
CHAPTER IV

POSITIVE EXPANSIVITY AND G-SHADOWING FOR MAPS

ON G-SPACES

We recall that expansivity is another important dynamical property of 

maps on metric spaces. For homeomorphisms, it was defined by Utz [45] in 

1950 and for continuous onto maps it was defined by Williams in [49], 

Expansive maps have wide applications in topological dynamics, ergodic 

theory, continuum theory and symbolic dynamics [47].

We also recall that notion of G- expansivity was defined and studied 

in detail for homeomorphism on metric G- spaces [16]. We introduce and 

study here the notion of G - expansivity for continuous maps on G - spaces. 

In Section 1, we define and give some interesting examples of positively 

expansive maps on G- spaces termed as positively G- expansive maps. In 

Section 2, we study properties of positively G - expansive map and provide 

necessary examples to strengthen hypothesis. We relate the positive 

G - expansivity of a map / on a metric G- space X with G- expansivity of 

the shift map a on the inverse limit space X f generated by /.In Section 3,

observing that positive G- expansivity and G- shadowing property are 

independent concepts, we obtain a necessary and sufficient condition for a 

positively G- expansive map to possess G- shadowing property. In Section

4, we define and study the notion of non wandering points, chain recurrent
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points for maps on G- spaces and study the properties of sets of such points 

which we use in the Chapter 5 to obtain some applications of maps having 

G- shadowing property. Some of the results from this Chapter are accepted 

for publication in the Journal of Indian Mathematical Society.

1. Positively G - expansive maps : Definitions and examples.

In this section we define and give some examples of positively 

expansive maps on G- spaces termed as positively G- expansive maps. 

We begin with the following definition.

Definition 4.1.1. Let (X,d) be a metric G- space. A continuous onto map 

/:X~»X is said to be positively G-expansive, if there exists a positive 

real number c such that for all x, y in X with G(x) # G(y), there exists a 

non-negative integer n such that

d(fn(u), fn(y)) > c, for all u e G(x) and v e G(y); 

c is then called a G-expansive constant for /.

We first consider the following examples.

Examples 4.1.2 (a) Let X = Z-{0} and let G-Z2 act on X by the action 

lx - x and (-I)jc = -jc , for all xeX. Let dx be the usual metric on X and d2 

be the metric given by

dj (m, n) =
m

1 m,neX.
n
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Let / be the identity map onX. Clearly / is positively Z2-expansive with 

respect to metric dx with G-expansive constant S, 0<<J<1. For a given

£>0, choose n,meX such that . Then d2(n, m)= ——- <s
n m 2 n m

which gives fk (^) - fk (£) < s for all k>0. Therefore for a given e>0 there

exists n, meX with G(ri)*G(m) such that d2{n,m)<s. Hence / is not 

positively Z2 -expansive with respect to metric d2.

4.1.2. (b) For each ne N, let Xn denote the (m-1) sphere centered at

origin and or radius Let G = SO(m) act on X = (Jx„ u{0} of Rm by the
n=l

usual action of matrix multiplication, where 0 is the origin in Rm. Note that if 

z^OeX lies in Xn,then G(z) = Xn. Define /-.X-+X by

z, if z = 0 or z e Xx
/(*) = <z, if z e Xn,n * 1, where z' is the point of intersection of the sphere Xn_x 

with the line joining z and the origin

Take S such that 0<S <±. For zx,z2eX with G(zl)^G(z2), there is an 

integer n> 0 such that fn (u) e X2 and /"(v)eX3 or fn (u) e X3 and 

/"(v)eX2. Therefore d(fn{u),fn(y))>\>S. Hence / is positively 

SO(m)~ expansive with SO{m) - constant 8, 0 <8<j. Observe that / is not 

positively Z2 -expansive as the points of Xx cannot be separated by /, / 

being the identity map on By similar arguments, / is not positively 

expansive on Xx.
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4.1.2. (c) For each «eN, let Xn be the circle centered at origin and of

k
radius n. For fix k e N consider the subspace X = \jxn U{0} of R2.

M=1

Consider the usual action of SO{2) on X. Then the identity map on X is not 

positively expansive but is positively G - expansive with G- expansive 

constant S, 0 < S < 1.

4.1.2. (d) Consider the space X and the homeomorphism h defined in 

Example 2.1.2 (C) Suppose G = {hn : n e Z} acts on X by usual action. Then 

the map f-.X-^X defined by

/(*)

n-1

n-1

if xg{-1,-|, 0,1,1}

if x = 1-—, n# 1,2 
n

1if x = —,n* 1,2 
n

n & 1,2
( 1 .f ( 01 L !f * — 1--l n-l) k n)

1
n-l

if x = , n 1,2
n

is positively expansive with expansive constant S, 0 < S < ±.

Suppose / is positively G - expansive with G - expansive constant S. Then 

for G(|) * G({), there exists an integer k> 0 such that

d(fk(u), fk(v)) > <5 for all u e G(|) and v e G(\) (*)

Choose an integer n > k such that
1 1 £ r- 1 il)

------- ,----------- < —. For u-— e G —
2n-k 2n-k + \ 2 2b ^2j

v = —-—eG 
2n+l 13

, we have fk(u) ■■ 1 and fk{v) 1
2 n-k 2n+l—k

. Hence
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<*(/*(«), />)) = <* 1 1 ^ <5
2n-k,2n + l-kJ< 2

- a contradiction to (*). Therefore / is not positively G- expansive.

4.1.2. (e) Consider the subspace X,=XxR of R2, where

g(x,y) = (x;y + g). Then the map /, :X, -» Xx defined by f1{x,y) = (f{x),y), 

where / is the map defined on X as in Example 4.1.2 (d), is not positively 

expansive. For given S>0, choose y}, y2eR with \yi~y2\<S. Then for 

(■WiX (x2,y2) e X, there exists no integer k> 0 such that

if 1\ : Xj -» Xx is defined by hx(x,y) = (h(x),y), where h is the map h defined 

on X as in Example 4.1.2. (d) and G2 \neZ) acts on X, by the usual 

action, then /, is not positively Gt - expansive follows in a similar manner as 

in Example 4.1.2. (d).

Remark 4.1.3.

(i) Under the trivial action of G on a space X , notion of positive 

G - expansivity coincides with the notion of positive expansivity for a 

continuous onto map f:X~yX.

Let G = R act on Xx by the action

d{fi(x, /*(*, >'2))>^.

In fact, for each k, d{fx(x, yx), fxk(x, y2))= \yx -y2\<S. Further, note that f

is R-expansive with R-expansive constant S, 0 < S < -. On the other hand
6

73



(ii) Examples 4.1.2 (b), 4.1.2 (c), 4.1.2 (d), and 4.1.2 (e) show that under a 

non-trivial action of G on X both the concepts are independent.

(iii) Example 4.1.2 (a) shows that for non-compact spaces positive 

G - expansivity depends upon the metric considered on the space.

(iv) Examples 4.1.2 (b), 4.1.2 (c), 4.1.2 (d), 4.1.2 (e) show that the notion 

depends upon the choice of G in the sense that it may be positively 

G - expansive with respect to one group but need not be with respect to 

another group.

2. Properties of positively G - expansive maps.

In this section we study some properties of positively G - expansive 

maps and give necessary examples to strengthen the hypothesis.

Following result gives the relation between the positive G - expansivity 

of a map / with the positive expansivity of the induced map.

Theorem 4.2.1. Let (X,d) be a metric G- space, where G is compact and 

d is invariant. Then a pseudoequivariant map f \X~>X is positively 

G - expansive if and only if the induced map f \X/G -> XIG is positively 

expansive, where X/G is considered as a metric space with metric d1 

induced by d.

Proof. Suppose / is positively G - expansive with G - expansive constant 

c. Then for x,y<=X with G(x) * G{y) there exists an integer n > 0 such that 

d{fn{u),fn{v)) > c, for all u e G(x) and v e G(y).
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We show that f is positively expansive with expansive constant a, 

0 <a<c. Let G(x),G(y) e X / G with G(x) * G(y). Since / is positively 

G - expansive there exist an integer n > 0 such that

d{fn{u),fn(y)) > e, for all u e G(x) and v e G(j>).

Observe that for this n, dx{fn{G(x)),fn{G(y))>a which proves f is 

positively expansive on X/G with expansive constant a.

Conversely, suppose / is positively expansive with expansive 

constant e. Then for G(x), G(y) e X/G with G(x) *G(y), there exists an 

integer n>0 such that dl(fn(G(x)),fn(G(y))>e. We show that / is 

positively G- expansive with G- expansive constant e. Let x,ye X with

G(x) * G(y). Since / is positively expansive, there exists an integer n> 0 

such that d1(fn(G(x)),fn(G(y))>e which implies

^f\d(fn(u),fn(v) ):w e G(x),v e G(y)\>e

and hence

d[f ’ («), /” (v) )st inf Kr (»), /■ (v))| u s G(x),v s GCj.)} > e, 

for all ueG(x), veG(y). Therefore / is positively G- expansive with 

G - expansive constant S.

Corollary 4.2.2. Let (X,d) be a compact metric G-space, where G is 

compact and d is an invariant metric. If f-.X-^-X is a pseudoequivariant 

positively G-expansive homeomorphism then the orbit space X/G is a 

finite space.
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Proof. Since / is positively G - expansive homeomorphism on X, by

Theorem 4.2.1. the induced map / is positively expansive homeomorphism 

on a compact metric space X/G. Therefore by Theorem 1.10, X/G is finite.

If X is a metric G - space and f:X-^X is a continuous onto map 

such that /" is positively G - expansive for some n> 1 then clearly / is 

positively G - expansive. The following example shows that f:X->X is 

positively G- expansive need not imply /" is positively G- expansive for all 

n> 1.

Example 4.2.3. Let

^ ={(n>0)|n e, Z~{0}}

X2 = {(n,n)\ne Z, n odd}u- ( Hn- \ nj
|«eZ-{0}, n even

and X = XluX2 with the usual metric of R2. Suppose G = Z2 act on X by 

the action l-x = x and (-l)-x = -x, for all xeX. Define f-.X-^X by

(h + 1,0),
(1.0),

/(*H «+1,
i ^

«+iJ’

if x = («, 0), n * -1 
if x = (-1,0)

if x = («,«), n odd and n * -1.

(1,1), if x = (-1,1)

{it +1, n +1), if x = f 0n,— , n even
l V n)

We show that / is positively Z2 -expansive with Z2 - expansive constant 

8, 0 < 8 < 1. Let zx,z2 e X with G{z{) * G(z2). Then there is an integer k > 1
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such that d(f (u), f (v)) > 1 > S for all u e G(z,) and v e G(z2). Therefore / 

is positively Z2 - expansive. On the other hand observe that

r
iv* f

n
\K nj

n + 2,
1 ^

n + 2
and f2(n,0) -(n + 2,0)

and hence

/2k (( iYi f
n- nj)

1n + 2k’~^2k and fU((n,0)) = (n + 2k,0),

which implies

(
/2k 1

n- 
\ nj

JU{n, 0) —^ 0 as k —> oo.
y

Thus there is z, = ( nn,~V n) z2 ={n, 0) in X such that G(z,) * G(z2) and there is

u e G(zj) and veG(z2) for which ^((y2^(m), (/2^(v))-^ 0 as k-> oo. This 

proves that /2 is not positively Z2 - expansive though / is.

Our next result gives a sufficient condition under which f: X —> X 

positively G - expansive implies /" positively G - expansive for all n> 1. 

Theorem 4.2.4. Let X be a compact metric G - space and let f:X->X be

a positively G - expansive map. Then fn is positively G-expansive, for any 

integer n>0.

Proof. Choose a positive integer « and fix it. Let e>0 be a G-expansive 

constant for /. Since f‘,0<i<n, is uniformly continuous and X is

compact, there exists jj > 0 such that d(x,y) <tj=> d(f(x),fl(y)) < e for all
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i, 0<i<n or equivalently we have

d{f(x),f‘{y))>e => d(x,y) > rj (I)

For x,yeX with G(x)#G(y), since / is positively G - expansive, there 

exists an integer m > 0 such that

d(fm (u), fm (v)) > e, for all u e G(x) and v e G(y).

Note that if m and n are integers, then there exists jeNu{0} and 

p e {0,1,....,k -1} satisfying m = nj + p Thus we have 

e <

and therefore by using (I) we obtain

d(fnJ (U), r (V)) 2: V => d((r )J (u), (/” )J (v)) > V.

Thus for x,yeX with G(x) * G(y), there is an integer j > 0 such that

d((fny (u),(DJ(V» > rf, for all u e G(x) and v e G(y), 

where 0 < rf < ij. Therefore fn is positively G - expansive with expansive 

constant rf.

Note. Example 4.2.3. justifies compactness in Theorem 4.2.4.

Following result deals with product of positively G - expansive maps. 

Theorem 4.2.5. Let X and Y be two metric G-spaces with metrics d and 

p respectively. Suppose f: X -»X and h:Y ->Y are positively 

G-expansive maps. If G acts diagonally on the product space XxY, then 

the product map f xh:XxY -» XxY defined by (/, h)(x, y) = (/(x), h(y)) is 

positively G - expansive.
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Proof. Let ex,e2 be G-expansive constants for / and h respectively and 

let 0 < S < min{e,, e2}. We consider the metric D on XxY defined by

D((xu yx\(x2, y2))= Jfi7(xl5 x2)f + [pO|, y2)]2p.

Let (xx, yx), (x2, y2) e XxY such that G(xx, yx)* G(x2, y2). Then either 

G(x,) *G(x2) or G(yl)*G(y2). Suppose G(xx)*G(x2). Then positive 

G - expansivity of / implies there exists an integer n> 0 such that

d(fn(ux), fn(u2))>el for all ux eG(xx) and «2eG(j2), 

Therefore, for any (»„v,) e G(xx,yx), {u2,v2) e G(x2,y2), we have

= trf(/"(",)./'(«2))],+[p(A"(vI),A'(v2))]!]^

Similarly, if G(yx)*G(y2) then h being positively G-expansive, there exists 

an integer £>0 such that p(hk(vx), hk(v2))>e2, for all v, sGCv,) and 

v2zG(y2). Hence for any («„v,)eG((x1^1))I (u2,v2)eG((x2,y2)),

D{(fxh)k(ux,vx), (fxh)k(u2,v2)) >e2 >8. This proves / x h is positively 

G - expansive with G - expansive constant S.

Theorem 4.2.7. Let X and Y be compact metric G-spaces, with metric d 

and p respectively and f: X X be a positively G - expansive map. If

h:X —>Y is a pseudoequivarianthomeomorphism, then fx = hftrx :7-»7 is 

a positively G - expansive map on Y.
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Proof. Let e be a G- expansive constant for /. Since hr1 is a uniformly 

continuous map, there exists a 8 > 0 such that for all yx, y2eY

d{hrx(yx),h~l(y2)) > e => p{yx,y2)>8 (I)

Suppose jc,, x2 e X be such that h~x{yl) = x, and hr1 (y2) = x2. Then w e have 

d(xl, x2 ) > e => p(h(x1), h(x2 )) > S (II)

Note that if y1,y2eY be such that G(yx) * G(y2), then pseudoequivariancy 

of h gives G(h~] )) ^ G(h~l(y2)) or equivalently G(x,)^G(x2). Since / is

positively G - expansive, there exists an integer n > 0 such that 

d(fn(u), fn(v))>e, for all weG(xj) and veG(x2).

Therefore from (II) for all u e G(x{), v e G(x2)

P(hfn(u), hfn(v)) > ^ and hence p{fxn{h{u)), fxn(h{v))) > 8 

Thus we have p(f"(u'), fx{v'))'t8 for all u' e G(yx) and v'eG(^2). This 

proves f” is positively G ~ expansive map with G - expansive constant 8.

We recall the definition of G- expansive homeomorphisms 

defined and studied in [17], Let X be a metric G-space and h:X -y X be 

a homeomorphism. Then h is called G-expansive if there exists a 8 >0 

such that for x,yeX with G(x) * G(y) there exists an integer n satisfying

d(fn {u\ fn (v)) > 8, for all u e G(x) and v e G(y); 8 is then called a G- 

expansive constant for h. In the following result we relate the positive 

G - expansivity of a continuous onto map / with G - expansivity of the 

homeomorphism <x, the shift map on the inverse limit space Xf.
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Theorem 4.2.8. Let X be a compact metric G-space, with G compact, and 

f: X -» X be a positively G - expansive equivariant map. Consider the 

inverse limit space Xf and suppose G acts diagonally on Xf. Then the shift 

map a defined on by cr((xl)) = (/(x,)) is an G~ expansive

homeomorphism.

Proof. Let e be a G - expansive constant for / and let x,yeXf with 

G(x) * G(y). Suppose x = (xm) and y = (ym). Then G(x) * G(y) implies that 

there exists meZ such that G(xm)^G(ym). Since / is positively 

G~ expansive there exists an integer £>0 such that d(fk(u),fk{v))>S for 

all for all ueG(xm) and veGtX,). Set n = k-m and observe that 

d(o-n(u),crn(v))>S for all ueG(x) and veG(y). Hence cr is positively 

G - expansive homeomorphism on Xf.

The following result gives a class of maps which are not positively G- 

expansive.

Theorem 4.2.9. Let f: X -» X be a pseudo equivariant minimal open map 

defined on a compact metric G - space X, where G is compact and action of 

G on X is non-transitive. Then f is not a positively G - expansive map. 

Proof. If possible, suppose / is a positively G - expansive map. Then by 

Lemma 4.2.1, / is positively expansive. Thus / is a positively expansive 

open map. Therefore by Theorem 1.13 / has a fixed point in X/G, say

G(x). Observe that /(G(x)) = G(x) implies /" (x) e G(x) for each n> 0 and
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hence Of{x)czG{x). Minimality of map / and compactness of G gives 

X = G(x) But this implies G acts on X transitively - a contradiction. 

Therefore / is not positively G - expansive.

3. Positively G -expansive maps having G — shadowing property.

Observing through examples that positive G- expansivity and 

G- shadowing property are independent concepts, we obtain here a 

necessary and sufficient condition for a positively G- expansive map to 

possess G- shadowing property. Consider the following examples:

Example 4.3.1. (a) Consider Z2-space / and let / be a pseudoequivariant 

continuous onto map defined on / satisfying the hypothesis of Theorem 

3.3.2. Then / has the Z2-shadowing property. Observe that / is not 

positively Z2-expansive. For if / is positively Z2-expansive then by 

Theorem 4.2.1 the induced map / will be positively expansive map on 

l/Z2s[0,-|]. But there exists no positively expansive map on interval. 

Therefore / is not positively Z2-expansive.

4.3.1. (b) Consider the space, group and the map / of the Example 2.1.2 

(e). Recall that / defined by f(z) = z2 = e2'", does not possess the G- 

shadowing property. We show that / is positively G -expansive. Observe

that for z = e10, G(e's) = je,0,e'l0+^),e'(0+>r),e,(&+2) 1 and fk(z) = eak0. Let S
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be sueh that 0 < £ < 1. Then for zl,z2eSl with G(zx)*G{z2) there is an 

integer k> 0 such that

d(fk(u),fk{v)) > 1 > 5 for all u e G(zx) and v e G(z2).

The above examples justifies that the notion of positive 

G - expansivity and G - shadowing property for a continuous onto map on a 

metric G - space are independent. So we obtain a necessary and sufficient 

condition for a positively G- expansive map to possess the G- shadowing 

property. We first observe the following result.

Lemma 4.3.2. Let (X, d) be a compact metric G-space with G-compact. 

Then for each s> 0 there exists rj> 0 and 8 > 0 satisfying U*(gx) c gU^(x)

and gUg (x) czU*(gx)for ait g in G and all x in X. Here Uj{x) denotes the 

S - neighbourhood of x with respect to metric d.

Proof. Since (X,d) is a metric G-space, with G-compact, there is an 

invariant metric p on X, i.e. there is an equivalent metric p on X satisfying 

p(gx,gy) = p(x,y), for each geG and for all x,y e X.

Let fr>0 be given. Since d and p are equivalent metrics on a compact

space X, there exists 8 > 0 such that for each x e X, Ug(x) c U*(x) which 

implies

gU§ (x) c gUdg (x), g e G (I)
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But p is an invariant metric on X. Therefore for all xeX and geG

gU$(x) = Up(gx). (II)

Again, d and p being equivalent metrics on a compact space X we have 

tj> 0 such that for all x e X and geG

£/*(«*) c I//(gx). (in)

Therefore from (I), (II) and (III) for all xeX and geG

Vi(**) c US(&) = gVHx) c gUdt (I),

Thus for given e > 0 there exists an p > 0 such that for each xeX and 

each geG

Udv{gx)ezgUdE{x),.

Similarly there exists S > 0 such that for each xeX and each# e G 

gUj(x)cUd(gx).
S

Theorem 4.3.3. Let X be a compact metric G - space with G compact and 

let f:X-+X be a positively G- expansive pseudoequivariant map. Then f 

has the G - shadowing property if and only if for every open set U of X and 

for each x in U, there exists a S > 0 and a geG such that

gUs(f(x))af(U) (*)

where Us (x) denotes the S - neighbourhood of x.

Proof. Suppose for every open set U of X and for each x In U, there exist 

a S > 0 and a g in G such that gUs(f(x)) c f(U). We show that / has the
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G - shadowing property. Since / is a positively G - expansive 

pseudoequivariant map on X, by Theorem 4.3.1, the induced map / is 

positively expansive on X/G. We first show that / is an open map. Let U 

be an open subset of X/G and let y e f(U). Then there exists xeX such 

that z = 7t(x)eU and y = f(z) = f {n{x)). Since n is continuous Ul =n~l(U) 

is open in X and 7r(x)et/ implies xe7r~l(U) = Ul. By hypothesis there 

exists S>0 and g in G such that gf (x) e gUs (/(x)) c /(£/,) which implies

y e n(V) c /(^(f/j)) = f(U), where V = Us{f (x)) is open in X. Since n is an 

open map, x(V) is open in X/G. Therefore f(U) is open in X/G. Thus / 

is an open map. Further, since / is a positively expansive open map on

compact metric space X/G, therefore by Theorem 1.12, / has the 

shadowing property. Next we show that / has the G - shadowing property. 

Let s > 0 be given. By Lemma 4.3.2 there exists an tj > 0 such that for each 

x in X and gsG, gUr/(x) c Ue(gx). Since / has the shadowing property,

for 77 > 0 there is a § > 0 such that every pseudo orbit for / is 7/-traced 

by a point of X/G. In order to show that / has the G-shadowing property, 

we show that every S-Gpseudo orbit for / is s-traced by a point of X. 

Let {x, | i > 0} be a S-G pseudo orbit for / Then for each i > 0, there exists 

a g,eG such that t/(g,/(x,),x,+1) < 8 which gives dx (G(f (x,)), G(xl+l ))< 8

and hence {GCx^Ij'SO} is a pseudo orbit for /. Thus {G(x()|/>0} is 

77- traced by a point of X/G , say G(x), which implies for each i > 0
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dx (G( f‘ (x)), G(x, ))<?;. Since G is compact there exists /,, m, e G such that

d(l,f’(x), m,x,)< tj which implies

f\x) e i;lUv(mtx,) a Ue(i;lm,x,)

and hence d(f'(x), p,xf) <e for pt = fxml e G. Therefore / has the 

G - shadowing property.

Conversely, suppose / has the G - shadowing property. Let U be an 

open subset of X and xeU. Choose an £>0 such that xeUe(x) cU. By 

Lemma 4.3.2, there exists an 7, 0 <tj<e such that Un(gy)cz gUe(y) for all 

yeX and geG. Here e is a G-expansive constant for /. Since / has 

the G-shadowing property there exists S, Q<S <e, such that every 

8-Gpseudo orbit for / is 77-traced by a point of X. Let zeUs{x). Then

the sequence {y, |i >0} ={x,z,f2(z),....} is a S-G pseudo orbit for / and 

therefore is 77-traced by a point of X, say y, which implies for each / > 0, 

there exists p,eG, such that

d(p,y!J'{y))<v (I)

Hence for /> 1, there exists p,eG such that d{p,f~l(z),f(y))<ri<e. 

Replacing i by i + 1 we obtain for all />0, d(pl+lf‘(z),f'+l(>-))<e. Using 

pseudoequivariancy and positive G- expansivity of /, we get G(z) = G(f(y)) 

and therefore f(y) = gz, for some geG.

Also from (I) we get d(poyo,f0(yy) < 7 which implies y e Ut)(p0x) cz p0Ue(x)

and hence gz = f(y) e f(p0Ue(x)). Using pseudoequivariancy of / we get
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zeg~lf(p0Us(x)) = tf(UE(x)) and therefore U5(f(x))cztf(U) for some t in 

G and hence tVs(f(x))czf(U), where t’ = t~l e G. Thus the required 

condition holds. Hence the proof.

Note. Recall example 4.3.1 (b) in which map / on Sl is defined by 

f(el0) = e2'0. / being an open map satisfies the condition (*) of Theorem 

4.3.3. Also / is positively U4 -expansive but / does not have the 

U4 -shadowing property. Observe that / is not a pseudo equivariant map.

This proves G(f(e2)) * f(G(e2)). Thus pseudoequivariancy is a necessary 

condition in Theorem 4.3.3.

4. G- non wandering points and G - chain recurrent points: Definitions, 

examples and properties.

In this section, we define and study the notion of non wandering 

points, chain recurrent points for maps on G- spaces and study the 

properties of sets of such points. We first define these terms.

where as
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Definition 4.4.1. Let X be a metric G-space and f-.X^X be a 

continuous onto map.

(a) A point x in X is said to be G—non wandering point of f if for every 

neighbourhood U of x, there exists an integer n > 0 and a g e G such that

gfn(U)nU (p. We shall denote the set of all G- non wandering points of /

by nG(f).

(b) For x,yeX and S>0, x is said to be S-Grelated to y (denoted by

s
x~g y) if there are finite S-G pseudo orbits {x = x0,xly....,xk = y} and 

{y = yo,yx,‘-,yn = *} for /• If for every S> 0, x is S-Grelated to y, then

xis said to be G related to y (denoted by x~a y).

(c) A point x is said to be G-chain recurrent point of / if x ~G x. We shall 

denote the set of all G - chain recurrent points of / by CRG (/).

Remark 4.4.2. (i) If the action of G on X is trivial then Q(/) = QG(f). Under 

the non-trivial action Q(/) c £1G (/) (refer 4.4.3 (i)).

(Ii) If X is compact then Q(/) * <p and Q(/) c QG(f) implies QG(f) * <p.

s
(iii) ‘x~o y’ is an equivalence relation.

(iv) lf the action of G on X is transitive, then for any f;X-*X, C1G (/) = X. 

Example 4.3.3 (a) shows that QG{f) = X need not imply that action is 

transitive.
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Example 4.4.3. (a) Recall the space, map and group of Example 2.1.2 (c). In 

this case X/G ={G(0), G(l), G(-l), G(|), G(})}. Since -1, 0,1 are fixed points

of /, - 1, 0,1 e Q0 (/). Suppose x e X - {-1, 0,1}. Then x e G(|) or

x e G(|). Now /2(G(|)) = G(|) and f2(G(j)) = G(j). Therefore if U is an

s- neighbourhood of x, then there is an integer n = 2, such that 

gfn(U)nU *q>. Thus xeQG(f) and QG(f) = X. Since / is a left shift 

fixing -1, 0,1, Q(/) = CR(f) = {-1, 0,1}.

4.4.3. (b) Denote by E, = {0,1}Z, t-1, 2, and let X = E!^E2 where E!5 E2

are disjoint copies having one point in common 0 = (....,0, 0,....). For x in J,

we denote x‘ = x0,xu....) e Ef, t = 1,2. Define a metric d on X by

where l is the smallest integer for which x,=y,. Let ak be the shift map on 

E,, t = 1, 2. Suppose G = Z2 act on X by the action lx = x for each x in X 

and (-l)x1 = x2 and (-l)x2 = x1. Consider the map f:X~>X defined by

We show that every point of X is a G - non wandering point of f .Let U be 

the g-neighbourhood of x1 x0,xl5.... ) then there exists an integer

0, if x = y
d(x, y) = < 2~W, ifx, yeE, ,

1, otherwise

<Xj (x), if x 6 Ei 
cr2(x), if xeE2
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x,, if -N<i<N
2l = y,, if-3N-2 < i < -Nand N+ 1 < i <, 3N + 2, 

wherey, = Xj, (-N£j<N)
1, otherwise

i.e. consider that point z1 of Z, which has 3 consecutive blocks of length n, 

where each block of length n is same as a block of length n in x1 (i.e. a block 

from -Nto N). Then z1 el/. Also, fn{zl) = (j"(zl)ziU as z1 has 3-blocks 

of same length. Therefore f“(U)nU * <p and hence x1 e Og(/). Similarly if 

x2 e S2 then x2 e QG(/). Thus Og(/> = X. Also, Q.G(f) c CRG(f) implies

CRG(f) = X.

We now observe some properties of sets of G - non wandering points 

and G - chain recurrent points of /.

Theorem 4.4.4. Let X be a compact metric G - space and f: X X be a 

continuous pseudoequivariant onto map. Then QG(/) is a non-empty closed 

G - invariant subset of X.

Proof. We first show that LlG(f) is a closed subset of X. Let x be a limit 

point of QG(/). Then there is a sequence {x„} in Og(/) such that xn x 

as n oo. For a given s > 0 let U be the s - neighbourhood of x in X. Then 

there exists an integer N > 0 such that x„eU, for each « > N. Choose n > N

and fix it. Then for this n, xneU f] QG(f) implies there exists an integer 

k>0 and geG such that gfk(U)nU *<p which implies xeOG(/). This
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proves QG(/) is a closed subset of X. Next we show that fiG(/) is a 

G- invariant subset of X. Let U be a neighbourhood of gx. Then g~lU is a 

neighbourhood of x. Since xeQG(/) there is an integer n> 0 and k<=G

such that kfn (g~lU) ng~lU &<p. Observe that /” is pseudoequivariant for 

each w>0 and which gives gkfn(U)r\U *<p and hence gxeC2G(f). Thus 

QG(f) is a G~ invariant subset.

The following result gives a condition under which /(Og(/)) is 

contained in QG(f).

Theorem 4.4.5. Let X be a compact metric G-space and f:X->X be a 

continuous onto pseudoequivariant map. Then /(QG(/))cQG(/). 

Moreover, if f is a homeomorphism then /(Og(/)) = Qg(/) and

^g(/)=%(/-1)-

Proof. We first show that / (QG (/)) c QG(/) .Let ye f (QG (/)). Then there 

exists an x in Og(/) such that f(x) = y. Let U be a neighbourhood of y. 

Then f~l(U) is a neighbourhood of x. Since xeOG(f), there exists an 

integer k> 0 and g,g'eG such that gfk{f~lQJ))r\f~l{U)^(p implies 

/(gfk~l(U)n f x(U)) * <p and hence gfk(U)nU*<p. This establishes 

/(Qg(/))cQg(/). Further, let / be a homeomorphism. Then QG(/) =

aG(rl). Next applying the result /(QG(/))cQG(/) to the map f~l we

obtain f~l(QG(f~ly)c:QG(f-1). Since Og (/“')=Og (/), we have
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/ l(&G(f *))c %(/) which implies fiG(/ *) c /(PG(/)) and hence 

/(QG(/)) = QG(/).

The following example justifies the necessity of pseudoequivariancy in 

Theorem 4.4.5.

Example 4.4.6. Consider the unit circle S1 of R2, with the usual metric. Let 

G be the multiplicative group of fourth roots of unity acting on S1 by the usual 

action of complex multiplication. We denote the points of S1 by its argument

9 . Consider the map f-.S1 -+S1 defined by /(#) = — . Then for each 9eSl,

/"(0)-»O as n-> oo. For -^eS1, let U be a neighbourhood of Then

/”(-)-> 0. Observe that G = {0, —,n, —Since for g=-eG, gO=—eU J v2 2 2 2 2

Therefore gfn(U)nU*<p, where n is such that /”(—)et/', for a

neighbourhood U' of 9. Thus G(/). But f(~) € Og(/) . For U is

an open neighbourhood of ^ such that 0, U then for no geG and neN, 

gfn(U) r\U *(p. In fact we can always choose a small neighbourhood V of 0

7C 3 7tsuch that gV} which is a neighbourhood of either — or n or — does not
2l 2

contain j. Thus /(QG(/)) <£ QG(/).
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Theorem 4.4.7. Let X, Y be compact metric G- spaces and f, p be 

continuous onto self maps on X and Y respectively. Suppose h:X-*Y is a 

pseudoequivariant homeomorphism such that ph = hf then

h(LlG(f)) = QG(p).

Proof. Let y e h(QG (/)) then there exists x in QG (/) such that h(x) = y. If

U is a neighbourhood of y = h{x) then h~l{U) is a neighbourhood of x. Since 

xeQ.G(f), using condition ph = hf we get y e QG (p). Hence 

h(QG(f)) c QG(p). Arguing as above we get (QG(p)) <= h(QG(/)) and 

hence h(nG(f)) = Qg(p)•

We now observe certain properties of sets of G- chain recurrent 

points of /.

Theorem 4.4.8. Let X be a compact metric G - space where G is compact 

and f be a pseudo equivariant continuous onto map on X Then

nGlf) <z crg(/).

e
Proof. Let ye QG(f) and let s> 0 be given. We show that y~oy. By

Lemma 4.3.2 there is an e>tj> 0 such that gUn(x) c U£/ (g(x)) for each
/2

geG and each x in I. Also uniform continuity of / implies there is a S, 

0<5<e such that d(x, y)<S =>d(f(x), f(y))<p■ Let U-Us{y). Since 

y g ClG(f), there is an integer k>0 and geG such that gfk(U)nU*(p. Let 

x<= gfk(U)nU. Then there exists teU such that fk(g't) = x. Observe that
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{yl\0^i<k} = {y, f (t), f2 fk~l (t), y} is a finite s-G pseudo orbit from y

to itself. Hence OG(f) c CRG(/).

Theorem 4.4.9. Let X be a compact metric G-space where G is compact 

and f:X-*X be a pseudoequivariant continuous onto map. Then CRG(f) 

is a non-empty closed G - invariant subset of X.

Proof. Since QG(f) c CRG(/) and for compact space ClG(f) *qs therefore 

CRG{f) *■ g>. Let x be a limit point of CRG(/) and let s > 0 be given. Choose

an 7), 0<rj<~, such that for each yeG and xeX,gU^x)czUs(gx). Since 
2 2

f is uniformly continuous therefore corresponding to q there exists a S,

0such that d(x,y)<S => d(f(x),f(y))<^. Because x is a limit point

of CRg (/), there is a sequence {x*} in CRG (/) such that xk -> x as k-> w.

Therefore there exists an integer N>0 such that d(x,xk)<for all k>N.

$
2

Choose k^N then xk e CRG (/) implies xk ~g x* . Therefore there is a finite

s— -(/pseudo orbit from xk to itself, say {x* =y0,y\,...,ym =xk}. We show

that there exists a finite s-G pseudo orbit {x = y0,yl,....,ym =x} with 

To = Vm = x’ y, =y,f For each ie{l,2,....,m-2} there exists

' * sg,<=G satisfying d(g,f(y,)tyM)< — <e. If / = 0, then there is a g0sG
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3satisfying d(g0f(xk),yi)<-<^, Note that whenever d(xk,x)<~ we have

d(g!)f (xk), g0f(x)) < ~. Therefore

d(gof(x),yi)£d(g0f(x),g0f(xk)) + d(g0f(xk),yi).

If i = there is gm_x eG satisfying d(gm^f(y'mA), xk Thus
2 2

d(gm-\f(ym~\), x) < d(gm_lf(ym_l'),xk) + d(xk,x).

Hence {x=yl}....,ym =x} is an e-Gpseudo orbit from x to itself. Therefore

£

x~gx, for every s>0, which implies xe CRG(/). This proves CRG(J) is a 

closed subset of X.

Next, we show that CRG(f) is a G - invariant subset of X. Let £>0

be given. Choose an tj, 0<tj<~, such that for ail geG and xeX
2

gUv(x) c UE (gx). Since xeCRG(f), x~G x implies there exists a finite 
2

t]-Gpseudo orbit{x = x0,xj,...,xm =x} from x to itself. We show that

{§* = *o>*i>••••>xm = &*}> where gx = x0=xm, x,=x, for is an

e-G pseudo orbit from gx to itself.

Hence {x0 -gxx, x2xm =gx} is a finite e-G pseudo orbit from gx to itself.

£

Therefore gx~G gx for each G>0. This further implies that gxe CRG(/). 

Thus CRg (/) is a G - invariant set.
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Theorem 4.4.10, Let X be a compact metric G-space where G is compact 

and f:X->X be a pseudoequivariant continuous onto map. Then 

f(CRG(f))^CRG(f).

Proof. Let ye f(CRG(f)) and xe CRG(f) be such that f(x) = y. Let e>0 

be given. Uniform continuity of / implies that there exists S > 0 such that 

d(x,y)<S implies d(f(x),f(y))<s. Since xeCRG(f) there exists a finite 

£-Gpseudo orbit {x = x0,X[,...,xm =x} from jc to itself. Observe that 

{f(x) = f(x0),f(xl),...,f(xm) = f(x)} is a finite s-Gpseudo orbit for / from 

f{x) to itself. Therefore y = fix) e CRG (/). Hence /(CRG (/)) <= CRG if).

Recall the Example 4.4.6 which says that /(Og(/)) may be a proper 

subset of QG{f). In the following theorem we obtain the conditions under 

which /(Qg(/)) = Qg(/) and nG(f) =CRG(f).

Theorem 4.4.11. Let X be a compact metric G~ space where G is compact 

Suppose a pseudoequivariant continuous onto map f defined on X has the 

G - shadowing property. Then 

0) /(Og(/)) = Qg(/) .

(ii) CRG(f)= *W).

Proof. (I) In view of Theorem 4.4.5 it is sufficient to show that 

Qg(/)c/(Qg(/». If possible, suppose Og(/)<£/(Qg(/». This implies

that there exists xe QG(f) such that x? /(QG(/)). Since QG (/) is
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compact and / is continuous, f(QG(f)) is a compact subset of X and X 

being Hausdorff is closed in X. Therefore X~aG{f) is open and hence 

there exists s>0 such that Bs(x)c X-QG(f). By Lemma 4,3,2, there 

exists an 7, 0<tj<s, such that for each geG and each xeX, 

Ujj(gy) c:gUB(y), Since / has the G -shadowing property, for rj>0 there 

exists 8 > 0 such that every 8 — G pseudo orbit for / is 7 - traced by a point 

of X. Also / is uniformly continuous. Therefore there is y>Q such that 

d{y,z)<y ■=> d(/(>), f(z))<S. Let U-Uy(x). Since xe QG(/), there exists 

£>0 and geG such that gfk(U)nULet zegfk(U)nU, then there 

exists teU such that z = gfk(t). Observe that {xjn>0} =

is a 8-Gpseudo orbit for / and hence is 

7 - traced by a point of X, say y. This implies for each tj> 0 there is pneG 

such that d{pnxn,f n{y))<rj. In particular, for n = k,, x„ =x and for each />0 

there exists pkf e G satisfying d(pkx,fk'(y))<ri which implies

fk‘ (y) e Un (Pki x) cz pkf UE (x). Thus for each i > 0 there is pki e G satisfying 

fk‘ M e pki (UR (x)) c G(Ue (x)), where G(t/e(x)) = |J^/e(x). Therefore
geG

{fk‘ (y) I ^ 0} c= G{Ue (x)). Since X is compact there is a subsequence of 

{/*'(t) I i ^ 0} which is convergent. Suppose subsequence converges to y' in 

X. Since y is a limit point a subsquence of {fk‘ (^) | / > 0} and 

{fk,(y,):i>0}czG(Ue(x)), there is meG such that f(my')eUJx). Thus
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/ e 6>{f), where «(/) is the limit point set of / orbit of y and 

a(f) c QG(f). Therefore m/e QG(f), QG(/) being G - invariant subset of 

X, implies f(my')e f(Q.G(/)) and also f(my’)eUe(x), which is a 

contradiction. Hence /(QG (/)) = QG(/).

(»> In view of Theorem 4.4.8 it is sufficient to show that CRG(f) c QG(/). 

Let s>0 be given. By Lemma 4.3.2 there exists 77>0 such that for all yeX 

and g e G, Un(gy) c gU£(y). Since / has G - shadowing property there is a

8>0 such that every S-Gpseudo orbit for / is 77-traced by a point of X.

sLet x e CRg (/), x~c, x. Therefore there exists a finite S-G pseudo orbit 

{x = xf),xx,...,xk=x} for /. Since / has the G-shadowing property 

therefore there is a point y in X, ?7-tracing {x = x0,xj ,...,xk =x} which 

implies for each i, 0<i<k there exists p,eG satisfying d{plx„f{y))<r]. In 

particular, for / = 0 and i = k there exists p0,pk eG such that d(p0x,y)<7j 

and d(gkx,fk(y))<Tj. If d(p0x,y)<?7 then yeUn(p0x)<zp0UB(x) which 

gives fk(y) e p'0fk(Ue(y)). Also d{gkx,fk{y))<T} implies 

PkUe(x)np0fk(Ue(x)).

This implies that for the s- neighbourhood U of x there exists an integer 

ft>0 and peG such that pfk(U)r\U*<p. Therefore xeQG{f) and hence 

CRG(f)= QG(f).
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