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Abstract 
 

Compression squeezes data so it requires less storage space and less 

bandwidth for transmission. Compression is usually used for speech, image and 

video applications. 

 The compression techniques can be classified as lossy and lossless 

compression. With lossy compression, it is assumed that some loss of 

information is acceptable. Loss is also acceptable in voice and audio 

compression, depending on the desired quality. The removal of information in the 

lossy technique is acceptable for images, because the loss of information is 

imperceptible to the human eye in some cases. In lossless compression, data is 

compressed without any loss of data.  

Lossy compression can be achieved by quantizing a sample with less 

number of bits.Quantization can be classified into scalar and vector quantization. 

Scalar Quantization (SQ) involves processing the input samples individually. An 

SQ involves mapping of each individual input to an output using some distortion 

measure. Scalar Quantization is used, primarily for analog to digital conversion. 

With Vector Quantization (VQ) processing of the input samples is carried out in 

group of samples. The input is divided into pieces called vector. Essential to this 

type of encoding is the presence of a `codebook', an array of vectors. For each 

vector of the input, the closest match to a vector in the codebook is looked up. To 

find the closest match some distortion measure is used. The index of this 

codebook entry is then used to encode the input vector.  

Major contributions of this thesis are: comprehensive study of concept of  

vector quantization , review  of  waveform  coding, design and performance of 

unconstrained vector quantizers , design and performance  of constrained vector 

quantization techniques and  comparison of  various  techniques. 

The major results obtained summarized here. Code books with uniform 

pdf have been applied to vector quantization techniques. For the first time code 

books with Gaussian pdf have been applied to vector quantization techniques 

over here.   



Code books with Gaussian pdf compared to uniform pdf give better 

performance in case where Full Search VQ (FSVQ) is applied to speech. SQNR 

3.5707 dB more is be obtained in case of speech. 

As the number of code words is increased SQNR and hence PSNR also 

gets better in case where Full Search VQ is applied to an image. In case where 

FSVQ is applied to image, code books with Gaussian pdf compared to uniform 

pdf does not produce better results. This indicates the random distribution of 

pixel amplitudes in the image. 

As the tree depth increases the SQNR gets better in case of Tree 

Structured VQ (TSVQ) applied to speech. Code books with Gaussian pdf 

compared to uniform pdf gives generally better performance in case where TSVQ 

is applied to speech. SQNR improvement of maximum 0.102 dB is obtained. 

Code books with Gaussian pdf compared to uniform pdf gives better 

performance in case where TSVQ is applied to image. PSNR improvement of 

maximum 6.981 dB is obtained.  

With Multi Stage VQ (MSVQ) is applied to speech, maximum SQNR 

improvement of 4.732, 12.867 and 23.6025 dB is obtained for the three different 

speech signals respectively. 

Code books with Gaussian pdf compared to uniform pdf give better 

performance in case where Trellis Coded VQ (TCVQ) is applied to speech. 

Performance improvement in SQNR from 4-state trellis to 8-state trellis is 

maximum 0.0984 dB (block-delayed), 0.0058 dB (viterbi) for Gaussian pdf.
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Chapter 1 
Introduction 

 
 

Compression squeezes data so it requires less storage space and less 

bandwidth for transmission. Compression is usually used for speech, image and 

video applications. 

 The compression techniques can be classified as lossy and lossless 

compression. With lossy compression, it is assumed that some loss of 

information is acceptable. Loss is also acceptable in voice and audio 

compression, depending on the desired quality. The removal of information in the 

lossy technique is sometimes acceptable for images, because the loss of 

information is imperceptible to the human eye in some cases. In lossless 

compression, data is compressed without any loss of data.  

Lossy compression can be achieved by quantizing a sample with less 

number of bits .Quantization can be classified into scalar and vector quantization. 

Scalar Quantization (SQ) involves processing the input samples individually. An 

SQ involves mapping of each individual input to an output using some distortion 

measure. Scalar Quantization is used, primarily for analog to digital conversion. 

With Vector Quantization (VQ) processing of the input samples is carried out in 

group of samples. The input is divided into pieces called vector. Essential to this 

type of encoding is the presence of a `codebook', an array of vectors. For each 

vector of the input, the closest match to a vector in the codebook is looked up. To 

find the closest match some distortion measure is used. The index of this 

codebook entry is then used to encode the input vector.  
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Vector quantization (VQ) is a generalization of scalar quantization to the 

quantization of a vector, an ordered set of real numbers. While scalar 

quantization is used primarily for analog-to-digital conversion, VQ is used with 

sophisticated digital signal processing, where in most cases the input signal 

already has some form of digital representation and the desired output is a 

compressed version of the original signal. VQ is usually, but not exclusively, used 

for the purpose of data compression. Nevertheless, there are interesting parallels 

with scalar quantization and many of the structural models used in VQ are 

natural generalizations of the scalar case. 

A vector can be used to describe almost any type of pattern, such as a 

segment of a speech waveform or  an image, simply by forming a vector of 

samples from the waveform or image. Another example, of importance in speech 

processing, arises when a set of parameters (forming a vector) is used to 

represent the spectral envelope of a speech sound. Vector quantization can be 

viewed as a form of pattern recognition where an input pattern is "approximated" 

by one of a predetermined set of standard patterns, or in other language, the 

input pattern is matched with one of a stored set of templates or code words. 

Vector quantization can also be viewed as a front end to a variety of complicated 

signal processing tasks, including classification and linear transforming. In such 

applications VQ can be viewed as a complexity reducing technique because the 

reduction in bits can simplify the subsequent computations, sometimes permitting 

complicated digital signal processing to be replaced by simple table lookups. 

Thus VQ is far more than a formal generalization of scalar quantization. In the 
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last few years it has become an important technique in speech recognition as 

well as in speech and image compression, and its importance and application are 

growing. 

1.1 Motivation 

 The purpose of quantization is to provide a limited-precision description of 

a previously unknown input value. It is only because the input is not known in 

advance that it is necessary to quantize. Thus the input must be modeled as a 

random variable, having some specific statistical characteristics, usually specified 

by its probability density function (pdf). 

The work in this area has never been done with the codebook considering 

the pdf. This is the primary motivation for carrying out this work. Work done by 

others in this area earlier is described briefly below.  

 A technique for random coding in VQ has often been used in pattern 

recognition literature and was used in original development of k- means 

technique (1).In random coding code book is filled with code words selected 

randomly. Shannon source coding theorems imply that such a random selection 

of code words will on average yield a good code (2), (3), (4). 

For designing VQ pruning is another technique which is well known in 

statistical clustering literature (5). Pruning refers to the idea of starting with the 

training set and selectively eliminating (pruning) training vectors as candidate 

code vectors until a final set of training vectors remain as the code book.   

 A more complicated, but better, means of finding a codebook from a 

training sequence is the pair wise nearest neighbor (PNN) clustering algorithm 
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proposed by Equitz (6)(7). In this algorithm, best pair of clusters from training 

sequence is merged until the desired number of code vectors is achieved. Similar 

algorithms have also been used in clustering literature (8)(9). 

Linde et.al.  introduced a technique that resembles the product code 

initialization in that it grows large codebooks from small ones, but differs in that it 

does not require an integral no. of bits / symbol (10). This   technique is called 

splitting. In this method, globally optimal code book of a training sequence is 

found, which is the centroid, y0,  of the entire sequence. y0   can be split into two 

code words , y0  and y0 + Є , where Є is a vector of small Euclidean norm. One 

continues in this manner until desired number of code words is obtained. 

 The Generalized Lloyd Algorithm (GLA) for VQ design is sometimes 

known as the k-means algorithm after MacQueen (1) who studied it as a 

statistical clustering procedure. The idea has been described earlier by Forgey in 

a clustering context. It has since led to a variety of extensions and applications in 

statistical literature, Diday & Simon (11). It is sometimes referred to as LBG 

algorithm in data compression literature after (10), as it was proposed by Linde , 

Buzo and Gray. In LBG algorithm quantizer is designed for memoryless 

Gaussian sources with a mean-squared error distortion. Block quantizers with 

arate of one bit per symbol and with block lengths of 1 through 6 have been 

designed by Linde , Buzo and Gray. They compressed a traditional 6000 bits /s  

Linear Predictive Coded (LPC) speech to a rate of 1400 bits/s. 

Lloyd’s treatment is found in (12).For design based on empirical data; it 

was first used for VQ in 1977 by Chen for design of 2-dimensional quantizers 
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(13) and by Hilbert (14) for the design of multispectral image compression 

system. 

 The earliest use of randomness for VQ design was proposed in (10), 

where noise is added to the training vectors prior to Lloyd iteration and the 

variance of noise is gradually decreased to zero. A convenient and effective 

Stochastic Relaxation (SR) algorithm for codebook design was introduced in (16) 

& is a simpler version of earlier methods proposed in (15) and (17). It would be of 

great value if we find a codebook design algorithm that leads to a global optimum 

without the typically very time consuming process that is introduced by SA with 

effective cooling schedules. The work of Rose et. al.(18)(19) offers a novel 

approach to nonconvex optimization called deterministic annealing (DA),that 

appears to capture the benefits of Stochastic Annealing (SA) for VQ codebook 

design without any randomness in the design process. It is conceptually similar 

to the technique of fuzzy clustering described in (20), (21). 

 A standard method for designing the tree structure (consisting of set of 

test vectors for each node and associated codebook) is based upon application 

of GLA to successive stages using a training set. This procedure was proposed 

in (10), is a variation of standard splitting method of designing full search VQ. 

Another approach to designing a tree-structured VQ follows from viewing it as a 

classification tree. Briman,Friedman,Olshen & Stone (22)  provide a variety of 

algorithms for “growing” such trees. Similar technique is proposed by Makhoul , 

Roucos and Gish (23). Yet another strategy for choosing a node to split is to 
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 perform a principal components analysis and split in the direction of maximum 

variance (24). 

 A specific design technique for bit allocation technique for bit allocation in 

classified VQ is considered in Riskin (25). In image coding it has been found that 

certain classes are of greater perceptual significance than others so that it can be 

advantageous to make sub-codebook size for such a class disproportionately 

large compared to relative occurrence of such vectors in the training set (26).   

 Image transform VQ using DCT is treated in Aizawa et. al. (27). Early work 

on VQ in transform domain is found in King and Nasarbadi (28). A similar 

application for speech compression can be found in Adlersberg and Cuperman 

(29).Developments of VQ sub-band coding for speech is found in (30) and (31) 

and for images in (32). 

 It has been claimed that wavelet decompositions offer better models of 

human auditory/ visual processing. Antonini,Barlaud,Mathieeu and Daubechies 

(33) reported good quality images using vector quantizer based wavelet 

transform coding combined with entropy coding at 1 bpp. 

 Shape-gain VQ was introduced in (35) and optimized in (34). It is 

particularly useful in speech and audio coding where the waveform has a wide 

dynamic range of short term power levels. Shape-gain VQ designed for LPC-VQ 

with the residual energy playing the role of gain is found in (36).Multistage / 

cascaded VQ is valuable in number of speech and image coding applications. 

Sometimes it is referred to as residual VQ (37) (38). 
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 Constrained Storage VQ (CSVQ) has been applied successfully to 

wideband audio coding where tree structured code-books previously solved 

problem of encoding complexity and CSVQ solved remaining problem of 

astronomic storage complexity (39). Hierarchical VQ (HVQ) was introduced in 

(40). Other variations of HVQ were reported in (41), (42), (43) and (44). 

 Selection of nearest neighbors in lattice to a given input vector is 

considered in depth in (45)(46)(47)(48)(50).The indexing problem is treated in 

(48)(49).Most widely studied fast search technique is based on the use of  k-d 

trees (51),(52)(53)(54)(7).A k-d tree is a binary tree with a hyper plane decision 

test at each node where each hyper plane is orthogonal to one of the coordinate 

axes of k- dimensional space and a set of buckets or terminal nodes. 

 The technique of predictive Vector Quantization (PVQ) was introduced in 

1982. More extensive studies of PVQ followed in (55) and (56).Both finite- state 

and predictive vector quantizer (FSVQ , PVQ ) can be considered as special 

cases of more general class of VQ systems with memory called recursive vector  

quantization ./ Feedback vector quantization (57). Recursive vector quantization 

in generalization to vector of scalar recursive quantizers are considered in 

(58)(59)(60). 

 The Lloyd-style trellis code improvement algorithm was developed by 

Stewart .Mean-adaptive VQ used for image coding is given by Baker and Gray. 

Performance of shape-gain VQ is enhanced by adapting gain codebook while 

maintaining fixed shape codebook with unit norm code vectors. 
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 Vector Excitation Coding (VXC) and in a more specific context Code 

Excited Linear Prediction (CELP) is a powerful and widely used signal coding 

technique. These LPC-VQ (Linear Predictive Coding) systems encode the 

speech at low rates (61) (62) (63) (64).Levinson-Durbin algorithm followed by 

quantization of reflection coefficients yields Residual Excited Linear Predictive 

(RELP) system (65) (66).A large family of variable rate coding methods exists. 

 No technique has been applied for the design of the code book with the 

pdf in consideration. This is the prime motivation to carry out the work in this 

area.  

 

1.2 Major Contributions of the Thesis: 

Major contributions of this thesis are: 

• Comprehensive study of Concept of Vector Quantization. 

• Review of Waveform Coding. 

• Design and performance of Unconstrained Vector Quantizers 

along with codebook designed with the pdf in consideration. 

• Design and performance of constrained Vector Quantization 

Techniques along with codebook designed with the pdf in 

consideration. 

• Comparison of various  techniques  which are done by authors.  
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1.3  Organization of the Thesis: 

 

The thesis is organized in total ten chapters as described below: 

 

Chapter:1 It provides details about motivation for   research work, major 

contributions of the thesis and organization of the thesis.  

Chapter: 2 It explores comprehensive study of concept of vector quantization. 

Chapter: 3 It reviews    waveform coding techniques. 

Chapter: 4 It describes the design and performance of unconstrained vector 

quantizers for full search vector quantizer. 

Chapter: 5 It describes the design and performance of constrained vector 

quantization techniques for tree structured vector quantizer.  

Chapter: 6 It describes the design and performance of constrained vector 

quantization techniques for multi stage vector quantizer. 

Chapter: 7 It describes the design and performance of constrained vector 

quantization techniques for trellis coded vector quantizer. 

Chapter: 8 This compares the performance of various techniques proposed in 

previous chapters.   

Chapter: 9 It contains discussion of the results and   conclusions as well as 

scope of future work. 

Chapter: 10 It contains bibliography. 
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Chapter 2  

Vector Quantization 

2.1 Basics of Vector Quantization 

Vector quantization is a lossy data compression technique. To study in 

detail it is essential to learn basics of vector quantization (VQ). 

A vector quantizer Q of dimension k and size N is a mapping form a vector 

(or a “point”) in k-dimension Euclidean space, Rk, into a finite set C containing N 

output or reproduction points called code vectors or code words. Thus, 

           ,: cRQ k →                                                                                          (2.1) 

Where, ),....,,( 21 Nyyyc =  and, yi ∈ Rk  for each, i ∈ J ≡ {1, 2, - - -, N}. The set c is 

called the codebook or the code and has size N, meaning it has N distinct 

elements, each a vector in Rk. The resolution, code rate, or, simply, rate of a 

vector quantizer is r = (log2 N)/k, which measures the number of bits per vector 

component used to represent the input vector and gives an indication of the 

accuracy or precision that is achievable with a vector quantizer if the codebook is 

well-designed. If the codebook represents Euclidean space partitions which is 

very similar to the distribution of the input samples then the codebook is well 

designed. Typical value of N can be taken 16 or higher. It is important to 

recognize that for a fixed dimension k the resolution is determined by the size N 

of the codebook and not by the number of bits used to numerically specify the 

code vectors stored in the codebook. 
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  The codebook is typically implemented as a table in a digital memory and 

the number of bits of precision used to represent each component of each code 

vector does not affect the resolution or the bit-rate of the vector quantizer; it is of 

concern only in connection with storage space limitations and with the question 

of adequate precision in describing a well-designed codebook. 

• Associated with every N point vector quantizer is a partition of Rk  into N 

regions or cells, Ri for i ∈ J. The ith cell is defined by 

           }Q(x):R{xR i

k

i y=∈=                                                                         (2.2) 

• Sometimes called the inverse image or pre-image of Yi under the mapping 

Q and denoted more concisely by Ri=Q-1 (yi).  

            From the definition of the cells, it follows that 

           jiforRRandRR ji

k

i

i ≠=∩= φ∪                                                    (2.3) 

 So that the cells from a partition of Rk .This represents condition to be 

satisfied for the inverse mapping of yi. 

• A cell that is unbounded is called an over loaded cell. Abounded cell i.e., 

one having finite (k-dimensional) volume, is called a granular cell. The 

collection of all granular cells is called the granular region. 

           An important property of a set in Rk   is convexity. Recall that in two or 

three dimensions, as set is said to be convex if given any two points in the set, 

the straight line joining these two points is also a member of the set. This familiar 

idea remains applicable in Rk.  A set S ∈ Rk is convex if a and b ∈ s implies that  

        αa + (1- α) b ∈ s for all 0 < α <1                                                          (2.4) 
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2.2   Definitions  

           A vector quantizer is called regular if, 

1. Each cell, Ri, is a convex set, and 

2. For each i, yi ∈ Ri. 

           It is also convenient to define a polytopal vector quantizer as regular 

quantizer whose partition cells are bounded by segments of hyper plane surfaces 

in k dimensions. Equivalently, each partition region is a regular polytope and 

consists of an intersection of a finite number of half spaces of the form               

{x ∈ Rk: uv. x + βv ≥ 0}. 

     For a thorough treatment of polytopes, the generalization of polyhedra. 

The faces of a polytopal cell are hyper plane segments of dimension less than k 

that bound the cell, so that every point on one side of the face is inside the cell 

and every point on the other side of the face is outside the cell. Usually, a face 

refers to a k - 1dimensional hyper plane segment for a cell in k dimensions. Note 

that the definition of a regular vector quantizer is consistent with the scalar case 

and that a regular quantizer in the one-dimensional case is always polytopal. 

• A vector quantizer is said to be bounded, if it is defined over a bounded 

domain, B ⊂ Rk, so that every input vector, x, lies in this set. The volume 

of the set B, denoted by V (B) and given by 

dx,x V(B) B∫=                                                                                   (2.5) 

is therefore finite. A bounded quantizer does not have any overload regions in its 

partition. Overload region does not have limit on sample values. 
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• A vector quantizer can be decomposed into two component operations, 

the vector encoder and the vector decoder. The encoder ε is the mapping 

from Rk to the index set J, and the decoder D maps the index set J into the 

reproduction set C. Thus,  

ε: Rk  �  J           and       D :  J � Rk
                                                          (2.6) 

 It is important to note that a given partition of the space into cells fully 

determines how the encoder will assign an index to a given input vector. On the 

other hand, a given codebook fully determines how the decoder will generate a 

decoded output vector from a given index. The task of the encoder is either 

implicitly or explicitly to identify in which of N geometrically specified regions of k 

space the input vector lies. Contrary to popular belief, ideally the encoder does 

not fundamentally need to know the codebook to perform its function. Because 

encoder has to identify the partition to which the input vector belongs. On the 

other hand, the decoder is simply a table lookup that is simply and fully 

determined by specifying the codebook. This is the prime reason why VQ is very 

popular where decoding is less intensive. 

   The decoder does not need to know the geometry of the partition to perform 

its job. Later we shall see that for most vector quantizers of practical interest, the 

codebook provides sufficient information to characterize the partition and in this 

case, using the codebook as the data set, which implicitly specifies the partition, 

can perform the encoder operation.  

          The overall operation of VQ can be regarded as the cascade or 

composition of two operations: 
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          Q(x)=D(ε(X))                                                                                          (2.7) 

 

Occasionally it is convenient to regard a quantizer as generating both an index i, 

and a quantized output value, Q (x). The decoder is sometimes referred to as an 

“inverse quantizer”.  

Figure 2.1 illustrates how the cascade of an encoder and decoder defines a 

quantizer. 

 

Figure: - 2.1 A Vector Quantizer as the Cascade of an Encoder and 

Decoder. 

           In the context of a digital communication system, the encoder of a vector 

quantizer performs the task of selecting (implicitly or explicitly) an appropriately 

matching code vector yi to approximate, or in some sense to describe or 

represent, an input vector x. The index i of the selected code vector is 

transmitted (as a binary word) to the receiver where the decoder performs a 

table-lookup procedure and generates the reproduction yi, the quantized 

approximation of the original input vector. If a sequence of input vectors is to be 

quantized and transmitted, then the bit-rate or transmission rate R, in bits per 

vector, is given by R = k r, where r is the resolution and k the vector dimension. If 
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 we let fv denote the vector rate, or the number of input vectors to be encoded per 

second, then the bit-rate, Rs in bits per second is given by  

      Rs = k r fv                                                                                               (2.8) 

           Of particular interest is the case of a scalar waveform communication 

system where each vector represents a block of contiguous samples of the 

waveform. The vector sequence, called a blocked scalar process, then cor-

responds to consecutive blocks of the waveform and the vector dimension, k, and 

the sampling rate, fs, measured in samples per second, together determine the 

vector rate, in this case fv = fs / k vectors per second. The bit-rate in bits per 

second is therefore, Rs = r fs which is independent of the dimension k. We 

distinguish between resolution and rate since there are important applications of 

VQ where the vectors are extracted parameters of a signal rather than blocked 

samples of a waveform. 

           Vector Quantization is not merely a generalization of scalar quantization. 

In fact, it is the “ultimate” solution to the quantization of a signal vector. Because 

VQ represents the signal with much less number of bits compared to scalar 

quantization. No other quantization technique exists that can do better than VQ.  

2.3 Examples of Vector Quantization 

It is convenient to view the operation of a vector quantizer geometrically, 

using our intuition for the case of two- or three-dimensional space. Thus, a 2-D 

quantizer assigns any input point the plane to one of a particular set of N points 

or locations in the plane. As a simple illustration consider a map of a city that is 

divided into school districts and the codebook is simply the location of each 



16 

school on the map. The “input” is the location of a particular child’s residence and 

the quantizer is simply the rule that assigns each child to a school according to 

the child’s location. 

Figure 2.2 depicts an example of a two-dimensional (2-D) quantizer that is 

neither polytopal nor regular since the cells have faces (one-dimensional 

boundaries) that are not segments of hyper planes (straight line segments) and 

the cells are not convex. The dots represent code vectors in a 2 dimensional 

space (the Plane) and the region containing each code vector is a partition cell.  

 

Figure: - 2.2 A Non Regular Quantizer 

 

           Figure 2.3 shows a two dimensional regular quantizer. Whose bounded 

cells are polygons (closed polytopes in two dimensions). 

 

Figure: - 2.3 A Regular Quantizer 
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           On the generality of VQ, this case can be considered as a degenerate 

special case of vector quantization of the vector x = (x1,x2) where the vector 

quantizer is given by, 

           ))(X (XI), Q (QQ(X) 221=                                                                  (2.9) 

where Ql and Q2 are the scalar quantizers for x1 and x2, respectively.  

 

Figure: - 2.4 VQ Based Upon Scalar Quantization 

           Figure 2.4 shows the resulting vector quantizer corresponding to a 

particular choice of scalar quantization for each variable. Separate quantization 

for each variable is not preferable as it does not take advantage of the correlation 

between the variables. We note in passing that this is an example of a product 

VQ because the overall VQ is formed as a Cartesian product of smaller 

dimensional VQs.  

           It is evident that the VQ defined by separately, quantizing the components 

of a vector must always result in quantization cells that are rectangular. In 

contrast, a more general vector quantizer is freed from these geometrical 
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restrictions and can have arbitrary cell shapes as indicated in the examples of 

Figures 2.2 and 2.3. In higher dimensions the same idea is clearly applicable. 

Thus, in three dimensions, scalar quantization of the three components of a 

vector always results in cells that have rectangular box-like shapes where each 

face is a plane parallel to one of the coordinate axes.  

        On the other hand, regular quantizers in three dimensions will have 

polyhedral cells. (A polyhedron is a polytope in three dimensions.) Extending this 

idea to k dimensions, it is clear that scalar quantization of the components of a 

vector always generates a restricted class of vector quantizers where the faces 

are (k-1)-dimensional hyper planes each parallel to a coordinate axis in the 

k-dimensional space, The inherent superiority of VQ is thereby evident simply 

because of the greater structural freedom it allows in quantization of a vector. VQ 

offers structural freedom by having partitions of any arbitrary shape unlike 

partitions with rectangular box-like shapes in scalar quantization. 

2.4 Vector Quantizer Performance Measurement 

           A distortion measure d is an assignment of a nonnegative cost d (x, x) as-

sociated with quantizing any input vector x with a reproduction vector x. Given 

such a measure we can quantify the performance of a system by an average 

distortion )ˆ,( xxEdD =  between the input and the final reproduction. Generally 

the performance of a compression system will be good, if the average distortion 

is small. In practice, the overall measure of performance is the long-term sample 

average or time average 

           )X̂,d(X1/nlimd̂ i

n

1i

i
n

∑
=

∞→
=                                                                          (2.10) 
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Where {xi} is a sequence of vectors to be encoded. If the vector process is 

stationary and ergodic, then with probability one the above limit exists and the 

statistical expectation, i.e., D=d̂ . Stationarity and ergodicity, however are not, 

necessary and similar properties can hold under more general conditions.  

Let X denotes a continuously distributed random vector in Rk with a specified pdf 

(In this case the pdf refers to a joint probability density function of the vector 

components, xi for i=1, 2 ... k. Then the average distortion can be expressed as 

(x)dxQ(x))fd(x,kY)Ed(X,D x
R
∫==                                       (2.11) 

and using the partition and codebook for the given quantizer Q, we get 

           dxxf)yd(x,D x

N

1j

jR j∑∫
=

=                                                                  (2.12) 

           (x)dx)fyd(x,pD xj

N

1j

j∫ ∑
=

=                                                         (2.13) 

                 = [ ]jj

N

1j

j RX)yd(x,Ep ∈∑
=

                                                         (2.14)                                

where pj=P(X ∈ Rj) and fx/j(x/j) is the conditional probability density of x given that 

x ∈ Rj.  

             Occasionally, it is preferable to use a worst-case distortion as a measure 

of performance rather than an average value. With respect to In arbitrary 

measure d (x, y) of distortion, this is simply defined as the maximum attainable 

distortion for a given quantizer: 

             Q(x))d(x,maxD
Bx

max
∈

=                                                                       (2.15) 



20 

Where B is the closed subset of Rk to which the input X is confined that is, B is 

the domain over which the pdf of X is nonzero. X outside this region B has zero 

probability so it does not affect D max. In some cases, this maximum may not exist 

since the distortion can become arbitrarily large and this measure is then not 

meaningful. Use of the maximum distortion as a performance measure is limited 

to the case of bounded random vectors or quantizers with countably finite 

codebook sizes with no overload regions. For the most part, we shall focus on 

the statistical average of the distortion as a performance measure.  

            Ideally, a distortion measure should be tractable to permit for guiding the 

actual encoding process for encoders, which select a nearest neighbor or 

minimum distortion output (we shall see that as with scalar quantizers, this form 

of encoder is optimal for a given codebook). It should also be subjectively 

meaningful so that large or small average distortion values correlate with bad and 

good subjective quality as perceived by the ultimate user of the reproduced 

vector sequence. This subjective measure is more useful as distortions with 

different objective values are difficult to differentiate by user. 

            The most convenient and widely used measure of distortion between an 

input vector x and a quantized vector Y = Q (x), is the squared error or squared 

Euclidean distance between two vectors defined as 

           
2

x̂x)x̂d(x, −=                                                                                    (2.16) 

                     )x̂(x)x̂(x t −−≡                                                                          (2.17) 

                     ∑
=

−=
k

1i

2

îi )x(x                                                                             (2.18) 
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Euclidean distance can also be modeled with random process that has 

continuous distribution. If the input and reproduction vectors are complex, then 

this becomes 

           
2

x̂x)x̂d(x, −=  

                      )x̂(x)x̂(x * −−≡  

                      ∑
=

−=
k

1i

2

ii x̂x                                                                              (2.19) 

The average squared error distortion or, more briefly, the average distortion 

(when no confusion with other distortion measures arises) is defined as 

           )x̂xE()x̂Ed(x,D
2

−==                                                                       (2.20) 

           This measure is frequently associated with the energy or power of an error 

signal and therefore has some intuitive appeal in addition to being an analytically 

tractable measure for many purposes.  

Alternative distortion measures may also be defined for assessing dissimilarity 

between the input and reproduction vectors. Many of the measures of interest for 

VQ have the form    

             ∑
=

=
k

1i

ii,m )x̂(xd)x̂d(x,                                                                          (2.21) 

Where dm (x, x̂ ) is a scalar distortion measure (often called the per-letter 

distortion) as in one-dimensional quantization.  

           Any distortion measure having this additivity property with the same scalar 

distortion measure used for each component is called an additive or single letter 

distortion measure and is particularly appropriate for waveform coding where 
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each vector component has the same physical meaning, being a sample of a 

waveform. Of particular interest is the case where the scalar distortion measure 

is given by xxxxdm
ˆ)ˆ,( −=  for positive integer values of m When m =1, this 

specializes to the l1 norm of the error vector, xx ˆ− When m = 2, we obtain the 

squared error measure lm already discussed. The mth root of dm is the lm norm of 

the error vector xx ˆ− . 

           Another distortion measure of particular interest is the weighted squared 

error measure 

            y)W(xy)(xy)d(x, t −−=                                             (2.22) 

Where W is a symmetric and positive definite weighting matrix and the vectors x 

and y are treated as column vectors. Note that this measure includes the usual 

squared error distortion in the special case where W = I, the identity matrix. In the 

case where W is a diagonal matrix with diagonal values wii > 0, we have   

             ∑
=

−=
k

1i

2

iiii )y(xwy)d(x,                                                                       (2.23) 

which is a simple but useful modification of the squared error distortion that 

allows a different emphasis to be given to different vector components. 

           All of the distortion measures discussed so far are symmetric in their 

arguments x and y. It is sometimes convenient and effective to choose a 

weighting matrix W(x) (assumed to be symmetric and positive definite for all x) 

that depends explicitly on the input vector x to be quantized in order to obtain 

perceptually motivated distortion measures for both speech and image 

compression. In this case, the distortion 
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            Y)-W(x)(Xy)(xy)d(x, t−=                                                                 (2.24) 

is in general asymmetric in x and y. As an example of such a distortion measure, 

let W(x) be 
2−

X I, where I is the Identity matrix. Here, the distortion between two 

vectors is the noise energy to signal energy ratio: 

             2

2
ˆ

)ˆ,(
x

xx
xxd

−
=                                                                            (2.25) 

This allows one to weight the distortion as being more important when the signal 

is small than when it is large. Note the distortion measure is not well defined 

unless x  > 0. 

Finally, we define the maximum or l∞ norm distortion measure by:  

           ii
i

xxxxd ˆmax)ˆ,(max −=                                                          (2.26) 

Where, the distortion is determined by the component of the error vector xx ˆ−   

that contributes the largest absolute error. It is a well-known mathematical result 

that the lm norm approaches the l∞  norm as m → ∞ Thus, 

            )ˆ,( d    )]ˆ,( [d   lim max

1/m

m
m

xxxx =
∞→

                                                (2.27) 

 

2.5 Summary 

 

           This chapter described the definition, concept and basic types of VQ. It 

also includes primary structure of vector quantizer As a performance measure 

criteria distortion calculation is explained.  
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Chapter 3 
 

Waveform Coding techniques 
 

Waveform codecs have been comprehensively characterized by Jayant 

and Noll(67).In general, waveform codecs are designed to be signal 

independent. They are designed to map the input waveform of the encoder into a 

facsimile-like replica of it at the output of the decoder. Because of this advantage, 

they can also encode a secondary type of information such as signaling tones, 

data, or even music. Because of this signal transparency their coding efficiency 

usually quite modest. The coding efficiency can be improved by exploiting some 

statistical signal properties, if the codec parameters are optimized for the most 

likely categories of input signals, while still maintaining good quality for other 

types of signals as well. The waveform codecs are further subdivided into time-

domain waveform codecs and frequency-domain waveform codecs.  

3.1 Time-domain Waveform Coding 

The most well-known representative of signal-independent time-domain 

waveform coding is the A-law companded pulse code modulation (PCM) 

scheme. This coding has been standardized by the CCITT at 64 kbits/s, using 

non-linear companding characteristics to result in near-constant signal-to-noise 

ratio (SNR) over the total input dynamic range. Upon quantizing this companded 

signal, large-input samples will tolerate higher quantization noise than small 

samples. 

Also well-known is the 32 kbits/s adaptive differential PCM (ADPCM) 

scheme standardized in the ITU Recommendation G.721 and the adaptive delta 
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modulation (ADM) arrangement, where usually the most recent signal sample or 

a linear combination of the last few samples is used to form an estimate of the 

current one. Then their difference signal, the prediction residual, is computed and 

encoded with a reduced number of bits, since it has a lower variance than the 

incoming signal. This estimation process is actually linear prediction with fixed 

coefficients. However, owing to the nonstationary statistics of speech/image, a 

fixed predictor cannot consistently characterize the changing spectral envelope 

of speech signals. 

All in all, time-domain waveform codecs treat the signal to be encoded as 

a full-band signal and attempt to map it into as close a replica of the input as 

possible. The difference among various coding schemes is in their degree and 

way of using prediction to reduce the variance of the signal to be encoded, so as 

to reduce the number of bits necessary to represent it. 

3.2 Frequency Domain Waveform Coding 

In frequency-domain waveform codec, the input signal undergoes a more 

or less accurate short-time spectral analysis. The signal is split into a number of 

sub-bands, and the individual sub-band signals are then encoded by using 

different number of bits in order to obey rate-distortion theory on the basis of their 

prominence. The various methods differ in their accuracies of spectral resolution 

and in the bit-allocation principle (fixed, adaptive, semi-adaptive). Two well-

known representatives of this class are sub-band coding (SBC) and adaptive 

transform coding (ATC). 
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3.3 Waveform  Coding Techniques  based on Vector Quantization  

There are number of waveform coding techniques using vector 

quantization. Initially Nearest Neighbor Quantizers were used but they were 

unconstrained in the sense that they require large memory for good performance. 

There is a variety of constrained coding schemes that provide reduced 

complexity and better performance in trade for a tolerable loss of optimality. 

Included are tree-structured vector quantization (TSVQ),classified vector 

quantizers, transform vector quantizers, product codes such as gain/shape and 

mean-residual vector quantizers , and multistage vector quantizers.There exists 

fast search algorithms for codebook searching , nonlinear interpolative coding , 

and hierarchical coding. 

 Vector quantizers with memory are called recursive quantizers or 

feedback vector quantizers.In predictive vector quantization (PVQ) vector 

predictors are used to form a prediction residual of the original input vector and 

resulting residual is quantized. In finite-state vector quantization (FSVQ) encoder 

and decoder are finite-state machines. Like a predictive VQ, a finite-state VQ 

uses the past to implicitly predict the future and use a codebook matched to the 

likely behavior. Unlike a predictive VQ, a finite-state VQ is limited to only a finite 

number of possible codebooks.  

 Tree and trellis encoding systems have decoders like those of predictive 

and finite-state vector quantizers, but the encoders are allowed to “look ahead” 

into the future before making their decisions as to which bits to send. At the cost 
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of additional delay, such coding methods can provide improved performance by 

effectively increasing the input vector size while keeping complexity manageable. 

 In adaptive vector quantizers codebooks are allowed to change in a slow 

manner relative to the incoming data rate so as to better track local statistics 

variations. Both forward and backward adaptation is possible. More complicated 

adaptive coding schemes such as residual excited linear prediction (RELP) and 

code excited linear prediction (CELP) VQ are used in mobile communication. 

 Vector quantizers with variable-rate coding use more bits for active signals 

and fewer for less active signals while preserving an overall average bit rate. 

Such coding systems can provide a significantly better tradeoff between bit rate 

and average distortion, but they can be more complex and can require buffering 

if they are used in conjunction with fixed rate communication links. The 

performance improvement often merits any such increase in complexity, and the 

complexity may in fact be reduced in applications that are inherently variable rate 

such as storage channels and communication networks. In statistical pattern 

classification coder design algorithms are developed for unbalanced tree-

structured vector quantizers which are very similar to variable-rate vector 

quantizers.   

3.4 Waveform properties and Encoding Delay  

Coder complexity is a function of the signal processing involved. It 

is also related to encoder delay or encoder memory, which shows the extent to 

which a waveform has to be observed in order for the coder to exploit waveform 

structure for economical digital representation. Examples are listed in Table 3.1. 



28 

  

Table 3.1 A listing of coding systems in terms of encoding delay 

Waveform Memory Used in Coding Coding System Example 

Zero Memory Instantaneous Quantizers: PCM 

Adaptive Quantizers 

Differential PCM systems with near-

sample-based predictions 

Delta modulators 

Sub-Band Coders for Speech 

Vector Quantizers : Tree- and Trellis 

Coders 

Short-term Memory 

Intraframe Transform Coders for 

Images 

Differential PCM systems with distant-

sample-based predictions 

Transform Coders for Speech 

Long-term Memory 

Intraframe Transform Coders for 

Images 

 

This list attempts to grade quantizer and coder classes in order of 

increasing encoder memory or delay. The counter-examples are also possible. 

For example, in speech coding, depending on the extent of memory utilized, sub-

band coders, vector quantizers and tree coders may well be included in the class 

of coders with long-term memory. 
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The frame period in video is either 33.33 ms or 40 ms, depending 

on power line frequency, while the pitch period in speech can be in the range 3 to 

15 ms, depending on speaker. The use of long-term memory in Table 3.1 

indicates waveform observations over duration in order of the pitch period in 

speech, and the frame period in video. This implies transmission delays that can 

be several tens of milliseconds in both speech and image coding. Such delays 

can have important in aspect of waveform communications such as echo control 

in long-distance two-way transmissions. 

3.5 Selection of Vector Quantization Techniques  

There are many techniques for waveform coding using Vector 

Quantization. Out of this, Tree Structured Vector Quantization, Multi Stage 

Quantization and Trellis Coded Vector Quantization have been selected 

randomly. A brief comparison along with advantages and disadvantages of these 

VQ techniques are discussed below. 

In m-ary tree search  with balanced tree , the input vector is 

compared with m predesigned test vectors at each stage or node of the tree.The 

tree structured VQ has the advantage that an m-ary tree with d stages has 

search complexity proportional to md rather than md. The disadvantage of tree 

structured VQ is that storage requirements are increased compared to Full 

search VQ. Another disadvantage of tree structured VQ is that there is additional 

delay compared to Full search VQ. 

In Multi Stage Vector Quantization (MSVQ) each stage simply 

quantizes residual of the previous stage. Multi Stage VQ does not require high 



30 

codebook storage requirements as Tree Structured VQ. MSVQ does not require 

huge training set as TSVQ. Complexity and storage requirements are greatly 

reduced by using Multi Stage VQ.MSVQ has the disadvantage that every stage 

will add quantization error and hence increase quantization noise. 

The trellis consists of the set of all paths starting at the root node 

and traversing one of the K state nodes at each time instant and terminating at a 

fixed node at time L-1. L is the encoder delay or search depth. We do not have to 

search a block code of 2L by computing all 2L possible distortions.  Instead we 

compute a sequence of K distortions. The complexity grows with the number of 

states, not with L. The disadvantage of trellis coded VQ is that encoding delay 

can be intolerable in some applications. Another disadvantage of trellis coded VQ 

is that encoding complexity grows exponentially and can quickly become 

prohibitive for high or even moderate rates. 

3.6 Summary 

The chapter describes broad categories of waveform coding techniques 

namely time domain, frequency domain and waveform coding techniques based 

on vector quantization. Examples are given for coders with different encoder 

delay depending upon waveform properties. A brief comparison along with 

advantages and disadvantages of Vector quantization techniques selected are 

also discussed. 
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Chapter 4  

Full Search Vector Quantizer 

 

4.1 Full Search Vector Quantizer 

          A full search vector quantizer considers distortion between the sample and 

every codeword of the codebook. It will then try to minimize the distortion 

function. A full search vector quantizer is normally called Nearest neighbor vector 

quantizer. An important special class of vector quantizers that is of particular 

interest, called Voronoi or nearest neighbor vector quantizers has the feature that 

the partition is completely determined by the codebook and a distortion measure. 

The term “vector quantizer” is commonly assumed to be synonymous with 

“nearest neighbor vector quantizer”. All advantage of such all encoder is that the 

encoding process does not require any explicit storage of the geometrical 

description of the cells. Instead a conceptually simple algorithm can encode by 

referring to the stored codebook. 

4.2 Nearest Neighbor Vector Quantizer  

           Suppose that d(x, y) is a distortion measure on the input/output vector 

space. For example the ubiquitous squared error distortion measure defined by 

the squared Euclidean distance between the two vectors: 

∑
=

−=−=
k

i

ii yxyxyxd
1

22 )(||||),(                                                             (4.1) 

This is, the simplest measure and the most common for waveform coding. While 

not subjectively meaningful in many cases, generalizations permitting input 
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dependent weightings have proved useful and often only slightly more 

complicated. 

           We define a Voronoi or nearest neighbor (NN) vector quantizer as one 

whose partition cells are given by 

}),( ) yd(x, :{x   R ii Jjallyxd j ∈ ≤=                                                     (4.2) 

NN VQ will constitute a regular quantizer if centroid is a representative of regular 

sized cells. NN VQ will constitute a irregular quantizer if centroid is a 

representative of irregular sized cells.  In order for the Cells to constitute a 

partition, each boundary point, must be uniquely assigned to one cell. This 

modification of the above definition is readily handled by assigning x to be a 

member of Rm where m is the smallest index i for which ( )
iyxd ,  attain its 

minimum value.  

           The following simple algorithm gives the most direct encoding algorithm 

for an NN encoder. 

Nearest Neighbor Encoding Rule 

1. Set d=do ,j= 1, and i=1. 

2. Compute Dj= d(x, yj). 

3. If Dj  < d, set Dj → d. Set j→  i. 

4. If j  < N, set j + 1→  j and go to step 2. 

5. Stop. Result is index i. 

 

Table 4.1 Nearest Neighbor Encoding Rule 
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           The resulting value of i gives the encoder output C(x) and the final value 

of d is the distortion between x and yi. The initial value, do, must be larger than 

any expected distortion value and is usually set to the largest positive number 

that can be represented with the processor’s arithmetic. 

The key feature of the above encoding algorithm is that no geometrical 

description of the partition is needed to perform the encoding rule. Thus the 

encoder operation may be described by x 

),()( Cxcx =ε                                                                                                    (4.3) 

where the functional operation described by c(., .) is independent of the specific 

quantizer and depends only on the distortion measure. This important concept is 

central to the implementation of virtually all vector quantizers in use today. Figure 

4.1 illustrates the form of the NN encoder where the Codebook C is a read-only 

memory that is accessed by the NN encoder box that implements the function 

c(., .). 

 

Figure : - 4.1 -  Nearest Neighbor Encoder with a Codebook ROM 

Nearest Neighbor 
Encoder ε(x, C) 

Codebook 
C 

x 
Index 
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           Virtually any computable distortion measure can be used for a NN 

encoder. Later, however, we shall see that other properties of a distortion 

measure are required to yield a statistically based performance measure that is 

amenable to optimal codebook design. In general the NN cells defined above 

need not be polytopal or even convex. 

           We defined that the NN cells can be expressed as: 

ij

N

ij
j
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                                                                                                 (4.4)       

 

Where,   

}yxy-x:{xH
2

j
2

iij −≤=                                                                      (4.5) 

 

           Expanding the squared norms and simplifying, we get 

 

} 0  .x u :{x  H ijij ≥+= ijβ                                                                                 (4.6) 

Where  

 )y - 2(y  u jiij =                                                                                               (4.7) 

and, 

22

ijij yy −=β                                                                                             (4.8) 
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           Thus, we see that the NN cells of a Voronoi quantizer are formed by the 

intersection of half-spaces so that every Voronoi quantizer is polytopal and its 

half-spaces are explicitly determined from the code vectors yi of its codebook. 

This convenient property is a direct consequence of the fact that the squared 

error distortion measure is a quadratic function of the code vector components. 

Other more complex distortion measures which depend on higher order powers 

of the input vector components will not give rise to polytopal NN quantizers. 

           For the squared error distortion measure or squared Euclidean distance, 

the partition cells of the NN encoder not only are polytopal but have all explicitly 

determined specification derived from the code vectors. This allows a 

simplification of the general tertiary structure. 

            Finally, we point out a simple and important variation of the nearest 

neighbor-encoding algorithm described earlier. It follows either from the 

preceding discussion or directly from the squared Euclidean distance measure 

that the nearest neighbor search can be performed by evaluating scalar products 

rather than taking squared norms since 

][maxmin
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ii
t

i
i

i
yxyx α+=− −

                                                                      (4.9) 

Where,   

2

2

i
i

y
−=α                                                                                                 (4.10) 

and the values of αi  can be precomputed and stored along with the codebook, 

we have the following algorithm  
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Alternate Nearest Neighbor Encoding Rule 

1. Set f = fo, j = 1, and i = 1. 

2. Compute Fj = xt  yj + αj  

3. If Fj > f, set Fj→  f. Set j → i. 

4. If j < N, set j + 1 → j and go to step 2. 

5. Stop. Result is index i. 

 

Table 4.2 Alternate Nearest Neighbor Encoding Rule 

           The resulting value of i gives the encoder output C(x) and the final value 

of determines the distortion between x and yi according to 

 2f - x  )yd(x,
2

i =                                                                                             (4.11) 

The initial value, f0, must be smaller than any expected distortion value and is 

usually set to zero. The disadvantage of this alternate approach is that values of 

αi   needs to be stored along with the code vectors. Another disadvantage of this 

approach is that for computing parameter F multiplication and addition is 

required. So storage and computing requirements are more with this approach. 

            In real-time implementations of VQ encoders, the preferred choice of 

search algorithm depends on the particular processor architecture. The earliest 

reported hardware implementation of VQ implemented the nearest neighbor 

search algorithm and used off-the-shelf components and the Z80A, an 8-bit 

microprocessor. Most future applications of VQ for speech compression 
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 algorithms will be ASIC implementation on single-chip programmable signal 

processors.  

4.3 Optimality Conditions for VQ 

 The principal goal in design of vector quantizers is to find a codebook, 

specifying the decoder, and a partition or encoding rule, specifying the encoder 

that will maximize an overall measure of performance considering the entire 

sequence of vectors to be encoded over the lifetime of the quantizer. The overall 

performance can be assessed by either a statistical average of a suitable 

distortion measure or by a worst-case value of distortion. We focus here only on 

statistical criteria. The statistical average of the distortion for a vector quantizer  

Q (.), can be expressed as 

 

dx (x)Q(x))f d(x,  Q(X))  Ed(X, D x∫==                                                              (4.12) 

 

Where fx(x) is the (joint) pdf of the vector X and the integration above is 

understood to be a multiple integral over the k-dimensional space. When the 

input vector has a discrete distribution, a case that will also be of interest to us 

later, it is more convenient to avoid the use of a pdf made up of delta functions 

and instead describe the distribution by the probability mass function, (pmf) 

denoted by px(x). Then we have 

∑==
i

iii )))px(xQ(x,d(x (X)) Q  Ed(X, D                                                            (4.13) 

where {xi} are the values of x that have nonzero probability. It is a common 

practice in engineering to use the Dirac delta function in order to retain the use of 
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the pdf for a discrete probability distribution. Here one adds the probability 

masses of points to find the overall probability.So for simplifying the 

computational requirements continuous distributions are used for discrete 

process. Distribution is normally assumed apriori. 

           We assume that the codebook size N is given, the k-dimensional input 

random vector, x, is statistically specified, and a particular distortion measure 

d(.,.) has been selected. We wish to determine the necessary conditions for a 

quantizer to be optimal in the sense that it minimizes the average distortion for 

the given conditions. As in the scalar case, we proceed by finding the necessary 

condition for the encoder to be optimal for a given decoder. Then for a given 

encoder we find the necessary condition for the decoder to be optimal. Recall 

that the encoder is completely specified by the partition of Rk into the cells R1, R2, 

…., RN, and the decoder is completely specified by the codebook, C = ( y1, y2, …, 

yN). The optimality conditions presented next will explicitly determine the optimal 

partition for a given codebook and the optimal codebook for a given partition. 

For a given partition  N} , - - - 1, i ;{R i =  the optimal code vectors satisfy centroid 

condition  

yi = cent(Ri)                                                                                                   (4.14) 

First Proof (General Case): The average distortion is given by 

     ∑ ∑
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where we use the notation fxi(x) to mean the conditional pdf for x given x ∈ Ri 

and where pi = P[x ∈ Ri] Since the partition is fixed, each term can be separately 

minimized by finding yi that will minimize the expected distortion, or 

(x)dx)fxyd(x,]R)xyE[d(x, iiii ∫=∈                                                                  (4.16) 

By definition, the centroid yi = cent(Ri) minimizes this conditional distortion. 

Centroid of a partition considers summation average of all the samples in the 

partition. It has the property that it is at the center of the partition. So it will offer 

minimum difference in the calculation of distortion. 

           The following two proofs are restricted to the case where the squared 

error distortion measure is used as the performance measure. They are based 

on the view that the decoder receives partial information about the input vector 

and must perform a statistical estimate of the input given the transmitted index. 

The second proof finds the optimal decoder by finding the optimal (not 

necessarily linear) estimator of X and the third proof is based on the recognition 

that the decoder always performs; a linear operation and the optimal estimate is 

linear. In the second and third proof decoder receives partial information 

regarding the partition to which input vector belongs in terms of index consisting 

selector function which is explained below. The decoder is required to make the 

statistical estimate of the input for the given selector vector. This can be 

understood if we refer to the second and third proof given below. This is a lossy 

quantization. 

           As background for these proofs, we introduce the binary vector S of 

selector functions in the following treatment for modeling vector quantizers. Since  
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the partition is fixed, the selector functions, Si(x) = 1Ri(x), are well-defined and the 

encoder output can be expressed in terms of the binary vector 

(X)) S -, - - (X), (S  S N1=                                                                                    (4.17) 

Where for each i ∈ I, Si = Si(X) has value unity when X ∈ Ri, and value zero 

otherwise. Then the N-dimensional vector S = (S1, S2, - -, SN) fully describes the 

output of the encoder. This vector can only take on values in which all 

components but one is zero and the remaining component has value unity. With 

this background, the remaining proofs can be presented. 

Second Proof (Squared Error Distortion): The decoder can be regarded as a 

vector-valued function of S, with output Y = F(S) where Y is a k dimensional 

reproduction vector. To minimize  

]F(s)-X E[ D
2

=                                                                                             (4.18) 

F(S) = E[X/S]                                                                                                 (4.19) 

or, in terms of sample values 

F(z) = E[X/S = z]                                                                                           (4.20) 

Now, recognizing that only one component of the binary vector z can be nonzero, 

there are only N distinct values that can be taken on by z. In particular, suppose 

z = ui where ui has a 1 in the ith coordinate and 0 elsewhere. Then  

1]sxE[y)F(u iii ===                                                                                    (4.21) 

which again proves the necessity of the centroid condition for optimal 

quantization. 

Third Proof (Squared Error Distortion): From the primary decomposition of a 

vector quantizer, we can express the reproduction vector, y, as 
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It may be seen that this is a linear combination of the observable random 

variables Sj. Since we wish to minimize the average distortion ]Y-XE[ 
2

  , we 

seek the best estimate of X using the estimator Y, which is constrained to be 

linear combination of well-defined random variables, Sj .By the orthogonality 

principle, the condition for optimality is that the estimation error X – Y must be 

orthogonal to each of the observable variables, Si. Thus we have  

 ∑
=

=
N

j

XSjSiyjEXSiE

1

)()(                                                                           (4.23) 

Note that E(SjSi) is zero for j ≠ i  and is equal to E(Si2) =Pi when j = i. Also the 

expectation E(XSi) can be expressed in the form  

1]PiSXE[E(XSi) i ==                                                                                     (4.24) 

From these observations equation (4.23) simplifies and yields  

yi = E(XSi)/E(Si2)   = E[X| Si  = 1] = cent(Ri)                                                        (4.25) 

  This result assumes that the partition is degenerate in the sense that each 

region has nonzero probability of containing the input vector, i.e., Pi ≠ 0.  In the 

degenerate case where Pi = 0, we have what is called empty cell problem. For 

such a partition region, the centroid is undefined and clearly it makes no sense to 

have a code vector dedicated to represent this cell. A variety of heuristic 

solutions have been proposed for handling the empty cell problem. In some 

methods a cell is declared “empty” if it has 3 or fewer training vectors. In one  
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method, the cell with the highest number of training vectors is assigned a second 

code vector by splitting its centroid into two vectors and the empty cell is deleted. 

In another method the centroid of the cell with the highest partial distortion is 

split. If c cells are empty in a given iteration, then the c cells with the highest 

partial distortions can have their centroids split .Empty cell can be merged with 

nearby cell having highest partial distortions without affecting partial distortion of 

the nearby cell.  

 

Zero Probability Boundary Condition 

 A necessary condition for a codebook to be optimal for a given source 

distribution is  

 P ( UN
j=1 Bj ) = 0                                                                               (4.26) 

That is the boundary points occur with zero probability. An alternative way to give 

this condition is to require that the collection of points equidistant from at least 

two code words has probability 0, that is,  

 P( x : d(x, yi ) = d(x, yj ) for some  i ≠ j )  = 0                                  (4.27) 

 

Sufficiency of the Optimality Conditions  

 Supposes one has a vector quantizer that satisfies the centroid 

condition, the nearest neighbor condition, and the zero-probability boundary 

condition. The quantizer is locally optimal if every small perturbation of the code 

vectors does not lead to a decrease in D. It is globally optimal if there exist no 

other codebook that gives a lower value of D. If we have a codebook that  
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satisfies both necessary conditions of optimality, it is widely believed that it is 

indeed locally optimal. No general theoretical derivation of this result has ever 

been obtained. For the particular case of a discrete input distribution such as a 

sample distribution produced by training sequence, a vector quantizer satisfying 

necessary conditions is indeed locally optimal. In the discrete input case, a slight 

perturbation of a code vector will not alter the partitioning of the set of input 

vectors as long as none of the input values lies on a partition boundary. Once the 

partition stays fixed, the perturbation causes the centroid condition to be violated 

and the average distortion can only increase. At least under these conditions, a 

vector quantizer that satisfies the necessary conditions will be locally optimal. 

Locally optimal quantizers can, in fact, be very suboptimal. Code book is 

prepared based on initial codebook. Optimization of the initial codebook is 

performed through iterations. Local optimization will improve the codebook which 

will have the best performance in the given partitions of the initial codebook. So 

these quantizers are locally optimum. Locally optimum quantizers do not try to 

optimize the partition other than the partition with the respective code word. So 

they are not globally optimal or suboptimal.  For non uniform sources codebook 

for the quantization is prepared by Lloyd iteration for codebook improvement until 

iteration converges. Overload distortion for unbounded input is strongly 

influenced by the shape of the input pdf. To deal with unbounded input (overload 

region) one can consider additional support regions (partitions) to the existing 

partitions. Another way to deal with unbounded input is to limit the input prior to 

quantization, which is a standard practice. 
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4.4 Design of Full Search Vector Quantizer 

 The necessary conditions for optimality provide the basis for iteratively 

improving a given vector quantizer. If the iteration continues to convergence, a 

good (may be close to optimal) quantizer can be found. The iteration begins with 

a vector quantizer consisting of its codebook and the corresponding optimal (NN) 

partition and then find the new codebook which is optimal for that partition. This 

new codebook and its NN partition are then a new vector quantizer with average 

distortion no greater than the original quantizer. Although each of these steps of 

optimizing a partition for a codebook and a codebook for a partition is simple and 

straightforward, the simultaneous satisfaction of both conditions is not easy to 

achieve. There are no closed-form solutions to the problem of optimal 

quantization. The repeated application of the improvement step, however, yields 

an iterative algorithm which at least reduces (or leaves unchanged) the average 

distortion at each step. The terminal condition for the iteration is that if fractional 

drop in distortion ( Dm – Dm+1 ) / Dm  ,  is below a suitable threshold.  

 We begin with the problem of obtaining the initial codebook for 

improvement since this, too, is a problem of vector quantizer design. In fact, if the 

initial codebook is good enough, it may not be worth the effort to run further 

improvement algorithms. There are a variety of techniques for generating a 

codebook that have been developed in cluster analysis (for pattern recognition) 

and in vector quantization (for signal compression).We survey several of the 

most useful. 
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4.4.1 Random coding 

 Perhaps the simplest conceptual approach towards filling a codebook of 

N code words is to randomly select the code words according to the source 

distribution, which can be viewed as a Monte Carlo design. Selection criteria for 

training vector are given below. The obvious variation when designing based on 

a training sequence is to simply select the first N training vectors as code words. 

If the data is highly correlated, it will likely produce a better codebook. Say if one 

takes every kth training vector , where k is the vector dimension. This technique 

has been often used in the pattern recognition literature and was used in the 

original development of the k-means technique (1). One can be somewhat more 

sophisticated and randomly generate a codebook using not the input distribution, 

but the distribution which solves the optimization problem defining Shannon’s 

distortion-rate function. In fact, the Shannon source coding theorems imply that 

such a random selection will on average yield a good code (68) (3) (4). At the 

most kN training vectors are required.  

4.4.2 Pruning  

 Pruning refers to the idea of starting with the training set and selectively 

eliminating (pruning) training vectors as candidate code vectors until a final set of 

training vector remains as the codebook. In one such method, a sequence of 

training vectors is used to populate a codebook recursively as follows: put the 

first training vector in the codebook. Then compute the distortion between the 

next training vector and the first code word. If it is less than some threshold, 

continue. If it is greater than the threshold, add the new vector to the codebook  
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as a codeword. With each new training vector, find the nearest neighbor in the 

codebook. If the resulting distortion is not within some threshold, add the training 

vector to the codebook. Continue in this fashion until the codebook has enough 

words. For a given finite set of training vectors, it is possible that the resulting 

codebook will have fewer than the desired number of code vectors. If this 

happens, the threshold value must be reduced and the process repeated. A 

typical choice of threshold value for the MSE distortion measure is proportional to 

22r where r is the rate of the code. This technique is well known in the statistical 

clustering literature (69). Pruning eliminates some training vectors as candidate 

code vectors to have distortion less than the threshold, so it makes the 

quantization better. Pruning in a tree will generate variable length code which can 

be handled by the algorithms like BFOS.  An algorithm, which finds the lower 

boundary of the convex hull of the rate/distortion pairs of the pruned sub trees of 

a given tree and which specifies the sub trees that lie on this convex hull is 

developed by Breiman, Friedman, Olshen and Stone (BFOS algorithm). Brieman 

et. al. developed an algorithm for optimally pruning a tree trading off the number 

of leaves with probability of error for a classification tree and mean squared error 

for a regression tree. General complexity and cost criteria are considered in the 

work done by Chou et.al. , which is a generalization on BFOS algorithm. 

4.4.3 Pair wise Nearest Neighbor Design 

 A more complicated , but better , means of finding a codebook from a 

training sequence is the pair wise nearest neighbor (PNN) clustering algorithm 

proposed by Equitz (6)(7).Similar algorithms have also been used in the  
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clustering literature(70)(9). This is also a form of pruning as it begins with the 

entire training sequence of L vectors, and ends with a collection of N vectors. 

 First compute the distortion between all pairs of vectors. The two training 

vectors having the smallest distortion are combined into a single cluster and 

represented by their centroid. We now have L – 1 clusters, one containing two 

vectors and the rest containing a single vector. Henceforth at each step clusters 

may have more than one vector. Suppose now that we have K clusters with N < 

K ≤ L – 1 and we wish to merge two of the clusters to get a good set of K – 1 

clusters. This single step merging can be done in an optimal fashion as follows: 

For every pair of clusters drawn from the full collection of K clusters, compute the 

increase in average distortion resulting if the two clusters and their centroids are 

replaced by the merged two clusters and the corresponding centroid. When the 

best pair of clusters for merging is found, they are merged to form a codebook 

with K – 1 vectors. Continue in this way until only N vectors remain.  

 Note that each merge is optimal, but the overall procedure need not be 

optimal, that is, need not produce the optimal code book of the given size. As a 

size of training set increases, initial codebook size using PNN also grows, which 

will consume more time. The solution to this issue can be as follows. The training 

vectors can be divided into groups. Rest of the groups of L training vectors can 

be represented by the centroid of the group. PNN algorithm can be applied to 

first group of training vectors and centroids of the rest of the groups.  
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4.4.4 Product Codes  

 In some cases a product code book may provide a good initial guess. 

For example, if one wishes to design a codebook for a k-dimensional VQ with 

codebook size 2kR for some integral resolution R, then one can use the product 

of k scalar quantizers with 2R words each. Thus if q(x) is a scalar quantizer, then 

Q(x0 , … , xk-1) = ( q(x0 , … , q(xk-1) ) , the Cartesian product of the scalar 

quantizers  , is a vector quantizer. This technique will not work if R is not an 

integer. 

4.4.5 Splitting 

 Linde et al. introduced a technique that resembles the product code 

initialization in that it grows large codebooks from small ones, but differs in that it 

does not require an integral number of bits per symbol (10). The method is called 

splitting algorithm and it produces increasingly larger codebooks of fixed 

dimension. The globally optimal resolution 0 codebook of a training sequence is 

the centroid of the entire sequence. The one code word , say y0 , in this 

codebook can be “split” into two code words , y0 and y0 + Є  , where Є  is a vector 

of small Euclidean norm. One choice of Є is to make it proportional to the vector 

whose ith component is the standard deviation of the ith component of the set of 

training vectors. Another choice is to make it proportional to the eigenvector 

corresponding to the largest eigen value of the covariance matrix of the training 

set. This new code book has two words and can be no worse than the previous 

codebook since it contains previous codebook. The iterative improvement 

algorithm can be run on this codebook to produce a good resolution 1 code.  
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When complete, all of the code words in the new codebook can be split, forming 

an initial guess for a resolution 2 code books. One continues in this manner, 

using a good resolution r codebook to form an initial resolution r + 1 codebook by 

splitting. This algorithm provides a complete design technique from scratch on a 

training sequence, very similar to successive approximation quantizers.  

The Generalized Lloyd Algorithm 

 The generalized Lloyd algorithm for VQ design is sometimes known as 

the k-means algorithm after MacQueen (1), who studied it as a statistical 

clustering procedure. The algorithm is based on iterative use of the codebook 

modification operation, which generalizes the Lloyd iteration for scalar 

quantization. Following is the generalization for the vector case when the joint pdf 

of the input vector is assumed to be known and continuously distributed. 

The Lloyd Iteration for Codebook Improvement  

Known Statistics: 

1. Given a codebook , Cm  = { yi  ; i=1,.., N} , find the optimal partition into 

quantization cells , that is , use the nearest Neighbor  Condition to form 

the nearest neighbor cells : 

Ri = {x: d(x,yi)  < d(x,yj)   ; all j ≠ i }. 

If x yields a tie for distortion, e.g., if d(x,yi)  = d(x,yj) for one or more j ≠ i , then 

assign x to the set Rj for which j is smallest.  

2. Using the centroid Condition, find Cm+1  = { cent(Ri) : i = 1,…,N} , the 

optimal reproduction alphabet (codebook) for the cells just found. 

Table 4.3 The Lloyd Iteration for Codebook Improvement Known Statistics 
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 The Lloyd Iteration for Empirical Data 

1.Given a codebook , Cm  = { yi  ; i=1,.., N} ,  partition  the training set into 

cluster sets Ri using the nearest Neighbor  Condition  

Ri = {x Є T: d(x,yi)  < d(x,yj)   ; all j ≠ i } 

(and a suitable tie-breaking rule). 

2. Using the centroid Condition, compute the centroids for the cluster sets just 

found to obtain the new codebook ,  Cm+1  = { cent(Ri) : i = 1,…,N} . If an 

empty cell was generated in step (a) , an alternate code vector assignment is 

made ( in place of the centroid computation ) for that cell. 

Table 4.4 The Lloyd Iteration for Empirical Data 

The Lloyd iteration can be applied to the discrete input distribution defined from 

the training set T to obtain a locally optimal quantizer for this distribution. Lloyd 

iteration assigns the input to a partition using nearest neighbor condition. So it 

does not worry about the irregular / odd shaped regions in multidimensional 

space. In general after the application of Lloyd iteration, code books and hence 

partitions represent irregular / odd shaped regions. This does not make the 

algorithm impractical as we have to deal with the code vectors and not the 

partitions. 
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 The Generalized Lloyd Algorithm 

1. Begin with an initial codebook C1  . Set m =1 . 

2. Given a codebook , Cm  = { yi  ; i=1,.., N} ,  perform the Lloyd Iteration to 

generate the improved codebook  Cm+1  . 

3. Compute the average distortion for Cm+1  . If it has changed by a small 

enough amount since the last iteration , stop. Otherwise set m + 1 � m and 

go to Step 2. 

Table 4.5 The Generalized Lloyd Algorithm 

 

Figure 4.2   Lloyd Algorithm flow chart 

 

 

Training Set 

Initial Codebook 

Lloyd Iteration 

Compute Distortion 

Test 

Stop 
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The flow chart for the generalized Lloyd algorithm is shown in Figure 4.2. If an 

empty is generated in GLA, an alternative code vector assignment is made (in 

place of the centroid computation for that cell. 

 

4.4.6 Stochastic Relaxation 

 By introducing randomness into each iteration of the GL algorithm it 

becomes possible to evade local minima , reduce or eliminate the dependence of 

the solution on the initial codebook , and locate a solution that may actually be a 

global minimum of the average distortion as a function of the codebook. A family 

of optimization technique called stochastic relaxation (SR) is characterized by the 

common feature that each iteration of a search for the minimum of a cost function 

(e.g., the average distortion) consists  of perturbing the state, the set of 

independent variables of the cost function (e.g., the codebook) in a random 

fashion. The magnitude of the perturbation generally decreases with time, so that 

convergence is achieved. The earliest use of randomness for VQ design was 

proposed in (10) where noise is added to the training vectors prior to a Lloyd 

iteration and the variance of the noise is gradually decreased to zero. This is 

indeed an SR algorithm although it was not so labeled. 

4.4.7 Stimulated Annealing 

 Simulated annealing is a stochastic relaxation technique in which a 

randomly generated perturbation to the state (the codebook) at each iteration is 

accepted or rejected probabilistically where the probability depends on the 

change in value of the cost function resulting from such perturbation. 
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4.4.8 Fuzzy Clustering 

 In designing a VQ from empirical data, selector functions are 

encountered. These functions may be regarded as membership functions. A 

cluster is said to be fuzzy set if we may assign to each element of the training set 

a degree of membership or partial membership value between zero and one 

which indicates to what extent the particular vector is to be regarded as 

belonging to that set. Based on fuzzy distortion and the degree of fuzziness VQ 

codebook is obtained. 

4.4.9 Improvement of Codebook with   Gaussian pdf  over Codebook with 
Uniform pdf  
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      = 0.3139 
 
Area    difference = AU-AG = 1-0.3147 = 0.6861 is equivalent to   20 log  

0.6861 = 3.27 dB. This is the improvement if we apply codebook with 

Gaussian pdf instead of uniform pdf 

4.5 Full search VQ  Results 

 In the following section Lloyd iteration for empirical data (training set) 

has been applied to generate codebook. Codebook for uniform and Gaussian pdf 

is generated .The FSVQ is applied to speech and image. The number of code 

words is 32. 

Table 4.6 Wave file on which FSVQ applied 

Wave file 
Properties 

om.wav 

Bitrate 64 kbps 

Audio Sample Size 8 - bit 

Channel 1 ( mono) 

Audio Sample rate 8 kHz 

Audio format PCM 

The Signal to Quantization Noise Ratio (SQNR) is defined by normalizing 

the signal power by the quantization error power and taking a scaled logarithm:  

2

1010logSQNR
MSE

σ 
=  

 
                                                                  (4.32) 
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 , measured in dB .It is usually assumed that the input process has zero mean 

and hence that the signal power is same as the variance σ2 of the signal. MSE is 

Mean Squared Error where error is ε = Q (X) – X 

Looking to the results in Table 4.7 SQNR with Gaussian pdf is better compared 

to SQNR with Uniform pdf for any VQ dimension. As VQ dimension increases 

SQNR decreases because more samples are grouped, this will increase 

quantization error. 

Table 4.7 SQNR (dB) for VQ dimensions for Om.wav 
VQ 

dimension 

SQNR ( dB) 

Uniform pdf 

SQNR ( dB) 

Gaussian pdf 

1 15.544 19.947 

2 14.355 16.452 

3 7.6393 11.21 

4 8.2723 10.78 

5 6.9166 9.9534 

6 7.4164 9.8926 

7 6.8965 9.3647 

8 6.0186 8.7807 

9 6.86 8.6589 

10 6.6571 8.2975 
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Figure 4.3   Vector dimension versus SQNR(dB) for om.wav 

Full search VQ   applied on image  

 Codebook design is very complex for VQ applied on image. Code words 

are blocks of pixels, usually power of 2. For 4x4 blocks at 1 bpp  216 code words 

are there.We take 16 images of size 256 x 256, i.e.  216 training vectors (4x 4 

each).Codebook size becomes 216 x 4  x 4 x  8 bits = 8.3 Mbits . If we consider 

4x4 blocks at 0.5 bpp , we have 28 ,i.e.256 code words. We take one 256x256 

image which consists of : 4096 training vectors. Now   codebook size becomes 

256 x 4 x 4 x 8 bits = 32.8 Kbits. 
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Figure 4.4   Vector Quantization of an image 

 

 In the following application codebook is designed from training image. 

4x4 blocks are used at 0.5 bpp: (2 to the power 8) i.e. 256 code words .Training 

image is 256x256 image, i.e.  4096 training vectors. Codebook size becomes 

256 x 4 x 4 x 8 bits = 32.8 Kbits .cameraman.tif file is test file to be VQ encoded , 

SQNR comes out to be  -23.844 dB. 

 

 

 

Figure 4.5   Training image for code book generation  
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Figure 4.6   Test Image before and after FSVQ applied  

 If we vary the number of code words the results are as follows. As 

number of code words varies, bits per pixel vary. Codebook size is number of 

code words x 4 x 4 x 8 bits = Kbits 

 No.of codewords 

(4 x 4 block ) =16  

No.of codewords 

(4 x 4 block ) =32  

No.of codewords 

(4 x 4 block )= 256  

SQNR(dB) 

(Uniform pdf) 

-21.635 -19.217 -20.241 

SQNR(dB) 

(Gaussian pdf) 

-25.702 -25.024 -23.372 

 
Table 4.8 SQNR (dB) for different number of code words for test image ( 4 x 
4 block) 
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Figure 4.7   SQNR(dB) Versus Bits per pixel for Test Image ( 4 x 4 block) 

 

 No.of codewords 

(8 x 8 block ) =16  

No.of codewords 

(8 x 8 block ) =32  

No.of codewords 

(8 x 8 block )= 256  

SQNR(dB) 

(Uniform pdf) 

-27.435 -26.74 -24.229 

SQNR(dB) 

(Gaussian pdf) 

-29.267 -29.132 -28.642 

 

Table 4.9 SQNR (dB) for different number of code words for test image (8 x 

8 block ) 
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Figure 4.8   SQNR(dB) Versus Bits per pixel for Test Image ( 8 x 8 block) 

 

 

 No.of codewords 

(16 x 16 block ) 

=16  

No.of codewords 

(16 x 16 block ) 

=32  

No.of codewords 

(16 x 16 block )= 

256  

SQNR(dB) 

(Uniform pdf) 

-31.852 -31.687 -30.808 

SQNR(dB) 

(Gaussian pdf) 

-32.671 -32.628 -32.409 

 

Table 4.10 SQNR (dB) for different number of code words for test image (16 

x 16 block ) 
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Figure 4.9   SQNR(dB) Versus Bits per pixel for Test Image ( 16 x 16 block) 

 

 

4.6 Summary 

           This chapter described the definition and concept of FSVQ. It also 

includes primary structure of vector quantizer and Nearest Neighbors quantizer. 

As a performance measure criteria distortion calculation is explained. Optimal 

conditions for VQ are studied. FSVQ design is applied on speech. SQNR for 

various VQ dimension are obtained. Similarly FSVQ design is applied to image. 

SQNR for 4x4, 8x8 and 16x16 blocks are obtained, which are depicted in SQNR 

versus bpp graph. For speech signal, applying FSVQ yields better SQNR with 

Gaussian pdf compared to uniform pdf .Applying  FSVQ on an image, as we 

increase bits per pixel ,  SQNR increases for Gaussian pdf as well as uniform pdf   
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for 4x4 block , 8x8 block and 16x16 block. In case of images uniform distribution 

is giving better results than Gaussian because pixel distribution is more close to 

uniform rather than Gaussian. Training image is selected in such away that it has 

almost all types of gray level variation to offer variety of codewords.There is no 

selection criteria for test image. If training and test image is same then we get 

best performance with zero quantization error.   
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Chapter 5  

Tree Structured Vector Quantizer 

5.1 Tree Structure 
 

One of the most effective and widely-used techniques for reducing the 

search complexity in VQ is to use a tree-structured codebook search. In tree-

structured VQ (TSVQ), the search is performed in stages. In each stage a 

substantial subset of candidate code vectors is eliminated by a relatively small 

number of operations. In an m-ary tree search with balanced tree, the input code 

vector is compared with m predesigned test vectors at each stage or node of the 

tree. The nearest (minimum distortion) test vector determines which of m paths 

through the tree to select in order to reach the next stage of testing. At each 

stage the number of candidate code vectors is reduced to 1/m of the previous set 

of candidates. Such a tree-structured search is a special case of classification 

tree (22). In many applications m=2 and we have a binary tree. 

If the codebook size is N=md , then d m-ary search stages are needed to 

locate the chosen code vector. An m-ary tree with d stages is said to have 

breadth m and depth d. The basic structure of the tree search is shown in figure 

5.1, where each node in the tree (except for the terminal nodes) is associated 

with asset of m test vectors, forming a node codebook. The figure shows the tree 

to the depth of three. The encoder first searches the root codebook C* and finds 

index i, then i becomes the first symbol in the m-ary channel vector and encoder 

advances along the ith branch emanating from the root node to node (i), where 

each node is represented by the m-ary path map describing how the encoder 

went from the root node to the current node (i). Given that the search has 

reached the current node (i), the encoder searches the corresponding node 

codebook Ci to find the minimum distortion test vector, which determines the next 

branch, and so on. Distributions of output points on the tree will decide the path 

through the tree for encoding. If distribution of output points on the tree is not 

symmetrical, then the tree becomes unbalanced.   
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Figure :- 5.1   Basic Structure of Tree-Structured VQ Encoding 

 

Since a tree-structured codebook only affects the search strategy, 

the decoder does not need the test vectors and is in fact identical to that of the 

conventional VQ. 
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TSVQ Encoder 

0. Given : Depth d, breadth m, rate log2m
d
 bits per input vector x. 

1. Root node: Find the code word y Є C* minimizing d(x,y). Let u0 Є { 0,1,…,m-1} 

be the index of this minimum distortion word. Set the one-dimensional channel 

m-ary code word to u1 = u0 and advance to node (u1). Set the current tree depth 

k=1. 

2. Given the k-dimensional channel codeword uk = (u0 , u1,…,uk-1) , and the 

current node (uk ) , find the code word y Є Cu
k
 minimizing the distortion d(x,y) . 

Let uk denote the index of the minimum distortion code word. Set the (k+1)-

dimensional channel m-ary codeword uk+1
 equal to the concatenation of uk

 and uk 

: uk+1
 = (uk , uk ) = (u0 , u1,…,uk)  

3. If k +1 =d , halt with the final channel codeword ud
 (corresponding to a 

reproduction vector Cu
d-1

 ). Otherwise set k +1  � k and go to step 2. 

Table 5.1 TSVQ Encoder 

The number of search operations at each stage is proportional to m since 

each test is an exhaustive nearest neighbor search through a set of m test 

vectors. Thus , the total search complexity is proportional to md rather than md
 

where the proportionality constant depends on the vector dimension k. On the 

other hand, the storage requirement of TSVQ is increased compared to 

unstructured VQ. In addition to storing md
 code vectors (the leaves of the tree) , 

the test vectors for each node of the tree must also be stored. There is one node 

at the first stage , m nodes at second stage , m2 nodes at the third stage, etc. 

Hence, the total number of nonterminal nodes is 1 + m + m2
 + … + md-1

  = ( md
  - 

1) / (m -1). Since each non terminal node stores m code or test vectors , the total 

number of k-dimensional vectors to be stored including code vectors is m(md
  - 1) 

/ (m -1). Alternatively, one must store md
 code vectors plus 
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d-1 
∑    ml

 = m(md-1
  - 1) / (m -1)                                                                 (5.1) 

l=1 

additional test vectors. 

 The simplest tree structure to implement is the binary tree where m=2. In 

this case the complexity is reduced by a factor of 2d/2d
 compared to ordinary VQ 

and the total storage is 2(2d
 -1 ) vectors , slightly less than double that of ordinary 

VQ with the same codebook size N = 2d . For a given codebook size the 

complexity increases proportional to m/logm and the storage decreases in 

proportion to m/ (m-1) as the tree breadth m increases. For a binary tree, the 

complexity is lowest and the storage is highest. In TSVQ as we increase m, 

complexity increases and storage reduces. Storage and distortion requirements 

can be compensated by increasing the depth of the tree with the increase in m. 

Alternately the tree structure can also be formed as below. 

  

Figure 5.2 Tree Structure VQ with L=3 levels. 

In the codebook C, at the root of the tree is a single codebook C0   of 

length m and size M0=2 mR
0. This situation is depicted in figure 5.2. Here the input  

Input Vector 

C0 

C1,0 C1,1 

C2,0 C2,0,1 C2,1,0 C2,1,1 

x0 x1 x2 x3 x4 x5 x6 x7 

Final Code Vectors 

Level 1 

Level 2 

Level 3 
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vector is used to calculate the codebook for various VQ dimension and tree 

depth(L). 

At level 1 of the tree, there are M0 codebooks C1.q0    where q0 =1,2 ……, 

M0  -1.Each of these codebook is    of  length m and size  M1=2 mR
1. At level 2 of 

tree, there are M1 denoted by codebooks C2.q0,q1 where q1 =1,2,3,..,M0 -1.Each of 

these codebook is    of  length m and size  M2=2 mR
2. The union of all codebooks 

at the final level (tree depth) forms the codebook of the TSVQ.   

In this figure, there are three levels with M0= M1 = M2=2. At level 0 (or the 

root) of the tree is a single codebook C0   size of one .The possible index 

selection is shown as 1 and 2. At level 1 of the tree, there are two codebooks C1.0    

C1.1, each of size two, for a total of four code words. At level 2 of the tree, there 

are four codebooks C2.0,0 ,   C2.0,1, C2.1,0 C2.1,1,  each of size two, for a total of eight 

code words. At this level leaves are added to form the codebook of TSVQ. 

An m-ary tree with L stages is said to breadth m and depth L. The 

following table shows the codebook size of the TSVQ. 

 
Tree Level 

(L) 

Codebook Size (M) No. of code words 

Root 1 1 

1 M0=2 mR
0 2 m (R

0)                      = 2 

2 M1=2 mR
1 2 m (R

0 
+ R

1)                = 4 

3 M2=2 mR
2 2 m (R

0 
+ R

1
+ R

2)           =8 

n Mn=2 mR
n 2 m (R

0 
+ R

1
+ R

2
+ ……..+R

n  ) 

 
Table 5.2 Sizes of Codebook and Code words for TSVQ. 

A TSVQ is most easily visualized as a tree, which is labeled with vectors 

and is searched by the encoder. A sequential encoding algorithm is suitable. The 

encoder can easily be implemented as a finite state machine with one-step 

memory, with each step the encoder does a full search of a small codebook, 

produces a binary vector, and then selects a new codebook based on decision.  
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The rate of resulting (R1,..,Rn) TSVQ is given by R=1/m * log 2 M. Since 

one codebook must be searched at each level, the search complexity of TSVQ is 

proportional to2 m (R
0 

+ R
1
+ R

2
+ ……..+R

n
). The smallest complexity is achieved for the 

binary tree with Mn=2 Or Rn=1/m. Total search complexity is proportional to         

n 2 mR/n. The complexity of TSVQ can grow only linearly in rate and dimension 

(as opposed to exponentially as in the full search case). But the storage space 

required for the code words is roughly doubles. 

5.2 Design of Tree-Structured VQ 

A standard method for designing the tree structure is based on application 

of the generalized Lloyd algorithm (GLA) to successive stages using a training 

set. The procedure, which was proposed in (10), is a variation on the standard 

splitting method of designing full search VQ. Similar methods have been used in 

the field of pattern classification. It is better to design vector quantizer within the 

framework of the tree structure rather than imposing the tree structure on the 

quantizer, because complexity is reduced. 

 The first step is identical to that of a standard Lloyd design with the 

splitting technique: the optimum resolution 0 bit code is found, that is the code 

having only a single codeword, the centroid of the entire training set. This 

codeword is then split into two, and the Lloyd algorithm is run to produce a good 

resolution 1 bit code. The ordinary Lloyd (full search) design would now proceed 

by splitting the two code words and running the Lloyd algorithm on the full 

training set to obtain a new codebook of four words. Instead, here the nearest 

neighbor (optimum) encoder is replaced by the following encoder. The encoder 

first looks at the 1 bit codebook and selects nearest neighbor. Given that 

selection, it then confines its search to the descendants of the selected 

codeword, i.e., to the two words formed by splitting the selected word. It encodes 

the training set and then replaces all four code words by the centroid of all 

training vectors mapped into those nodes. 
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The replacement encoder has substituted two binary searches for a single 

quaternary search, but the remainder of the algorithm is the same. This depth 2 

binary tree offers no saving in complexity as the two encoders have comparable 

complexity and the double binary search is not an optimum search (may not find 

nearest neighbor). It has following useful property: the first channel codeword bit 

itself specifies a 1 bit reconstruction. The second bit improves upon the first. The 

ordinary full search VQ has no such property. 

 TSVQ design algorithm can be viewed as a simple variant of 

splitting version of the generalized Lloyd algorithm. 

TSVQ Design Procedure 

1. Use the training set T to generate a code book C* of size m test vectors 

for the root node (level 1) of the tree.  Partition the training set into m new 

subsets T0 , T1 , .. , Tm-1 . 

2. For each i, design a test codebook Ci  of size m using the GLA applied to 

Ti (level 2). 

3. Partition each training set Ti into m training subsets Tij and use these new 

training sets to design m2
 test codebooks Cij for level 3 

4. Continue this process until level d-1 is reached. The collection of all these 

test vectors at this level constitutes the codebook. 

 
Table 5.3 TSVQ Design Procedure 

 

5.2.1 Tree Generation 

 
The first step is to compute the centroid of the set of training vectors and use 

it as the root level codeword. To find the children of this root, the centroid and a 

perturbed centroid are chosen as initial child code words. For this Є ≥ 0 is a 

distortion threshold, δ > 0 is a perturbation, is used in the node splitting technique 

to generate tree. Based on node splitting technique and a decision criterion, 

codebook is prepared.  This process continuous till pre-selected size of tree  
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depth (L) is obtained. This defines the size of the codebook. The tree-generated 

codebook is used by TSVQ for quantization purpose. The final codebook is the 

collection of the leaf level code words at tree depth (L). The typical values for Є 

=0.005 and δ =0.01. The perturbation criteria are based on the source 

distribution. If the samples are highly correlated then small perturbation will do. If 

the samples have less correlation then perturbation can be high. TSVQ design 

process deviates from the splitting process of Full Search VQ in the following 

way. Splitting in Full search VQ considers the entire training set on the 

calculation of the centroid to generate next resolution code words. While in TSVQ 

after splitting the code words only the nearest neighbor training vectors of the 

split code words are considered for the generation of the next resolution code 

words. Pruning refers to the idea of starting with the training set and selectively 

eliminating (pruning) training vectors as code vectors until a final set of the 

training vectors remains as the code book. A sequence of training vectors is used 

to populate a codebook recursively as follows: put the first training vector in the 

codebook. Then compute the distortion between the next training vector and the 

first code word. If it is greater than the threshold, add the new training vector to 

the codebook as code word. With each new training vector, find the nearest 

neighbor in the codebook. If the resulting distortion is not within some threshold, 

add the new training vector to the codebook. Continue in this fashion until the 

codebook has enough code words. So looking to the working of pruning, it does 

not generate tree structured code words. Splitting generates tree structured code 

words. So splitting is used rather than pruning in TSVQ. 

5.2.2 Tree search 

  The tree search must generate various tentative paths in the code tree; 

compare them to the sequence of speech/image samples, and evaluating an final 

output path. The encoder rate is log 2 b bits per sample, where b is the no. of 

quantizer levels, or branching factor of the tree. For this the breadth-first scheme, 

meaning that it views all branches that it will ever view at one tree level before  
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moving into the next level. At The decoder, a replica of the code tree generator 

simply recalculates the sequence chosen at the decoder. 

A particular search leads to a particular path down the tree till a terminal 

node is reached. Each terminal corresponds to a particular vector in a codebook. 

Binary tree search VQs is also used for design of fixed sequence training vector. 

Unlike full searching, the result codeword may not be the optimal one 

since only part of the tree is traversed. However, the result codeword is usually 

close to the optimal solution, and the computation is more efficient than full 

searching. If the tree is reasonably balanced (this can be enforced in the 

algorithm), a single search with codebook size can be achieved in time, which is 

much faster than exhaustive searching with linear time complexity. 

 
5.3 TSVQ  Results 
 

TSVQ is applied to speech waveform. Extensive computer simulations 

were carried out to evaluate the performance of each design. Simulation code 

used a locally generated uncoded speech file maja_ma_ne.wav as, training 

sequence of 8 kHz-sampled speech. Vectors are set as per VQ dimension and 

tree depth (L) is considered from 1 to 10.  To generate tree, node-splitting criteria 

is applied. Tree- structured codebook was used to reduce the encoder and 

decoder complexity with large size codebooks. Another uncoded speech file 

kem_chho.wav of 8 kHz-sampled speech is used as test file. To calculate 

distortion measure, mean squared error was used. From this SQNR was find out 

to measure the performance of VQ. Also, the same process was repeated using 

Gaussian pdf. The test speech file was replaced and played without and with 

Gaussian pdf generated code words to observe the effect of VQ. 

                               TSVQ is constrained since every input vector is constrained 

to search with the code words at the nodes of the tree rather than searching the 

entire code book.   To simulate the TSVQ, a training sequence   and a test  
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speech is required. Table 5.4 shows detailed parameters of both the speech 

signals. 

 

 

 

 

 

 

 

 

 

 

Table 5.4 Speech Signals used for TSVQ Simulation        

Vectors of training sequence are   set as per VQ dimension. To prepare 

the tree-structured codebook it is essential to generate tree structure. Tree depth 

(L) is a crucial factor to define the size of codebook. For SQNR calculation range 

of L is kept from 1 to 10,while for replacement file the value of L is required to be 

decided by the user. The root (centroid(s)) of the tree is calculated from the 

samples of training sequence. 

For VQ=1 i.e. SQ, at the root of the tree is single centroid of length 1 and 

size 1.To generate tree, node- splitting criteria is applied. At each root and every 

sub-root two branches are formed. Є=0.01 is used as the splitting factor to 

traverse the tree. At level 1 of the tree, from centroid’s value, value of Є is added 

in the right side and value of Є is subtracted in the left side. This process is 

continued till last tree depth is reached. At level 1 of the tree, the size of 

codebook is two.    At level 2 of the tree, the size of codebook is two. At level 3 of 

the tree, the size of codebook is three and so on. 

For VQ=2, at the root of the tree are two centroids of length 1 and size 

1.Tree will be generated for both the centroids as explained above. At level 1 of 

the tree, the size of codebook is four, two for each centroid.    At level 2 of the  

Speech 
file/Properties 

 

Maja_ma_ne.wav Kem_chho.wav 

Use  Codebook Generation Test File 
Bit Rate 64kbps 64kbps 
Audio Sample Size 8-bit 8-bit 
Channels 1(Mono) 1(Mono) 
Audio Sample Rate 8 kHz 8 kHz 
Audio format PCM PCM 
Size 11.7 KB  

(12,060 bytes) 
7.87 KB 
 (8,060 bytes) 
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tree, the size of codebook is four, two for each centroid. At level 3 of the tree, the 

size of codebook is eight, four for each centroid and so on. 

To generalize the codebook concept, for VQ=N, at the root of the tree are 

N centroids of length 1 and size 1.Tree will be generated for all N centroids as 

explained above. At level 1 of the tree, the size of codebook is 21 x N, 1(21 x N) 

for each centroid.    At level 2 of the tree, the size of codebook is 22 x N, 2(22 x N) 

for each centroid. At level L of the tree, the size of codebook is 2L x N, L (22 x N) 

for each centroid and so on. 

Tree-structured codebook is generated for VQ up to 10. For SQNR 

calculation range of tree depth L is kept from 1 to 10, while for replacement file 

the value of tree depth L is required to be decided by the user. 

The performance of a compressed sound using TSVQ is also measured 

with Signal to Quantization Noise Ratio (SQNR). The SQNR defined by 

normalizing the signal power by the quantization error power and taking a scaled 

logarithm: f 

2

1010logSQNR
MSE

σ 
=  

 
                                                                              (5.2) 

measured in dB .It is usually assumed that the input process has zero mean and 

hence that the signal power is same as the variance σ2 of the signal.  Using wav 

files as stated in Table 5.4, we obtained the result of SQNR vs Tree depth (L) for 

different VQ dimension without Gaussian pdf. The following figure 5.3 depicts 

resultant plot for VQ dimensions 1 to10 and tree depth 1 to 10. Table 5.5 shows 

the values of SQNR in dB for speech without Gaussian pdf. Looking to the 

results in figure 5.3, with VQ dimension =10 SQNR remains almost constant at 

different tree depth. The reason is as follows. At such a high vector dimension, 

the vector components themselves are highly correlated so that MSE remains 

almost constant at different tree depths. Hence SQNR also remains almost 

constant at different tree depths. 
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Figure 5.3 TSVQ Encoded Speech With Uniform pdf for VQ=1 to 10 

 
VQ Dimension Tree 

Depth (L) 1(SQ) 2 3 4 5 6 7 8 9 10 

1 34.794 28.345 24.782 22.31 20.513 19.071 19.197 16.887 16.232 15.546 

2 36.184 29.214 25.312 22.573 20.764 19.276 19.373 17.025 16.403 15.665 

3 36.461 29.184 25.34 22.736 20.895 19.369 19.437 17.093 16.475 15.725 

4 37.876 29.843 25.708 22.85 20.991 19.448 19.496 17.121 16.523 15.744 

5 37.915 29.649 25.626 22.927 21.038 19.47 19.5 17.136 16.53 15.754 

6 39.264 30.231 25.928 22.986 21.084 19.505 19.526 17.139 16.547 15.754 

7 39.123 29.957 25.792 23.022 21.095 19.501 19.512 17.143 16.539 15.756 

8 40.497 30.5 26.061 23.052 21.118 19.52 19.531 17.142 16.549 15.755 

9 40.202 30.174 25.892 23.066 21.114 19.509 19.514 17.145 16.54 15.756 

10 41.59 30.693 26.138 23.081 21.128 19.524 19.531 17.142 16.55 15.755 

 
Table 5.5      Simulation results of SQNR (dB) for Speech without Gaussian 
pdf signals. 

Using wav files as stated in Table 5.4, we obtained the result, SQNR vs 

Tree depth (L) for different VQ dimension with Gaussian pdf. The following figure 

5.4 depicts resultant plot for SQNR vs Tree Depth for VQ dimensions 1 to10 and 

Tree depth 1 to 10. Table 5.6 shows the values of SQNR in d for speech with 

Gaussian pdf. 
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Figure 5.4 TSVQ Encoded Speech With Gaussian pdf for VQ=1 to 10 

 

 
 

VQ Dimension 

Tree 
Depth 

(L) 
1(SQ) 2 3 4 5 6 7 8 9 10 

1 34.778 28.415 24.827 22.304 20.493 19.157 19.238 16.882 16.284 15.537 

2 36.240 29.180 25.245 22.582 20.760 19.363 19.421 17.033 16.452 15.666 

3 36.444 29.249 25.404 22.748 20.881 19.467 19.486 17.099 16.535 15.721 

4 37.921 29.816 25.645 22.864 20.996 19.540 19.552 17.137 16.578 15.750 

5 37.842 29.724 25.694 22.942 21.029 19.571 19.553 17.146 16.593 15.755 

6 39.310 30.206 25.867 23.002 21.091 19.599 19.583 17.155 16.604 15.763 

7 39.048 30.036 25.864 23.039 21.087 19.603 19.566 17.153 16.603 15.759 

8 40.550 30.475 26.001 23.070 21.125 19.615 19.588 17.158 16.607 15.764 

9 40.117 30.257 25.967 23.085 21.107 19.611 19.568 17.154 16.605 15.759 

10 41.673 30.670 26.079 23.099 21.136 19.619 19.588 17.158 16.607 15.764 

 
Table 5.6 Simulation results of SQNR in dB for TSVQ Encoded Speech with 
Gaussian pdf  signals. 

 

To check the improvement in performance, SQNR using Gaussian Pdf, 

Figure 5.5 shows resultant plot for SQNR vs Tree Depth for VQ dimension of 6 

and tree depth of 10.  
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Figure 5.5. TSVQ Encoded Speech Performance with Tree Depths for 

Uniform and Gaussian pdf and VQ = 6 

Now we describe a variety of design and simulations for TSVQ applied to 

image. Extensive computer simulations were carried out to evaluate the 

performance of each design. Simulation code used a black and white   image 

‘cameraman.tif’ as the training sequence of size 256 X 256. Vectors are set as 

per VQ dimension and tree depth (L) is considered from 1 to 10.   

 
To generate tree, node-splitting criteria is applied. Tree- structured 

codebook is used to reduce the encoder and decoder complexity with large size 

codebooks. Another black and white image ‘moon.tif’ is used as a test file. To 

calculate distortion measure, mean squared error was used. From this PSNR 

was find out to measure the performance of VQ. Also, the same process was 

repeated using Gaussian pdf. The test image is replaced and played without and 

with Gaussian pdf generated code words to observe the effect of VQ. 

TSVQ is constrained VQ technique for data compression, where the code 

vectors form a highly tree structure.  To simulate the TSVQ, a training sequence   

and a test image is required. Table 5.7 shows detailed parameters of both the 

images. There is no specific criterion for selecting test image. Although it is 

selected such that variations in the test image can be taken care by the 

codebook image.i.e.No variations larger than the code book image. 
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Table 5.7 Images used for TSVQ Simulation 

 

For VQ=1 i.e.SQ, at the root of the tree is single centroid of length 1 and 

size 1.To generate node splitting criteria is applied as it was in the case of 

speech simulations. At each root and every sub-root two branches are formed. 

Є=0.01* 255 is used as the splitting factor to traverse the tree. At level 1 of the 

tree, from centroid’s value, value of Є is added in the right side and value of Є is 

subtracted in the left side. This process is continued till last tree depth is reached. 

At level 1 of the tree, the size of codebook is two.    At level 2 of the tree, the size 

of codebook is two. At level 3 of the tree, the size of codebook is three and so on. 

The performance of a compressed image using TSVQ is also measured 

with Peak Signal to Noise Ratio (PSNR).  The PSNR defined by normalizing the 

signal power by the quantization error power and taking a scaled logarithm:  

    PSNR = 10 log10 ((2
n
  - 1)2 / MSE)                                                             (5.3) 

measured in dB, where n is the number of bits per symbol , MSE is Mean 

Squared Quantization Error.As an example, if we want to find the PSNR between 

two 256 gray level images, then we set n to 8 bits. It is usually assumed that the 

input process has zero mean and hence that the signal power is same as the 

variance σ2 of the signal samples. Using images as stated in Table 5.7, we  

Image file/Properties 

 

'cameraman.tif' 'moon.tif' 

Use  Codebook 
Generation 

Test Image  

Resolution 
 

256 x 256 537 x 358 

Pixel 8-bit (uint 8array) 8-bit (uint 8array) 
Total Samples 65536 192246 
Format tif tif 

Image Type Monochrome Monochrome 
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obtained the result of PSNR vs Tree depth (L) for different VQ dimension without 

Gaussian pdf.  

The figure 5.6 depicts resultant plot for VQ dimensions 1 to10 and tree 

depth 1 to 10. 
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Figure 5.6. SQNR versus Tree Depth for TSVQ Encoded Image with Uniform 

pdf for VQ=1 to 10 
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Table 5.8 shows values of PSNR in dB for image compression without 

Gaussian pdf.  

 

VQ Dimension 

Tree 
Depth 

(L) 
1(SQ) 2 3 4 5 6 7 8 9 10 

1 19.987 11.917 7.7436 4.8690 2.590 0.7679 -0.796 -2.105 -3.295 -4.339 

2 20.529 12.243 8.0693 5.1919 2.911 1.0905 -0.477 -1.783 -2.973 -4.017 

3 21.082 12.569 8.3931 5.5125 3.230 1.4106 -0.161 -1.464 -2.654 -3.698 

4 21.647 12.893 8.7147 5.8304 3.546 1.7274 0.1519 -1.148 -2.339 -3.382 

5 22.224 13.217 9.0338 6.1451 3.859 2.0404 0.4613 -0.836 -2.028 -3.072 

6 22.813 13.539 9.3497 6.4561 4.167 2.3490 0.7664 -0.529 -1.721 -2.765 

7 23.416 13.859 9.6622 6.7629 4.469 2.6524 1.0660 -0.227 -1.420 -2.464 

8 24.033 14.178 9.9706 7.0649 4.766 2.9500 1.3609 0.0687 -1.125 -2.169 

9 24.664 14.496 10.275 7.3615 5.057 3.2408 1.6489 0.3575 -0.838 -1.882 

10 25.311 14.812 10.573 7.6521 5.340 3.5242 1.9299 0.6381 -0.558 -1.604 

 
Table 5.8 PSNR (dB) for TSVQ Encoded Image with Uniform pdf. 

 

Using Images as stated in Table 5.7, we obtained the result, PSNR vs 

Tree depth (L) for different VQ dimension with Gaussian pdf. Table 5.9 shows the 

values of PSNR in dB  for image compression with Gaussian pdf.  
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Figure 5.7. SQNR Versus Tree Depth for TSVQ Encoded  Image With 

Gaussian pdf for VQ=1 to 10 

 

VQ Dimension 

Tree 
Depth 

(L) 
1(SQ) 2 3 4 5 6 7 8 9 10 

1 32.226 18.873 11.598 7.5007 4.8438 2.9165 1.6716 -0.1649 -1.4384 -2.5212 
2 32.596 19.150 11.915 7.8269 5.1546 3.2270 1.9805 0.14046 -1.1345 -2.2180 

3 33.075 19.549 12.251 8.1369 5.4565 3.5292 2.2791 0.43811 -0.8380 -1.9222 
4 33.351 19.806 12.542 8.4342 5.7483 3.8219 2.5658 0.72695 -0.5501 -1.6349 

5 33.805 20.198 12.856 8.7206 6.0287 4.1038 2.8395 1.0059 -0.2717 -1.3570 
6 34.075 20.443 13.124 8.9925 6.2966 4.3738 3.0995 1.2738 -0.0040 -1.0898 

7 34.538 20.828 13.415 9.2515 6.5512 4.6308 3.3458 1.5295 0.2519 -0.8342 
8 34.810 21.062 13.657 9.4940 6.7914 4.8735 3.5780 1.7718 0.4949 -0.5915 

9 35.285 21.439 13.923 9.7220 7.0163 5.1008 3.7970 1.9996 0.7238 -0.3628 
10 35.564 21.658 14.138 9.9326 7.2253 5.3118 4.0031 2.2116 0.9375 -0.1493 

 

Table 5.9 PSNR (dB) for TSVQ Encoded Image with Gaussian pdf. 
 

To check the improvement in performance, PSNR using Gaussian pdf, 

figure 5.8 shows resultant plot for PSNR vs Tree Depth for VQ dimensions of 6 

and Tree depth 1 to 10. 

Although the PSNRs of the reconstructed images that are decoded with 

Gaussian Pdf compression method and that with Gaussian pdf compression 

method are seems to be improved very much.  
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Figure 5.8. PSNR Versus Tree Depth for TSVQ Encoded  Image With 

Uniform pdf  and With Gaussian pdf for VQ=5. 

Using images as stated in Table 5.7, we retrieve the resultant image for 

different VQ dimension without Gaussian pdf. Figure 5.9 shows the resultant 

reconstructed image without Gaussian pdf for VQ=2, Tree Level= 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. TSVQ decoded  Image with Uniform pdf for VQ=2 and tree level 

=10. 
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Using images as stated in Table 5.7, we retrieval the resultant images for 

different VQ dimension with Gaussian pdf. Figure 5.10 shows resultant the 

reconstructed image with Gaussian pdf for VQ=2, Tree Level=10. 

 

 

 

 

 

 

 

 

Figure 5.10 TSVQ decoded Image with Gaussian pdf for VQ=2 and tree level 

=10. 
 

Bits per pixel 

A natural way to apply TSVQ to images is to decompose a sampled image 

into rectangular blocks of fixed size and use this blocks as the vector. For 

example, each vector may consist of a square block of 2 x 2 of picture elements 

or pixels, so each vector has 4 coordinates. A digital image has a resolution of 8 

bits per pixel (bpp). The goal of VQ is to reduce this less than 1 bit per pixel 

without perceptible loss of picture quality. The table 5.15 indicates bpp value for 

SQ as well as VQ =2 to VQ=10. 

VQ Dimension Image block Size Bits per pixel 

1(SQ) 1 x 1 1 

2 2 x 2 0.5 

3 3 x 3 0.33 

4 4 x 4 0.25 

5 5 x 5 0.20 

6 6 x 6 0.167 

7 7 x 7 0.143 

8 8 x 8 0.125 

9 9 x 9 0.111 

10 10 x 10 0.1 

Table 5.10 Bits per pixel and VQ Dimension for TSVQ 
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Figure 5.11 depicts PSNR vs bits per pixel (bpp) for tree depth of 5. 
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Figure 5.11 PSNR vs bits per pixel (bpp) for tree depth of 5. 

We can observe that the Tree-structured vector quantization (TSVQ) is a 

highly efficient technique for locating an appropriate codeword for each input 

vector. The algorithm does not guarantee that the selected codeword is the 

closest one to the input vector. Consequently, the image quality of TSVQ is 

worse than that of full-search VQ (FSVQ).The evaluation criteria for the 

comparison is SQNR. FSVQ with 256 code words applied on the image yields -

20.241 and -23.372 dB for Uniform and Gaussian pdf respectively for 4x4 blocks 

(Refer to Table 4.8). While for the same number of code words, 256, with tree 

depth = 8, TSVQ applied on image yields -33.952 and -27.069 dB respectively for  

Uniform and Gaussian pdf respectively ( Refer to Table 5.8 and 5.9 ).Here  

PSNR is normalized by subtracting 20log10(255) = 48.131 dB in the respective 

observation values of Table 5.8 and 5.9. Comparing these values we find that 

SQNR performance in TSVQ is worse than that of FSVQ by 13.711 and 3.697 dB 

for Uniform and Gaussian pdf respectively. 
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5.4   Summary  

This chapter explains the TSVQ approach for compression in general.This 

includes the operation of TSVQ encoder. Tree generation approach with node 

splitting criteria, consideration of the codebook size, computational and memory 

requirements and tree-searching algorithm is discussed in detail. Technique of 

design and simulations of TSVQ for speech signal is applied. Extensive computer 

simulations were carried out to evaluate the performance of design. Simulation 

used two uncoded speech signal, one to generate tree structured codebook and 

another speech signal is used as test file. SQNR is obtained for VQ dimensions 1 

to 10 with tree depth of 1 to 10 for without Gaussian pdf and with Gaussian pdf. 

For reconstructed signal VQ dimension and tree depth are to be decided by the 

user. 

 

We also described method of design and simulations of TSVQ for Image. 

Extensive computer simulations were carried out to evaluate the performance of 

design. TSVQ is applied to speech for VQ dimensions 1 to 10 and tree depth 1 to 

10 with Uniform as well as Gaussian pdf. Similarly TSVQ is applied to image for 

VQ dimensions 1 to 10 and tree depth 1 to 10 with Uniform as well as Gaussian 

pdf. In Gaussian pdf better performance is obtained compared to Uniform pdf in 

both the cases.  Simulation code used two monochrome images, one to generate 

tree structured codebook and another image is used as a test file. PSNR is 

obtained for VQ dimensions 1 to 10 with tree depth of 1 to 10 for without 

Gaussian pdf and with Gaussian pdf. For the reconstructed image VQ dimension 

and tree depth are to be decided by the user. 
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Chapter 6  

Multi Stage Vector Quantizer 

6.1 Multi Stage Vector Quantization  
 

Multi Stage Vector Quantization (MSVQ) is a very efficient signal coding 

technique. It has met with considerable success in audio coding, and has 

recently been found to be applicable also to image and video coding (71). The 

low complexity and memory requirements were among the most attractive 

features of MSVQ. In the case of images, blocks of uniform size are input to the 

quantizer which in turn finds the best set of MSVQ-parameters.MSVQ 

decomposes the source vector into the sum of Code vectors, one per stage. 

Historically, MSVQ was conceived as a sequential quantization operation where 

each stage simply quantizes the residual of the previous stage. More recently, 

the greedy nature of simple sequential encoding was recognized, and efficient 

techniques were proposed to seek better approximation of the source vector as 

combination of stage-vectors (72). 

In all prior work, it was implicitly assumed that scalability is accomplished 

by using a tree-structured decoding scheme, i.e., reproduction at layer is an 

unconstrained function of all encoding indices from layer to layer. Of course, tree 

structured decoding is not a special case, but rather, it is the most general, and 

hence the optimal scalable coding strategy. However, its natural implementation, 

tree-structured vector quantization (TSVQ) (73), is usually impractical due to its 

high codebook storage requirements and demand for a huge training set in the 

design stage. To mitigate these complexity barriers, in most practical applications 

such as speech coding, a special case of TSVQ, namely, the multistage vector 

quantization (MSVQ) (73), is preferred. MSVQ is what we call an “additive” 

refinement structure, because refinement is based on adding a new vector, which 

is a function of only the current layer encoding index, to the previous layer 

reconstruction. In Figure 6.1, the decoding structures of TSVQ and MSVQ are 

compared. 
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Figure :- 6.1   The TSVQ (left) and MSVQ (right) decoders 

 

An M-stage MSVQ consists of M codebooks C1, C2…CM . The codebook 

Ci is a set of 2ri code vectors addressable by a ri bit index Ii . A given source 

vector x is approximated by  

x^ = u1( I1) + u2( I2) + …+ uM( IM)                                                                  (6.1) 

where ui( Ii) is a code vector in Ci , which is indexed by Ii  .The objective of the 

encoding operation is to select a code vector from each codebook such that the 

error d(x, x^ ) is minimized where d(.,.) is a distortion measure. The set of indices 

( I1, I2, …, IM) is transmitted and allows decoder to produce x^. 

 

If a random vector x is such that it does not have a wide variation of gain 

or of mean values, then shape-gain or mean-removed VQ methods are not likely 

to be very helpful. In mean-removed VQ mean is removed from the vector and 

VQ is performed over mean-removed residual. In shape – gain VQ root mean-

square value of the vector components (gain) and normalized input vector 

(shape) are vector quantized. If the dimension is quite large, partitioned VQ 

would certainly solve the complexity problem but might severely degrade 

performance when there is substantial statistical interdependence between 

different sub vectors. If we are as concerned with storage as with search 

complexity, then general tree-structured VQ and classified VQ are not helpful.  
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Furthermore, transform VQ may be of very limited help if the degree of 

compaction achievable still results in too high a vector dimension.  

One alternative technique that has proved valuable in a number of speech 

and image coding applications is multistage or cascaded VQ (74).The technique 

is also sometimes referred to as residual VQ (37) (75).The basic idea of 

multistage VQ (MSVQ) is to divide the encoding task into successive stages, 

where the first stage performs a relatively crude quantization of the input vector 

using a small codebook. Then, a second stage quantizer operates on the error 

vector between the original and quantized first stage output. The quantized error 

vector then provides a second approximation to the original input vector thereby 

leading to a refined or more accurate representation of the input. A third stage 

quantizer may then be used to quantize the second stage error vector to provide 

a further refinement and so on. In comparison with a Full Search single quantizer 

with same total number of bits and operating on GLA, a two-stage quantizer has 

the advantage that the codebook size of each stage is considerably reduced so 

that the total search complexity is substantially lowered. The price paid for this 

advantage is an inevitable reduction in overall SNR achieved with two stages. 

This has been shown by Gersho and Gray (73). 

 

We consider first the special case of two-stage VQ as illustrated in figure 

6.2.The input vector X is quantized by the initial or first stage vector quantizer 

denoted by Q1.The quantized approximation X^
1  is then subtracted from X 

producing error vector E2.This error vector is then applied to a second vector 

quantizer Q2 yielding the quantized output E^
2.The overall approximation X^ to 

the input X is formed by summing the first and second approximations, X^
1 and 

E^
2. The encoder for this VQ scheme simply transmits a pair of indexes 

specifying the selected code vectors for each stage and the task of the decoder 

is to perform two table lookups to generate and then sum the two code vectors. 
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Figure: - 6.2   Two-Stage VQ 

 

By inspection of the figure it may be seen that the input-output error is 

equal to the quantization error introduced by second stage, i.e. X- X^ = E2 – E^
2. 

From this equation it can be readily seen that the signal to quantization noise 

power ration in dB (SNR) for the two stage quantizer is given by SNR = SNR1 + 

SNR2, where SNRi is signal–to–noise ratio in dB for the ith quantizer. In 

comparison with a single quantizer with same total number of bits, a two-stage 

quantizer has the advantage that the codebook size of each stage is 

considerably reduced so that the total search complexity is substantially lowered. 

The price paid for this advantage is an inevitable reduction in overall SNR 

achieved with two stages. 

The two stages VQ scheme can be viewed as two level TSVQ.To see this, 

let K1 = {X^
1, j; j=1… N1}. Denote the codebook of quantizer Q1 and K2 = { X^

2,j ; 

j=1,…,N2}. Denote the codebook of quantizer Q2. Then the first level TSVQ 

codebook coincides with the first stage codebook, i.e. C* = K1. The second level 

TSVQ  codebooks correspond to shifted versions of the second stage codebook 

K2,i.e., Cj = { X^
 1,j + E

^
2,j  ; i =1,…, N2 }. Thus the 2-stage VQ structure is exactly 

equivalent to specific two-level codebooks. 

 The general multistage VQ method can be generated by induction 

from two-stage scheme. By replacing the box labeled Q2 in figure 6.2, with a two-

stage VQ structure, we obtain 3-stage VQ. By replacing the last stage of an m-

stage structure, we increase the number of stages to m+1. The general  
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configuration for an MSVQ encoder is easily inferred from figure 6.3 which 

illustrates 3 stage case. The corresponding decoder is shown in figure 6.4. 

 

Figure :- 6.3   Multistage Encoder 

 

 

 

Figure :- 6.4   Multistage VQ Decoder 

 

 

The vector quantizer at each stage operates on the quantization error 

vector from the previous stage. Each stage generates an index that is sent to the 

decoder. 
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          In the multistage approach , the input vector is represented as the sum of 

two or more vectors of the same dimension as the original, where each 

successive term of the sum can be considered as a refinement  or successive 

approximation improvement of previous terms. The reproduction vector is 

computed in the following form: 

X^ = X^
1 + E^

2 + …+ E^
m                                                                                (6.2) 

The first stage quantizer approximates X with X^
1 using a codebook K1 of size N1. 

The second stage quantizer Q2 is used to approximate the quantization error 

vector E2 = X – X^
1 using a codebook K2 so that 

X^
2 = X^

1 + E^
2                                                                                               (6.3) 

is an improved approximation to X. Similarly, the third stage quantizer 

approximates the quantization error vector E3 = X - X^
1 - E

^
2 associated with the 

second stage using the codebook K3 to obtain 

X^
3 = X^

1 + E^
2 + E^

3                                                                                     (6.4) 

This provides a further refinement to X; and so on, until the complete 

approximation is produced by adding the m vectors. There is a separate 

codebook Ki for each of the m vectors that form the reproduction vector. The 

overall codeword is the concatenation of code words or indices chosen from 

each of these codebooks. The encoder transmits indexes  I1, I2, …, Im to the 

decoder, which then performs a table-lookup in the respective codebooks and 

forms the sum .Thus this is a product code where the composition function g of 

the decoder is simply a summation of the reproductions from the different VQ 

decoders. 

 Note that the complexity is reduced from N= ∏m
i=1 Ni to ∑ m

i=1 Ni and the 

equivalent product codebook is generated from the Cartesian product K1 X K2 X 

… X Km . Thus both the complexity and storage requirements can be greatly 

reduced by using multistage VQ. 

 As usual, there is a performance penalty with this product code technique. 

It is easy to show that the overall quantization error between input and output is 

equal to the quantization error introduced in the last stage; from this it can be  
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shown that the signal to quantizing noise power ratio in dB (SNR) for the 

multistage quantizer is given by 

SNR = ∑ m
i=1 SNRi                                                                                        (6.5) 

Consistent with the two-stage result discussed earlier. If we make the 

idealized assumption that the SNR of a quantizer grows linearly with the number 

of bits, this result would indicate that we can achieve the same performance by 

sharing a fixed quota of bits over several quantizers as by using all the bits in one 

quantizer while at the same time achieving a greater complexity reduction. Also, 

this is not so. The coding gain of a quantizer depends on the statistics of the 

input signal and the successive quantizers tend to have rapidly diminishing 

coding gains (i.e. the SNR per bit decreases) due to the vector components of 

successive stages tending to be less correlated. Generally the quantization error 

vector has more randomness than the input to the quantizer since its 

components tend to be less statistically dependent than those of the input vector. 

Thus, in practice, multistage coders often have only two and occasionally three 

stages. As far as we know, there has been no report of coding system using four 

or more stages. 

  

6.2 Design of Multi Stage VQ 
 

Codebook design for multistage VQ is also performed in stages. First, the 

original training set T is used to generate the first stage codebook of the desired 

size in conventional manner. Next, a new training set T1 is generated by applying 

the training set to the first stage VQ and generating the set of error vectors that 

represent the statistics of the vectors applied to the second stage. This training 

set is of the same size as the original and the vectors are of the same dimension. 

The process is repeated for successive stages. Note that the codebook design 

complexity is reduced compared to the design for a single stage VQ of dimension 

N. 

 This codebook design procedure is not optimal in the sense that it does 

not find the best set of codebooks for sequentially encoding a vector stage-by-

stage with the multistage structure. It is however, greedy in the sense it finds the  
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codebook for the first stage that would be optimal if there were only one stage. 

Then it finds the best codebook for the second stage given the first stage 

codebook and assuming there are only two stages. Similarly, each successive 

stage is optimal given all previous stage codebooks and assuming that it is the 

last stage. Thus design algorithm is consistent with the philosophy of progressive 

reconstruction as discussed in the context of TSVQ. 

 An improved design algorithm for MSVQ was proposed by W.Y. chan , S. 

Gupta and A. Gresho, which yields slightly better results than the greedy 

algorithm usually used  for the usual sequential –search MSVQ encoder. 

Alternatively, if the sequential-search encoder is abandoned and exhaustive 

search is performed to find the best set of indexes { I1, I2, …, IM} for the given m 

stage MSVQ decoder , even better performance can be achieved for a given set 

of codebooks. The design of optimal codebooks for this purpose was considered 

in (37). In this case the search complexity is essentially the same as with a single 

unstructured VQ codebook; only the storage requirement is reduced. Multistage 

VQ can not be considered as recursively indexed VQ because encoder 

generates index of every stage for suitable code word and decoder performs the 

summation of the code words based on indexes received. So process of MSVQ 

is not similar to the recursively indexed VQ. 

MSVQ can be regarded as a special case of TSVQ. In tree-structured VQ 

, the number of codebooks grow exponentially with the number of stages ( or 

layers) , whereas in MSVQ the growth is linear with the number of stages. 

 
6.3 MSVQ  Results 
 

In the following section MSVQ empirical data (training set) has been 

applied to generate codebook. Codebook for uniform and Gaussian pdf is 

generated .The MSVQ is applied to speech signal. There are no specific criteria 

for selecting the test sequences. The selected test sequences have different 

sampling frequency and bit /sample  
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Table 6.1. Wave files on which MSVQ applied  

SQNR(dB) Versus VQ  dimensions for Om.wav are shown  in Table 6.2.Number 

of codeword in first stage and second stage are 4 and 16 respectively. 

SQNR(dB) Versus VQ Dimensions for MSVQ Encoded Om.wav   is in figure 6.5 . 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.2. SQNR (dB) Versus VQ  dimensions for MSVQ Encoded Om.wav 

Table 6.2 indicates that MSVQ applied to speech offers better SQNR with 

Gaussian pdf compared to Uniform pdf for any vector dimension. SQNR in stage 

2 is better compared to stage 1 as the number of code words in stage 2 is more 

compared to number of code words in stage 1. 

Wave file 
Properties 

 
Om.wav 

 
Start.wav Type.wav 

Format wav wav wav 
Use Test 

sequence 
Test 

sequence 
Test 

sequence 
Sampling 
frequency 
 

8kHz 22kHz 11kHz 

Bits / 
sample 

8-bit 
 

16-bit 
 

8-bit 
 

Format PCM PCM PCM 

Wave Type Mono Mono Mono 

SQNR (dB) SQNR (dB) VQ  
dimension 

 
Uniform pdf Gaussian pdf 

 Stage 1 Stage 2 Stage 1 Stage 2 
1 17.225 36.311 16.389 35.424 
2 2.6246 7.9435 15.416 31.546 

3 3.1239 10.572 13.959 28.576 
4 4.3846 11.979 13.249 26.861 
5 4.143 10.747 12.519 25.325 
6 4.7695 12.28 12.144 24.509 
7 6.6824 13.434 11.722 23.539 
8 5.6978 12.423 11.404 22.87 

9 6.0617 13.146 11.061 22.22 
10 6.2706 12.712 10.837 21.752 
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Figure :- 6.5 SQNR(dB) Versus VQ Dimensions for MSVQ Encoded Om.wav    

 Figure 6.5 indicates better performance of speech encoded with Gaussian 

pdf compared to speech encoded with Uniform pdf. 

SQNR(dB) Versus VQ  dimensions for Start.wav are shown  in Table 6.3 

Number of codeword in first stage and second stage are 4 and 16 respectively. 

SQNR(dB) Versus VQ Dimensions for MSVQ Encoded Start.wav   is in figure 6.6 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.3. SQNR (dB) Versus VQ dimensions for Start.wav 

SQNR (dB) SQNR (dB) VQ  
dimension 

 
Uniform pdf Gaussian pdf 

 Stage 1 Stage 2 Stage 1 Stage 2 
1 8.9726 23.857 14.855 33.534 
2 3.922 13.634 13.013 26.501 

3 4.9764 13.167 11.504 23.289 
4 5.4603 11.905 10.729 21.705 
5 5.3476 11.161 10.142 20.47 
6 4.5993 10.904 9.7143 19.521 
7 5.292 11.173 9.3264 18.733 
8 6.6898 13.826 8.9934 18.063 

9 4.9022 11.738 8.7121 17.471 
10 5.9755 12.396 8.4658 16.981 



95 

 

Figure :- 6.6 SQNR(dB) Versus VQ Dimensions for MSVQ Encoded 

Start.wav    

Figure 6.6 indicates better performance of speech encoded with Gaussian pdf 

compared to speech encoded with Uniform pdf. 

SQNR(dB) Versus VQ  dimensions for Type.wav are shown  in Table 6.4 

Number of codeword in first stage and second stage are 4 and 16 respectively.  

SQNR(dB) Versus VQ Dimensions for MSVQ Encoded Type.wav   is in figure 6.7 

 

 

 

 

 

 

 

 

 

 

 

 Table 6.4. SQNR (dB) Versus VQ dimensions for Type.wav 

 

SQNR (dB) SQNR (dB) VQ  
dimension 

 
Uniform pdf Gaussian pdf 

 Stage 1 Stage 2 Stage 1 Stage 2 
1 8.9167 23.449 10.255 23.487 
2 4.0914 12.521 8.512 17.253 

3 4.8514 11.96 7.1799 14.476 
4 4.7202 10.337 6.3935 12.97 
5 4.2608 9.2944 5.8208 11.739 
6 3.8169 8.9296 5.3713 10.794 
7 3.8364 8.5428 4.9898 10.03 
8 4.1725 9.1282 4.6678 9.3747 

9 3.3929 7.9661 4.3703 8.7619 
10 3.848 8.2201 4.0967 8.2142 
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Figure :- 6.7 SQNR(dB) Versus VQ Dimensions for MSVQ Encoded 

Type.wav    

Figure 6.7 indicates better performance of speech encoded with Gaussian 

pdf compared to speech encoded with Uniform pdf. Comparing the results on the 

above three different speech , typically 9.074 , 4.237 and 0.247 dB better SQNR 

is obtained with Gaussian pdf  compared to Uniform pdf. 

 Multi stage VQ is applied  to a 256x256 pixels test image  , cameraman.tif  

,as shown in Figure 4.6 , with the ic.tif , Figure 4.5 , being a 256x256 pixels 

training image with two stages. SQNR (dB) results with Uniform and Gaussian 

pdf for different block size are shown below. Number of code words for stage 1 

are 16 and number of code words for stage 2 are 32. 

4 x 4 Block 

 Stage 1 

No. of Code words =16 

Stage 2 

No. of Code words = 32 

SQNR(dB) 

(Uniform pdf) 

-21.635 -19.173 

SQNR(dB) 

(Gaussian pdf) 

-25.784 -24.779 

 Table 6.5 MSVQ Stage wise SQNR (dB) for test image (4 x 4 block) 
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8 x 8 Block 

 Stage 1 

No. of Code words =16 

Stage 2 

No. of Code words = 32 

SQNR(dB) 

(Uniform pdf) 

-27.435 -26.081 

SQNR(dB) 

(Gaussian pdf) 

-29.329 -28.969 

Table 6.6 MSVQ Stage wise SQNR (dB) for test image (8 x 8 block) 
 

16 x 16 Block 

 Stage 1 

No. of Code words =16 

Stage 2 

No. of Code words = 32 

SQNR(dB) 

(Uniform pdf) 

-31.852 -31.229 

SQNR(dB) 

(Gaussian pdf) 

-32.670 -32.502 

Table 6.7 MSVQ Stage wise SQNR (dB) for test image (16 x 16 block) 
Observing table 6.5, 6.6 and 6.7, as the block size increases SQNR 

decreases for uniform as well as Gaussian pdf. Stage 2 of MSVQ offers better 

performance as number of code words in stage 2 are more than number of code 

words in stage 1.Image quantized with Gaussian pdf is not better than image 

quantized with Uniform pdf. This indicates that pixels in the image are uniformly 

distributed. 

6.4 Summary 
This chapter described the definition and concept of MSVQ. Comparison 

of MSVQ with TSVQ is made. MSVQ can be considered to be a special case of 

TSVQ. Design of MSVQ is explained. MSVQ design is applied on speech. SQNR 

for various VQ dimension are obtained. MSVQ design is also applied to image. In 

the case of speech better performance is found with Gaussian pdf compared to 

Uniform pdf. Image quantized with Gaussian pdf is not better than image 

quantized with Uniform pdf. This indicates that pixels in the image are uniformly 

distributed. 
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Chapter 7  

Trellis Coded Vector Quantizer 

 
7.1 Trellis Coded  Vector Quantizer 

Trellis coded VQ (TCVQ) can be viewed as an extension of the Finite 

State VQ approach with a look-ahead search. In this chapter, the concepts and 

design algorithm for a class of vector quantization systems with memory that are 

more general are discussed. Before we discuss on trellis coded VQ, delayed 

decision encoder is discussed. TCVQ reduces the search complexity required in 

VQ. The basic idea of TCVQ is to search the small codebooks in subsequent 

stages. 

 

7.1.1 Delayed Decision Encoder 

Consider a recursive vector quantizer, which has a decoder =β(u,s), 

where s is the decoder state and u the received channel index, an encoder u= 

α(x,s), where x is the input vector and s the encoder state, and a next-state rule 

f(u,s) giving the next code state if the current state is s and the current channel 

word is u. It is assumed in a recursive quantizer that there are no channel errors 

and hence if both encoder and decoder begin in a common state, then the 

decoder state and encoder state are thereafter identical for the encoding and 

decoding operation. 

In an ordinary recursive quantizer, the encoder mapping α is in fact 

determined by the decoder mapping: α(x,s) must produce the channel symbol u 

which minimizes the distortion d(x, β(u,s)). Such a algorithm is not inherently 

optimal because the selection of a low distortion short term path might lead to a 

bad state and hence higher distortion in the long run. Although a goal in coding 

system design is to avoid this possibility. One means of improving performance 

over long run is to permit the encoder to wait longer before producing channel 

symbols. Instead of comparing a single input vector to a single reproduction and  
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producing the channel word, the encoder could simultaneously consider two 

consecutive input vectors and compare the resulting distortion with two 

corresponding reproduction vectors resulting from any two channel codewords. 

This would allow the encoder to ensure a minimum distortion fit for two 

consecutive input vectors rather than for just one. 

 

More generally, the encoder for a given recursive VQ decoder could view 

L successive input vectors, then try driving the decoder with every possible 

sequence of L channel symbols, and find the sequence of channel symbols that 

produces the best overall fit, that is, the smallest total distortion between the L 

input and L reproduction vectors. The encoder can now transmit one or more (up 

to L) of these channel symbols and a new search is begun. 

 

This is the basic idea behind delayed decision encoding and the principle 

can be applied to any recursive decoder. The approach has been called variously 

delayed decision encoding, lookahead encoding, multipath search encoding and 

tree encoding. As L gets larger this technique guarantees that ever longer 

sequences of input and reproduction vectors will have the minimum possible 

distortion for the particular decoder and hence one and consider the encoder to 

be optimal for the decoder. Obviously, however, the incurred encoding delay can 

quickly become intolerable in some applications. For example, if the coding is 

part of a communication link in a feedback control system, the data would be too 

stale to be useful. On the other hand, in some applications a delay of many 

vectors is tolerable, e.g., in speech or image processing or one-way digital audio 

or video broadcasting. Also, the encoding complexity grows exponentially with L 

and can quickly become prohibitive for high or even moderate rates (in bits per 

input vector).In fact, there are several variations on this concept. Trellis Coded 

VQ (TCQ) derives the advantage by exploiting Lattice VQ. In TCQ transition from 

one state to next state for the next sample is very similar to switching the side in 

Lattice VQ. This offers quantization in well defined distinct partitions as in Lattice 

VQ. 
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7.1.2 Block Delayed Decision Encoder 

One way to assure theoretically better long term performance than 

memory less VQ is to have a delayed decision encoder operate essentially as a 

block code of “giant” vector quantizer: It begins with an initial state, finds an 

effective sequence of L channel symbols for L input vectors, and then releases 

the L channel symbols to the channel. It then proceeds to do the same things for 

the next group of L input vectors. Typically the scheme will drive the encoder and 

decoder state back into the initial state s* at the end of one group of L input 

vectors. By resetting the state prior to encoding each block, there is no memory 

of prior block used in encoding the current block. Hence, in this case the code 

behaves like a structurally constrained vector qunatizer of length Lk where k is 

the input vector dimension. This method offers lower distortion. It looks for 

minimum distortion over L input vectors rather than single input vector. 

 

7.1.3 Incremental delayed decision encoder  

Here the path map is selected as in the block case, but instead of 

releasing the entire block of L channel words, only one (or some small number v) 

are released and the encoder then again searches ahead L vectors so as to pick 

a new path and advanced further. Such incremental encoding provides a 

smoother operations and fewer blocking effects in the data then does encoding 

an entire L block, but it is not as well understood theoretically and it requires 

more computation per input vector. All of the delayed decision encoding can be 

used in either block or incremental fashion. 

 

7.1.4 Tree And Trellis Coding 

Let the initial state be s* and suppose the channel symbols have an 

alphabet of size N = 2R, here R is the bit rate. For simplicity we shall consider the 

code has a rate of one bit per source vector. All of the ideas extend in a straight 

forward manner with the binary trees and trellises becoming more general N-ary 

trees and trellises. 
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To depict the operation of the decoder, we use a directed graph called a 

tree. The tree is used to represent the time evolution of the decoder’s operation 

so that each path thorough the tree identifies a particular sequence of states 

taken on by the decoder in successive time instants. Thus, each level of the tree 

corresponds to the time arrival of a new input vector, whereas in the case of 

TSVQ tree, the entire tree represents the possible ways in which a single input 

vector is searched. 

The initial state is the root node of the tree and all subsequent nodes will 

also correspond to decoder states. Suppose the encoder is in the initial state and 

the channel index is binary valued, either a 0 or 1. If it produces a 0, then the 

decoder will produce a reproduction β(0,s*) and the decoder will advance to state 

s0= f(0,s*). If the encoder produces a 1, then the decoder will produce a 

reproduction β(1,s*) and the decoder will advance to state s1= f(1,s*). This action 

is depicted in Figure 7.1 by a branch of the tree moving upward if the encoder 

produces a 1 and downward if it produces a 0. The branch is labeled by the 

output produced if that branch is taken and the branch is terminated in a node 

representing the new state. Thus we have “grown” the first level of a code tree. If 

the encoder is in state s0 in level 1, then it can produce a 0 with a resulting output 

β(0, s0) and the  next state s00 = f(0,s0), or a 1 with resulting output β(0, s1) and 

next state s01 = f(0,s0). For convenience we subscript the states by the binary 

channel sequence which led from the initial state to the current state. This 

sequence is called the path map since knowing the sequence one can trace a 

path through the tree from the root node to the current node. For example, a path 

map (received sequence) of 1101 will yield a decoded reproduction sequence  

β(1, s*), β(1, s1), β(0, s11), β(1, s110) 

Note that with the tree drawn horizontally, the horizontal position of a node 

corresponds to a particular time, with the root node corresponding to t = 0 and 

time increasing to the right. Table 7.1 summarizes the actions available to the 

decoder at the first level of the tree. 

While the tree depicts the possible paths of the decoder, it is the encoder 

which must make use of this tree in order to search for an effective or optimal  
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path and thereby determine the channel symbols to be transmitted. If the 

encoder is to have a delay or search depth of L input vectors, then the tree 

should be extended to L levels. Note that the tree grows exponentially fast with 

the number of levels since each level has twice as many nodes as the previous 

level. Given such a code tree, the task of the encoder is now the following: Given 

an input sequence x0, x1,…., xL-1, find a path map through  the tree ( a sequence 

of symbols from the alphabet of size N = 2R) u0, u1, …., uL-1 such that the 

corresponding sequence of states σ0, σ1, …., σL-1 (where σ0 = s*) and branch 

labels (outputs) ( 0, …., L-1) = (β(σ0, u0), …., β(σL-1, uL-1)) yields the minimum 

value of the path distortion 

1

0 1 L 1

0

ˆ(u ,  u ,  .,  u ) ( , )
L

l l

l

d x x
−

−
=

∆ … =∑
  

                                                          (7.1) 

Where d is the distortion measure between any pair of vectors (x and ) 

sometimes called the per-letter distortion. 

 

Figure 7.1: Recursive Decoder Tree 
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Level 1 State Channel Symbol Output Level 2 State 

S0 0 β(0, s0) s00 = f(0,s0) 

S0 1 β(1, s0) s01 = f(1,s0) 

S1 0 β(0, s1) s10 = f(0,s1) 

S1 1 β(1, s0) s11 = f(1,s1) 

 

Table 7.1: First Level Decoder Actions 

Trellis as a Merged Tree 

The recursive VQ decoder is in fact a finite state VQ decoder. With only 

finite number of states the tree diagram becomes highly redundant. Once one 

has descended to a sufficient depth of the tree, there are more nodes than there 

are distinct states of the decoder and hence several of the nodes must represent 

the same state. The subtree emanating from any node having a given state will 

be identical for each such node at this level of the tree. No level can have more 

distinct nodes than there are states. Thus we can simplify the picture if we merge 

all those nodes corresponding to the same state to produce a simpler picture of 

the decoding tree, Thus leads to a new and simplified map called a trellis that 

more compactly represents of all possible paths through the tree. If the number 

of states is K, then we need only consider K nodes, one for each state, at each 

successive time instant after t = 0. The trellis consists of the set of all paths 

starting at the root node and traversing one of the K state nodes at each time 

instant and terminating at a fixed node at time L-1.  

The name trellis for a merged tree was invented by G.D.Forney, Jr., based 

on the resemblance of the resulting merged tree to the common garden trellis. A 

trellis encoding system is a recursive coding system with a finite state decoder 

and a minimum distortion trellis search encoder.  It should be pointed out that the 

goal of the searches of trees and trellises is to produce a minimum distortion  
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path. The Viterbi algorithm encoder is to be considered shortly indeed finds a 

minimum distortion path to the search depth of the encoder.  

7.1.5 Sliding Block Decoder 

A particular type of recursive decoder with a finite number of states, called 

a shift register decoder, consists of a shift register which stores in each stage an 

R bit binary vector representing a channel symbol and with m stages along with a 

lookup table having Nm= 2Rm possible reproduction levels as outputs as depicted 

in Figure 7.2 for the special case of m=3 stages and binary channel symbols, i.e., 

R=1. The contents of the shift register form an N-ary-tuple u = u0, u1… um-1) 

(with the smallest index being the most recent entry and hence the leftmost 

channel symbol in the shift register). If we define the current state to be s = u0, 

u1, …., um-1) then the decoder output mapping is given by yu =  β(u0,s) = g(u). 

Thus yu  is a code vector from the state codebook Cs and is therefore is an 

element of the super codebook C of all possible reproduction vectors. The 

possible outputs of the shift register decoder are contained in the codebook or 

lookup table C and the N-ary shift register decoder content, u, forms the index 

that addresses the codeword yu in the table. 

 
 

Figure 7.2: Sliding Block Decoder 
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Such codes are called sliding block codes because a block of input 

vectors is viewed to produce an output symbol and at successive time instants 

the new block is formed by “sliding” or shifting the block so that the oldest 

(rightmost) vector is dropped, a new vector is included at the left, and the 

remainder are just shifted to the right. 

In the example of Figure 7.2, each symbol is one bit and the decoder is a 

finite-state VQ decoder with four states. The states are the four possible binary 

pairs constituting the two oldest channel bits in the register. If the shift register 

content is u= b0b1b2, then u = bs, where b = b0 is the current channel bit (leftmost 

bit in the register) and s = b1b2, the state, comprises the remaining two bits. With 

this convention the reproduction function becomes simply  

β(u ,s) = g(bs) = ybs                                                                                                                                       (7.2) 

The next state function is forced by the shift register structure: the next 

state is always formed by shifting so that the current channel bit becomes the left 

bit in the state and the previous left state becomes the new right state bit. This is 

summed up by the next-state table for the given example in Table 7.2. 

Alternatively it can be summarized by the formula 

f(b, b1b2 ) = b b1                                                                                              (7.3) 

 

 

 

 

 

 

 

 

 

 

 

Table 7.2: Sliding Block Next State Function 

 

u v snext = f(u,v) 

0 00 00 

0 01 00 

0 10 01 

0 11 01 

1 00 10 

1 01 10 

1 10 11 

1 11 11 
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There is nothing unique about this representation of the decoder as a 

finite-state decoder, it is also common in the literature for authors to reverse the 

bits describing the state and stick the channel symbol on the right, that is, to 

consider the state to be b2b1, and to write the output functions as g(b2b1b0) so 

that the rightmost bit represents the most recent one. This will result in a different 

but equivalent next state function. For this example we can redraw the decoder 

tree of Figure 7.1 as the trellis diagram shown in Figure 7.3. The initial state is 

taken as s* = 00.  

 

Figure 7.3: Sliding Block Decoder Tree 

 

In memory less VQ it is clear that the larger is k, the better is the rate-

distortion tradeoff that can be achieved; of course, complexity places a limit on k 

for a given rate. On the other hand, in trellis encoding, the performance measure 

given by per letter distortion shows that the distortion to be minimized depends  
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only on the value of the product kL, the total number of samples under 

consideration rather than on the block size k. This suggests that there might be 

no sacrifice in performance by using k = 1, where the vectors are one 

dimensional. Trellis with four states is drawn in figure 7.4. 

 

 

Figure 7.4: Trellis 

 

7.1.6 The Viterbi Algorithm 

 

The Viterbi algorithm is a minimum-cost search technique specifically 

suited for a trellis. It is an example of dynamic programming and was originally 

developed for error control codes. 

 

Suppose that we now have a finite-state recursive decoder and hence a 

decoder trellis as typified in Figure 7.4. The key idea of Viterbi algorithm is 

following. The minimum distortion path from time 0 to time n must be an 

extension of one of the minimum distortion paths to a node at time n-1. Thus in 

order to find the best possible path of length L we compute the best path to each 

state for each time unit by finding the best extension from the previous states into 

the current state and we perform this for each time unit up until time L. This idea  
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is known formally as the optimality principle of dynamic programming. The 

detailed operation is described in Table 7.3. 

 

Viterbi Algorithm Trellis Encoder 

1. Given a collection of states S = σ0,……. ,σk, a starting state s*, a decoder β(u 

,s) producing a reproduction given channel symbol u in state s, a per-letter 

distortion measure d, a source input vector 

x0, x1, …., xL-1. Let Dj(k) denote the distortion for state k at time j. Set D0(s*) = 

D0(s) = ∞ for s ≠ s*. Set l = 1.  

2. For each current state s find 

Dl(s) = min (  Dl-1(σ)  +  min          d(xl , β(u, σ))  ) 

             σ                       u:f(u, σ)=s 

And let s’ denote the minimizing value of the previous state and u’ the minimizing 

value of the channel symbol u. Thus the best path into the current state s passes 

through the previous state s’ and is forced by channel symbol u’. 

Given the path map ul-1(s’) to the best previous state s’, from the extended path 

map  

ul(s) =(u l-1(s’),u’) giving the best (minimum distortion) path through the trellis from 

the initial state into the current state s at level l. In other words, for each current 

state find the distortion resulting from extending the K best paths into the 

previous states into the current state. The best is picked and the distortion and 

cumulative path indices to that state saved. 

3. If l< L-1, set l+1  and go to 1. If l = L-1, pick the final state sj yielding the 

minimum of the K values DL(s). The optimal path map is then uL(sf). 

 

Table 7.3: Viterbi Algorithm Trellis Encoder 
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A key facet above is that we have a block code with block length L, but we 

do not have to search a block code of 2L by computing all 2L possible distortions. 

Instead we compute a sequence of K distortions, where K is the number of 

states, and retain the running distortion for each state along with the 

accumulated distortions into each state and the accumulated channel symbol 

sequence. In particular, the complexity grows with the number of states, not with 

L. 

The algorithm is implemented by keeping track of the following at each 

level of the trellis: (1) the best path into each node, and (2) the cumulative 

distortions up to that node. The principal of optimality means that knowing the 

best path into a node is equivalent to knowing at each state the best possible 

predecessors state. When the final node is reached, the path map the one which 

produces the smallest path distortion at the final depth. 

Trellis coded quantization is a form of trellis coding that labels the trellis 

branches with subsets of production symbols. The approach was motivated by 

trellis-coded modulation. The novel feature of TCVQ is the partitioning of an 

expanded set of vector quantization symbols into subsets and the labeling of the 

trellis branches with these subsets. Labeling the trellis branches with properly 

formed subsets (instead of individual reproduction symbols) leads to a 

considerable reduction in encoding complexity.  

 

7.2 Design of Trellis Coded VQ 

7.2.1 Encoder/Decoder Structure  

There is a simple way in which a VQ of dimension k and rate R is different 

from a TCVQ of the same dimension and rate. The VQ codebook contains 2kR 

code vectors, and the VQ may represent any source any source vector any of the 

available code vectors. The TCVQ, on the other hand, has   2kR+m code vectors, 

m a positive integer (i.e. for m=1, twice that of the VQ), but only a subset of size 

2kR of these code vectors may be used to represent a source vector at any 

instant of time. The TCVQ’s structure is almost identical to that of the TCQ,  
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except the latter operates on individual, as opposed to blocks of, source samples 

in its basic operations. The decoder is simpler to describe than the encoder, and 

that’s what we treat first. 

 

7.2.2 TCVQ Decoder 

 

 The TCVQ decoder is a finite-state machine with a state space S = { si : i 

= 0,1,…, K-1}, a set of input symbols Y = {0,1}kR ( i.e., the set of all binary words 

of length kR), a codebook C= {ci €  Rk : i = 0,1,…, 2kR+1-1}, a next-state function 

g : S x Y → S, and an output function d : S x Y → C. Specifically, the decoder’s 

behavior is governed by the following equations: 

Sn+1 = g(Sn, Yn)                                                                                                (7.4) 

n= d(Sn, Yn)                                                                                                    (7.5) 

where n = 0,1,2,… is the time index, Sn is the decoder state at time n( S0 is the 

initial state), Yn is the binary word generated by the encoder at time n, and  n is 

the reproduction for the source vector Xn generated at time n. (We assume one 

source vector is generated in each unit of time. This amounts to one source 

sample per 1/k unit of time.) Alternatively, the TCVQ decoder may be described 

in terms of a state diagram as shown in Figure 7.5, or more usefully, a trellis 

diagram as shown in Fig. 7.4. 

 

Figure 7.5: State diagram of TCVQ Decoder 
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           The next-state and output functions, and hence the trellis, in the TCVQ 

decoder are of a special form. Suppose the decoder is in a given state at time n. 

Then it may receive any of the 2kR possible binary words of length kR from the 

encoder. The first R’ bits of the received word determine the decoder output at 

time n+1 and cause the decoder to move into that state. The remaining kR - R′ 

bits determine the decoder output at time n. This means that a transition from 

one particular state to another one is caused by any of 2kR-R′ binary words of 

length kR. Such a transition is represented in the trellis diagram with a single 

branch, instead of 2kR-R′ parallel transitions. Hence there are 2R′ branches leaving 

each state and exactly that may enter it. With this convention, each branch may 

be labeled with a binary word of length R′ and a sub-codebook (a subset of C). 

Each sub-codebook is the set of code-vectors put out by the decoder in response 

to the last kR - R′ bits of the received binary word from the encoder. Since each 

sub-codebook is of size 2kR-R′, there must be exactly 2R′+1 sub-codebooks that 

partition the overall codebook C. 

 

7.2.3 TCVQ Enocder 

 

The function of the TCVQ encoder is to find the best possible reproduction 

for any given sequence of source vectors. Specifically, for a search depth of L, 

the encoder looks for the sequence of code-vectors on the L-state trellis that is at 

minimum Euclidean distance from the given sequence of L source vectors. Each 

sequence of code-vectors on the trellis is specified by a path (a connected 

sequence of L branches) and the choices of code-vectors from the sub-

codebooks associated with the branches. This requires LR′ bits for the first part 

and L(kR - R′)  bits for the second part, which adds up to a total of LkR bits. For a 

given sequence of source vectors, the encoder uses the well-known Viterbi 

algorithm to find the best sequence of code-vectors. Then it releases all the LkR 

bits specifying this sequence at the end of the L stage trellis, which the decoder  
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uses to generate the reproduction. The process is then repeated for the next L 

source vectors. 

The encoding is accomplished in two steps. 

 

Step 1) For each input vector s, find the closest code-word and corresponding 

distortion di, in each subset Si. 

Step 2) Let the branch metric for a branch labeled with subset Si be the distortion 

found in Step 1), and use the Viterbi algorithm to find the minimum distortion path 

through the trellis. 

 

Complexity 

 The Viterbi algorithm (mse) encoding complexity of each TCVQ structure 

can be easily evaluated. There are 2R´k+m / 2Rk subsets, each of 2Rk-m code-

words. The first step in the encoding is to find the closest codeword in each 

subset to the source vector. For unstructured codebooks, such a full search 

requires  

k2 kR-m  additions, k2 kR-m   multiplies, and k2 kR-m-1  two way comparisons, per 

subset. Next each trellis state has 2m entering branches, with branch metrics the 

respective subset squared error. There are 2m additions and   2m-1 two-way 

compares to determine the “survivor” path at each trellis state. The total 

complexity is then 

 

k2 (R+R´)k multiplies, 

k2 (R+R´)k + N2m  additions, 

2 R´k+m (2Rk-m – 1) + N(2m-1) two way comparisons per k dimensional source 

symbol. 

 

The TCVQ performance generally improves (for a fixed R) with an increase in k 

or N. Based on experimental evaluation of TCVQ encoding performance of a 

given source, it is possible to model the variations in mse as a function of k or N.  
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Thus, for a given level of complexity, “optimum” values of k or N can be selected 

for a given application. 

 

The full search encoding complexity of k´-dimensional VQ is roughly 

 

k´2R k´ multiplies, 

k´2R k´ additions 

2Rk´ -1 two way comparisons  

Hence, for the same dimension of encoding symbols, TCVQ is more complex 

than VQ. 

 

7.2.4 Design Algorithm 

 

The main goal of the partitioning step used in TCM is to provide subsets of 

channel symbols with maximal minimum distance within each subset. The overall 

set of channel symbols is partitioned in several stages such that a binary tree of 

subsets of channel symbols is generated. The two descendent nodes (or the 

subset at that nodes) of any internal node of the tree form a partition of the 

subset at that node. The subsets at the leaves are assigned to the trellis 

branches according to the “mapping by set partitioning” method. These 

observations suggest the following partitioning process for TCVQ: 

Given an initial VQ codebook C of size M= 2kR+1, the distances between all 

possible pairs of code-vectors are calculated and listed in a non-decreasing order 

along with the corresponding pairs. This gives a table, where the ith entry 

corresponds to code-vectors; ci and that cı́́ are at distance di=ci – ci‘. First c0 and 

c0́́ are placed in subsets A0 and A1, respectively, and the first entry is removed 

from the table. Then the following basic step is repeated as many times as 

necessary until the size of one of the subsets, A0 and A1, reaches M/2, at which 

point the remaining unassigned code-vectors (if any) are added to the other 

subset. The basic step involves looking for the entry with the smallest index i with 

one (but not both) of the two code-vectors already assigned to either A0 or A1,  
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followed by adding the unassigned code vector to the other subset. All entries 

with both code-vectors assigned are removed from the table. The basic step is 

described formally below: 

1) Search the table to find an index j such that for all i < j, neither ci nor c´i          

belong to A0 U A1, but at least one of cj and c´j belongs to A0 U A1. 

2) If both cj and c´j belong to A0 U A1, i.e. they are both already assigned then 

let ci ← ci+1, c´I ← c´i+1,  for all i ≥ j. Go to 1). 

3) If cj  belongs to A0 (or A1), then add c´j  to A1 (or A0). If c´j  belongs to A0 (or 

A1), then add cj to A1 (or A0). If c´j to A1 (or A0). 

4) If the size of A0 (or A1) reaches M/2, then add the remaining unassigned 

codevectors (if any) to A1 (or A0) and stop. Otherwixe, go to 1). 

To partition the overall VQ codebook C of size M into 2R´+1subsets, the algorithm 

is first applied to C to partition it into two subsets of size 2kR, followed by applying 

it to these tow subsets to generate four subsets of size 2kR-1, and so on. 

 

7.3 TCVQ Results 

7.3.1 Block delayed decision encoder and decoder 

  It begins with an initial state, finds an effective sequence of L=3 channel 

symbols for L input vectors, and then releases the L channel symbols to the 

channel. It then proceeds to do the same things for the next group of L input 

vectors. Typically the scheme will drive the encoder and decoder state back into 

the initial state s* at the end of one group of L input vectors. Here state ‘0’ is 

taken as initial state. By resetting the state prior to encoding each block, there is 

no memory of prior block used in encoding the current block. Hence, in this case 

the code behaves like a structurally constrained vector qunatizer of length Lk 

where k is the input vector dimension. This algorithm is illustrated in Figure: 6.10. 

The trellis diagram is considered for 4 state trellis. The current state and next 

state function for this trellis is shown in table 7.4. In this figure for block length of 

three, the path map 000 has lowest distortion for given sequence of 3 vectors.  
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The decoder is set at 000 after each block. In the same way we can do the 

encoding and decoding using 8 state trellis. 

Current 
state 

Next state 

0 0 0 1 

1 1 2 3 

2 2 0 1 

3 3 2 3 

 

Table 7.4 Next state function 4 state trellis 

 

 

Figure: 7.6      4 state trellis diagram for blocked delayed decision encoder 
 

 

TCVQ encoder and decoder for 4-state and 8-state trellis is designed of 

different VQ dimensions for a uniform and a zero-mean, unit-variance, i.i.d. 

Gaussian source using a training sequence of 100000 samples. This required 

designing several VQ codebooks. The codebook is designed using 

maja_ma_ne.wav file and the kem_chho.wav file is taken as testing sequence. 
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For 4 state and 8 state trellis, the simulation results is shown in table 7.5 and 7.6 

respectively. The same thing can be visualized from Figure 7.7 and Figure 7.8 

respectively. The codebook size is kept constant so with increasing the VQ 

dimension, the SQNR is reduced. SQNR with Gaussian source is 1 dB higher 

than with uniform source. 

Vector dimension  
Source 

 

1 2 3 4 5 6 

MSE 0.004027 0.0048452 0.0086526 0.0072436 0.0069007 0.011105  
Uniform SQNR 8.413 7.6096 5.0913 5.8632 6.0738 4.0074 

MSE 0.0038655 0.004018 0.006455 0.0049868 0.0051532 0.0070305  
Gaussian 

SQNR 8.5907 8.4227 6.3638 7.4846 7.342 5.9929 

 

Table 7.5 SQNR vs. VQ for 4 state trellis-block delayed 
 

 
Figure 7.7 SQNR vs. VQ for 4 state trellis- block delayed 
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Vector dimension  

Source 
 

1 2 3 4 5 6 

MSE 0.0040589 0.0046617 0.0089728 0.0073027 0.0069073 0.011071  
Uniform SQNR 8.3787 7.7773 4.9335 5.828 6.0697 4.0211 

MSE 0.0037788 0.003928 0.0064263 0.0049829 0.0051474 0.0070273  
Gaussian 

SQNR 8.6892 8.5211 6.3832 7.488 7.3469 5.9949 

 

Table 7.6 SQNR vs. VQ for 8 state trellis -block delayed 
 
 
 

 
 
 

Figure 7.8 SQNR vs. VQ for 8 state trellis-block delayed 
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Now, the codebook is generated from full 512×512 ‘lena’ image which 

contains 8-codevectors of dimension 1×2.The same image is coded and decoded 

with block delayed decision coder. Figure 7.9 shows results for the same. PSNR 

of 18.201 dB is obtained. PSNR vs. VQ dimension plot for 4 state and 8 state 

trellis is shown in Figure 7.10. 

input image Coded image difference between input and coded image

 

Figure 7.9 1x2 TCVQ with block delayed decision coder 

 
Figure 7.10 PSNR vs. VQ dimension 
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7.3.2 Continuous encoding & Decoding 
 

 Here the path map is selected as in the block case, but instead of 

driving the encoder and decoder to initial state s* at the end of one block  of L 

input vectors,  the encoder and decoder begins at the last state of previous block. 

After encoding of fist block, the entire trellis comes in picture. The encoder then 

again searches ahead L vectors so as to pick a new path and advanced further. 

Such incremental encoding provides smoother operations and fewer blocking 

effects in the data. 

 

time

00

01

10

11

y001

y010

y011
y100

y101

y110

y111

States
y000

Block length=3

 
 

Fig.: 7.11        4 state trellis diagram for continuous encoder 
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Vector dimension  

Source 

 

2 3 4 5 6 

MSE 0.0072648 0.0092347 0.0068773 0.0066746 0.011586  

Uniform SQNR 5.8505 4.8085 6.0886 6.2185 3.8236 

MSE 0.0052828 0.0064575 0.0049947 0.0051678 0.007017  

Gaussian 
SQNR 7.2341 6.3621 7.4777 7.3297 6.0012 

  

Table 7.7 SQNR vs. VQ for 4 state trellis –continuous 

 
 

Figure 7.12 SQNR vs. VQ for 4 state trellis–continuous 
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Vector dimension  

Source 

 

2 3 4 5 6 

MSE 0.0063529 0.0098531 0.0073874 0.0066498 0.011601  

Uniform SQNR 6.433 4.527 5.7779 6.2347 3.8179 

MSE 0.0058754 0.0072088 0.0050154 0.0051696 0.0070327  

Gaussian 
SQNR 6.7724 5.8842 7.4597 7.3282 5.9916 

 

Table 7.8 SQNR vs. VQ for 8 state trellis-continuous 

 
 

 

Figure 7.13 SQNR vs. VQ for 8 state trellis-continuous 

 

Now, the codebook is generated from full 512×512 ‘lena’ image which 

contains 8-codevectors of dimension 1×2.The same image is coded and decoded  
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with continuous coder. Figure 7.14 shows results for the same. PSNR of 18.9166 

dB is obtained. 

input image Coded image difference

 
  Figure 7.14 1x2 TCVQ with continuous coder 

  

7.3.3 Viterbi Algorithm 
 

  The trellis diagram for N=4 state  is shown in the Figure 7.15 Given the 

survivor paths ending at time n can be determined as follows. Let dn-1
i(xnyn) be 

the overall distortion related to the survivor path ending at node i at time n-1. The 

updated survivor path ending at node k at time n is determined by first finding, for 

each branch entering state k at time n, the best subset codeword that minimizes 

the distortion between the input vector xn and the reproduction vector yn. Then 

we compute the overall distortion associated with each of the two possible paths 

to node k at time n and select the path with the minimum distortion as the 

updated survivor path ending at node k. As shown in Figure 7.15 the path with 

brown color shows the survivor path (minimum distance path) at each node. After 

all N survivor paths at time n are determined, the time index is incremented and 

the process is repeated until a certain depth. In Figure 7.15 the path with solid 

brown color shows the survivor path for block length of 3. 

 
 

Figure 7.15 Viterbi encoding 
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              Results for 4 and 8 state trellis are in Table 7.9, Table 7.10. They are 

also depicted in Figure 7.16, Figure 7.17. 

Vector dimension  
Source 

 

1 2 3 4 5 6 

MSE 0.0038039 0.0091421 0.010083 0.012979 0.012925 0.013614  
Uniform SQNR 8.6605 4.8523 4.4269 3.3305 3.3484 3.1229 

MSE 0.0036939 0.0071339 0.0075187 0.0076989 0.0076163 0.0075481  
Gaussian 

SQNR 8.7879 5.9295 5.7013 5.5985 5.6453 5.6844 

Table 7.9 SQNR vs. VQ for 4 state trellis-viterbi 

 

 

Figure 7.16 SQNR vs. VQ for 4 state trellis-viterbi 

 
Vector dimension  

Source 
 

1 2 3 4 5 6 

MSE 0.0038001 0.0091387 0.017999 0.012968 0.012916 0.013665  
Uniform SQNR 8.6648 4.8539 1.9104 3.334 3.3514 3.1068 

MSE 0.0036946 0.0071305 0.0074446 0.0076887 0.0076077 0.007543  
Gaussian 

SQNR 8.7871 5.9316 5.7443 5.6043 5.6502 5.6873 

Table 7.10 SQNR vs. VQ for 8 state trellis-viterbi 
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Figure 7.17 SQNR vs. VQ for 8 state trellis-viterbi 

 

 

 

7.4 Summary 

This chapter has outlined basics of trellis coded vector quantization 

(TCVQ) and how to produce vector reproduction symbols. The design of TCVQ 

coders is considered, with partition and branch labeling rules presented for 

memory-less vector sources. The complexity of viterbi algorithm for TCVQ is 

outlined. Design of TCVQ for 4 state and 8 state trellis is discussed with three 

different methods. Among the three methods of TCVQ, the performance of block 

delayed decision encoder is better than other methods. If the source is Gaussian, 

SQNR is higher than with uniform source. 
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Chapter 8  

Comparison of Various Techniques 

 
8.1 Requirements of FSVQ 

FSVQ requires full search on the codebook. Memory requirements are 

higher for better performance. This also increases the processing time. 

Processing time is highest compared to the other methods. The required 

codebook storage space in words and the search complexity (number of 

operations per input vector in an exhaustive codebook search) are both 

proportional to k N , where k is vector dimension and N is number of code words. 

k N = k 2rk
                                                                                                        (8.1) 

Resolution r is measured in bits per vector component. Memory and complexity 

grows exponentially with dimension. 

 

8.2 Requirements of TSVQ 

In tree-structured VQ (TSVQ), the search is performed in stages. If the 

codebook size is N=md, then d m-ary search stages are needed to locate the 

chosen code vector, d represents the depth of the tree.  

The number of search operations at each stage is proportional to m since 

each test is an exhaustive nearest neighbor search through a set of m test 

vectors. Thus, the total search complexity is proportional to md rather than md
 

where the proportionality constant depends on the vector dimension k.  

On the other hand, the storage requirement of TSVQ is increased 

compared to FSVQ or other unstructured VQ. In addition to storing md
 code 

vectors (the leaves of the tree); the test vectors for each node of the tree must 

also be stored. There is one node at the first stage, m nodes at second stage, m2 

nodes at the third stage, etc. Hence, the total number of nonterminal nodes is 1 + 

m + m2
 + … + md-1

 = ( md
  - 1) / (m -1). Since each non terminal node stores m 

code or test vectors , the total number of k-dimensional vectors to be stored 

including code vectors is m(md
  - 1) / (m -1). 
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8.3 Requirements of MSVQ 

In MSVQ, the encoding task is divided into successive stages.  Note that 

the complexity is reduced from N= ∏m
i=1 Ni to ∑ m

i=1 Ni and the equivalent product 

codebook is generated from the Cartesian product K1 X K2 X … X Km . Thus both 

the complexity and storage requirements is greatly reduced . 

 As usual, there is a performance penalty with this product code technique. 

Overall quantization error between input and output is equal to the quantization 

error introduced in the last stage. The signal to quantizing noise power ratio in dB 

(SNR) for the multistage quantizer is given by 

SNR = ∑ m
i=1 SNRi                                                                                          (8.2) 

 

8.4 Requirements of TCVQ 

The trellis consists of the set of all paths starting at the root node and 

traversing one of the K state nodes at each time instant and terminating at a fixed 

node at time L-1. L is the encoder delay or search depth. We do not have to 

search a block code of 2L by computing all 2L possible distortions. Instead we 

compute a sequence of K distortions. The complexity grows with the number of 

states, not with L.  

  

8.5 Comparison of Various Techniques 

 The Comparison of various techniques is shown in figure 8.1. 

 

Figure 8.1: Performance of Various Techniques 
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 Comparing the performance, MSVQ, TSVQ gives much better 

performance compared to FSVQ, TCVQ. MSVQ is better by 5.3835 and 15.1443 

dB compared to Full Search VQ with Uniform and Gaussian pdf respectively. 

TSVQ is better by 5.7796 and 10.2383 dB compared to Full Search VQ with 

Uniform and Gaussian pdf respectively. Full Search VQ is better by 3.0729 and 

3.3635 dB compared to TCVQ with Uniform and Gaussian pdf respectively.  The 

benchmark for these observations is Full Search VQ .All other techniques are 

compared with Full Search VQ. 

8.6 Summary 

There is no better performance of various VQ techniques compared to 

FSVQ. Searching makes prohibitive use of FSVQ. If the storage requirements 

are not stringent then TSVQ can be used. The complexity and storage 

requirements reduce in MSVQ but at the cost of SQNR. Computational 

requirements are minimum in TCVQ, but encoding delay is more. 

 



128 

Chapter 9  

Conclusions and Future Work 

9.1 Conclusions 

The major conclusions drawn from the available results are as follows: 

(i) Code books with Gaussian pdf compared to uniform pdf give better 

performance in case where FSVQ is applied to speech. SQNR 3.5707 

dB more is be obtained in case of speech. 

(ii) As the number of code words is increased SQNR and hence PSNR 

also gets better in case where FSVQ is applied to an image. 

(iii)  In case where FSVQ is applied to image, code books with Gaussian 

pdf compared to uniform pdf does not produce better results. This 

indicates the random distribution of pixel amplitudes in the image. 

(iv) As the tree depth increases the SQNR gets better in case of TSVQ 

applied to speech. 

(v) Code books with Gaussian pdf compared to uniform pdf gives 

generally better performance in case where TSVQ is applied to 

speech. SQNR improvement of maximum 0.102 dB is obtained. 

(vi) Code books with Gaussian pdf compared to uniform pdf gives better 

performance in case where TSVQ is applied to image. PSNR 

improvement of maximum 6.981 dB is obtained. 

(vii) As the tree depth increases the SQNR gets worse in case of TSVQ 

applied to image. This indicates the random distribution of pixel 

amplitudes in the image. 
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(viii) With MSVQ applied to speech, maximum SQNR improvement of  

4.732 , 12.867 and  23.6025 dB is obtained for the three different 

speech signals respectively. 

(ix) Code books with Gaussian pdf compared to uniform pdf give better 

performance in case where TCVQ is applied to speech. 

(x) Performance improvement in SQNR from 4-state trellis to 8-state trellis 

is maximum 0.0984 dB (block-delayed), 0.0058 dB (viterbi) for 

Gaussian pdf. 

 

9.2 Future Work 

(i) Apart from TSVQ , MSVQ , TCVQ other VQ techniques can be used. 

(ii) If the pdf of a signal is known in advance by estimation, then codebook 

can be prepared accordingly.  

(iii) The waveform coding techniques are applied by assuming noiseless 

channel. The techniques can be applied in noisy channels. 

(iv) The techniques can be applied to video. 

(v) Hardware realizations using VLSI / DSP can be done. 
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