Appendix E: Sample Code - Matlab

Programs

// Beginnning of Program: DataCompaction_MDWT.m //

/* Matlab Program for Algorithm to perform Data Reduction

using Wavelet Transforms */

%% Program to transform data using Haar Wavelet
Transforms on already reduced nucleotide sequence using

2-bit Binary Indicator %%

tStart=tic;

lookup_segn = cast (csvread("SRRO00675.txt"), "uint8"); %%
Sample Read of SRR0O00675

%lookup_seqn = cast(csvread("Cnt46_EC.txt"), "uint8%); %%
Contig 46 of E.Coli K12 Strain

%lookup_seqn = cast(csvread("ch7_HS_ 1.txt"), “uint8%); %%
Chr7 of Homo Sapien

wavelettype = “haar”;
maxdec = 4;
tStart _wavelets = tic;

for declev = I:maxdec

246

pdeclev = sprintf{'dec %d', declev);

dec

mdwtdec ('r', lookup_seqgn,declev,wavelettype};

end;

tElapsed wavelets = toc(tStart_wavelets);

s_len4 (declev) = cast(zeros(),

for count = l:declev

s_len4 (count) =

'uintl6');

end;

rec = mdwtrec (dec);

sizedecd = dec.cd{l,4};

%%% Draw Plots %%%
subplotm=3;
subplotn=2;

subplotp=0;

subplotp=subplotp+l:;

"uintl6') ;

cast{length(dec.cd{1,4}),

subplot {subplotm, subplotn, subplotp) ;

247

plot (lookup segn); title('original seqgn'):;

xlabel ('time'); ylabel('scale')};

subplotp=subplotp+1;
subplot (subplotm, subplotn, subplotp);
plot{rec); title('reconstructed seqn’);

xlabel {('time'); ylabel('scale'):

for declev = l:maxdec

pdeclev = sprintf(’level %d decomposition', declev);
subplotp=subplotp+l;

subplot (subplotm, subplotn, subplotp)

plot {dec.cd{l, declev});

title({pdeclev); xlabel('time'); ylabel('scale');

end;
tElapsed = toc(tStart);

// End of Matlab
Program:CompressSequence_DataCompaction_DWT.m //

///// Beginning of Program SortedDuplicateReads.m ////

o0
o

Program to Compress (& Decompress) the sequences using
functions like mdwtdec & mdwtrec and
find the duplicate reads.

de
o

o

%

248

%% The Transformed signals are compared after sorting
them based on lengths and comparing only
%% those sequences whose length are same

tStart=tic;
tStart dup = tic;
tStart wavelets = tic:

%% Metagenomics SRA data used in the paper, for finding
duplicate reads

%% To test the program for various data set, uncomment
the following list

%% of filenames one after the other and run the program
in Matlab R200%a release.

%% Various results can be checked from workspace of
matlab

i

'"SRRO00907.fna';
TSRR0O01669.fna’';
'SRR001670.fna';

$Afasta_file reads
%Afasta file reads
$Afasta file_ reads
%Afasta file_ reads "SRR0O77225.fna’;
$Afasta file reads 'SRRO00905.fna"';
%Afasta file reads = 'SRR000906.fna';
%$Afasta_file reads 'SRRO00675.fna’';
%Afasta_file reads 'SRRO01663.fna';

il

il

il

I

i

Afasta_file reads = 'SRR065619.fna'; % Small fasta file
of bacillus, to be used for testing the program & quick
results

[header, sequence] = fastaread(Afasta_file reads);

[rows columns] = size (sequence);
seq len=columns;

wavelettype = 'haar';
total base count = 0;
for count = l:seq len

dbsl = sequence{count};

ldbsl = cast{length(dbsl), 'uintlé');
%% To generate frequency string of the given sequence
using, Electron-~Ion Interaction Pseudo Potential of
Nucleotides

fgdbsl = eiip submitted(dbsl):

lseg{count} = 1ldbsl;

249

total _base count = cast(total_base_count,
'uint32') + cast((ldbsl, 'uint32'):;

ae
o

o
oe oe

oe

Compression using multiple transforms
mdwtdec/mdwtrec %%

maxdec = 4;

%% Performing each level of transform and storing in an
array of decompositions

for declev = l:maxdec
pdeclev = sprintf('dec %d', declev);
dec (count) =
mdwtdec('r', fadbsl,declev,wavelettype):
end;

% Performing reconstruction after all 4 levels of
ecomposition is completed &

% plotting it to wverify with the original sequence's
lot for exact

% reconstruction - a proof that wavelet transform based
ata reduction is

3% appropriate for doing comparisions for recognizing
duplicate reads

Y Q. oD oe Q. oe

oe

rec = mdwtrec (dec(count));
recseq{count} = rec;

e

end;

tElapsed wavelets = toc(tStart_wavelets);

e
o

o +1

%% To find the total length of decomposed sequence after
each level of transform is performed. %%

s_lend (seq_len) = cast(zeros(), 'uintlé');
for count = l:seqg_len
s lend (count) = cast(length(dec(count).cd{l,4}),
‘uintls');
end;

e oo
a0 oo

oL
o

This block identifies the duplicate reads, by
checking those reads

250

IfS’

%% whose decomposed length is same, and if the lengths
are same then, only

%% compare decomposed values to each other for
similarity check.

0. 0
oo

tStart_dup_actual = tic;

flag = cast(zeros(size(lseq)), ~logical®);

i = 0;
for row = 1;(seq_len-1)
it (flag(row) == 1) %% To check if the row is
already identified as a duplicate of earlier row
continue;
else
b=
for col = (row + 1):seq_len

if (seqg_len < 255)

cast_size = "uint8-°;
elseif (seq_len >= 255 && seq_len < 65535)
cast_size = "uintl6”;

elseif (seq_len >= 65535)
cast_size = "uint32F;
end;

it (s_lend(row) == s_len4d(col))
if(dec(l,row) .cd{l,4} ==
dec (1,col).cd{l, 4})
if g == 1
i =i + 1;
dup_read(i, j)

cast(row,cast_size);
=i
dup_read (i, j)

cast(col,cast_size);

=i+t 5

flag(row) = 1; %% To set the
status, if the row has identified any duplicate

flag(col) = 1; %% To set the
status to already compared read, if the row is already
identified as a duplicate of earlier row do not check for
its duplicate again

else

dup_read(i,j) =

cast(col,cast size);

251

flag(col)
end;
end;
end;
end;
end;
end;

i
-

tElapsed dup actual = toc(tStart dup actual):
tElapsed dup = toc(tStart dup):;
tStart stats = tic;

%% The following block of code generates the statistical
and more organized and user~friendly output. It is not
compulsory for the code to identify duplicate reads.

%% Generating the Unique list of duplicate reads, unlike
above block which

%% is generating the entire list. This block is based on
the output of the above block.

%% So, do not remove or alter the above block

%% It is also Calculating the total number of duplicate
reads and

(]

$% its percentage ie ratio of duplicate reads to the
total number of reads
And the redundant total no. of reads and total number

o\

of bases

%%

%%

%% To find the total max no. of duplicates
[dup rows,dup cols] = size(dup read);

i=1;

J=1;

total unique dup read = 0;
total dup read count = 0;

total _unique dup read count_ bases = 0;
total redundant dup read count bases = 0;

for i=l:dup rows
if (dup read(i,1) ~= 0)
total unique_dup read = total_unique_dup read
+1;
for j=2:dup cols

252

if(dup read{(i,j) ~= 0)

read no = cast{dup read(i,1l), cast_size);
dup read details(i,1) =
cast(read no,cast_size); %% finds the read no. of a
unique duplicate read
dup_read_details(i,?2
cast (1seq{l, read no},cast size); %
in a read

)
% finds the no. of bp

dup read details(i,3) =
cast(j,cast_size); %% finds total no. of copies of
this duplicate read

dup_read details(i,4) =
cast ((dup_ read details(i,2) * (dup_read details(i,3) - 1)
),cast_size); %% finds total redundant bases of this read

end;
end;

total dup_read count = total dup read count +
dup_read _details(i,3);
total unique dup read_count_bases =
total unique dup read count bases +
cast (dup_read details(i,2),'double’);
total redundant_ dup_read count bases =
total redundant dup read count bases +
cast (dup_read_details(i, 4), 'double’);
end;
end;

total_redundant dup read = total dup read count -
total unique dup read;

total percentage redundant read =
(cast (total redundant dup_read, 'double') * 100)/
seqg len;

total percentage redundant bases =
(cast (total redundant dup read count bases, 'double’) *
100)/ cast (total base count, 'double');

total dup read count bases =
cast (total unique dup_read_count bases, ‘double') +
cast (total redundant dup read count bases, 'double');
total percentage dup read bases =
(cast (total dup read count_bases, 'double') * 100) /
cast (total_lbase count, 'double');

total percentage dup read =
(cast (total dup read count, 'double') * 100)/ seg len;

253

tElapsed stats = toc(tStart stats);
tElapsed = toc(tStart);

///] End of Program : SortedDuplicateReads.m ////

254

FindZeroindex.m

/// Beginning of Program: FindZerolndex.m ///

/* Matlab Function to find Indices of Zeroes in the given

signal.

This function finds the positions or indices of zero
values in a given signal, so that it can be wused to
detect Short Tandem Repeat Regions 1n a given DNA

sequence. */

%% Function to find indices of zeros in a given signal %%

function [findzeroindx d _rle] = findzeroindex(signal,
thresholdval)

extendsignal = [1, signal, 1];

convextendsignal = conv (extendsignal,

ones ({1, thresholdval));
tempsignal = double (convextendsignal == 0);
tempconv = conv(tempsignal, ones{l,thresholdval));
findzeroindx = find(tempconv) - thresholdval;
d rle = runlengthencoding(tempsignal == 0);

end;

///// End of Program: FindZerolndex.m /////

255

