nature of correlations,	
	as seen through different sized domains, are clearly different for	
	benign intracanalicular and pericanalicular fluorescence intensities.	88
4.18	Probability density of PC1 for (a) & (b) benign, (c) & (d) nor-	
	mal and (e) & (f) cancer tissue types. The probability density is	
	estimated on 100 equally spaced points that span the range of val-	
	ues observed in the principal component using a kernel smoothing	
	technique, whereby a 'normal' kernel type was chosen for estima-	
	tion	90
4.19	Probability density of PC1 of level-1 low pass coefficients for (a)	
	& (b) benign, (c) & (d) normal and (e) & (f) cancer tissue types.	91
4.20	Scatter plot of PC1 and PC2 for (a) & (b) benign, (c) & (d) normal	
	and (e) & (f) cancer tissue types. PC1 (eigenvector corresponding	
	to highest eigenvalue) captures the highest proportion of variance	
	in the time series, while PC2 captures the second highest propor-	
	tion of variance.	92

4.21	Probability density for PC1 of (a) intensity and (b) low pass coef-	
	ficients (level-1).	93
4.22	Probability density for PC2 of (a) intensity and (b) low pass coef-	
	ficients (level-1)	93
4.23	Correlation matrices of benign, normal and cancer tissue samples	
	of (a), (d), (g) original intensity, (b), (e), (h) using PC1 and (c),	
	(f), (i) using PC2 of parallel component of polarized fluorescence	
	data	94
4.24	Correlation matrices of benign, normal and cancer tissue samples	
	of (a), (d), (g) original intensity, (b), (e), (h) using $PC1$ and (c), (f),	
	(i) using PC2 of perpendicular component of polarized fluorescence	
	data	95
4.25	Typical autofluorescence intensity plots for co- & crossed- compo-	
	nent and their differences for (a) Cancer and (b) Normal cervix	
	tissues	98
4.26	Scatter plot of PC1 and PC2 for (a) & (b) co-, (c) & (d) crossed-	
	and (e) & (f) difference of co- and crossed- component of cancer	
	and normal tissue types. PC1 (eigenvector corresponding to high-	
	est eigenvalue) captures the highest proportion of variance in the	
	time series, while PC2 captures the second highest proportion of	
	variance.	99
4.27	Probability density for (a) PC1 and (b) PC2. The probability	
	density is estimated on 100 equally spaced points that span the	
	range of values observed in the principal component using a kernel	
	smoothing technique, whereby a 'normal' kernel type was chosen	
	for estimation.	100