CHAPTER IV

POSITIVE EXPANSIVITY AND G-SHADOWING FOR MAPS

ON G-SPACES

We recall that expansivity is another important dynamical property of
maps on metric spaces. For homeomorphisms, it was defined by Utz [45] in
1950 and for continuous onto maps it was defined by Williams in [49].
Expansive maps have wide applications in topological dynamics, ergodic

theory, continuum theory and symbolic dynamics [47].

We also recall that notion of G —expansivity was defined and studied
in detail for homeomorphism on metric G —spaces [16]. We introduce and
study here the notion of G —expansivity for continuous maps on G - spaces.
In Section 1, we define and give some interesting examples of positively
expansive maps on G - spaces termed as positively G — expansive maps. In
Section 2, we study properties of positively G —expansive map and provide
necessary examples to strengthen hypothesis. We relate the positive

G — expansivity of a map f on a metric G—space X with G- expansivity of
the shift map o on the inverse limit space X , generated by /. In Section 3,

observing that positive G-expansivity and G-shadowing property are
independent concepts, we obtain a necessary and sufficient condition for a
positively G~ expansive map to possess G —shadowing property. In Section

4, we define and study the notion of non wandering points, chain recurrent
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points for maps on G —spaces and study the properties of sets of such points
which we use in the Chapter 5 to obtain some applications of maps having
G —-shadowing property. Some of the results from this Chapter are accepted

for publication in the Journal of Indian Mathematical Society.

1. Positively G —expansive maps : Definitions and examples.
In this section we define and give some examples of positively
expansive maps on G -spaces termed as positively G —expansive maps.

We begin with the following definition.

Definition 4.1.1. Let (X,d) be a metric G -space. A continuous onto map
f:X —> X is said to be positively G- expansive, if there exists a positive
real number ¢ such that for all x, y in X with G(x) = G(y), there exists a
non-negative integer »n such that

d(f" @), f*()) >c,forall ue G(x)and ve G(y);
¢ is then called a G - expansive constant for f .

We first consider the following examples.

Examples 4.1.2 (a) Let X =Z-{0} and let G=Z5 act on X by the action
Ix=x and (-)x=-x, forall xe X. Let 4, be the usual metricon X and d,

be the metric given by

d2(m,n)=$——1———l-i, mnelkX.
m n
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Let f be the identity map onX . Clearly f is positively Z,-expansive with
respect to metric 4, with G—expansive constant §,0<d <1. For a given

£>0, choose n,meX such that —l-<-1~<—§-. Then d,(n, m)=\—1~-»1-— <
n m

n m

which gives |f* &-f k (——,}:—){ <¢ for all k>0. Therefore for a given £ >0 there

exists n,me X with G(n)= G(m) such that d,(n, m)<e. Hence f is not
positively Z, —expansive with respect to metric d,.

4.1.2. (b) For each neN, let X, denote the (m—1) sphere centered at

origin and or radius —j; Let G=SO(m) acton X = UX,, {0} of R™ by the
n=l1

usual action of matrix multiplication, where 0 is the origin in R™. Note that if

z#0e X liesin X,,then G(z)=X,. Define f: X - X by

z, fz=00rze X,
f(x)=4z2', if ze X,,n =1, where z'is the point of intersection of the sphere X
with the line joining z and the origin

n—-1

Take 6 such that 0<d <1. For z,z, e X with G(z,)= G(z,), there is an
integer >0 such that f"(u)eX, and f"(veX, or f"(u)eX, and
f"WMeX,. Therefore d(f"w),f"(v)>1>6. Hence [ is positively
SO(m) —expansive with SO(m)-constant 5, 0 <5 <. Observe that f is not
positively Z,-expansive as the points of X, cannot be separated by f, f
being the identity map on X,. By similar arguments, f is not positively
expansive on X,.
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4.1.2. (c) For each ne N, let X, be the circle centered at origin and of

k —
radius »n. For fix keN consider the subspace X =UX,, U{0} of RZ.

n=1
Consider the usual action of SO(2) on X . Then the identity map on X is not
positively expansive but is positively G- expansive with G- expansive
constant 5, 0<d6<1.

4.1.2. (d) Consider the space X and the homeomorphism % defined in

Example 2.1.2 (C) SupposeG ={I" : ne Z} acts on X by usual action. Then

the map f:X — X defined by

. 1 1

X, if xe{~-1,-—,0,—,1
{ 503 }
1~———-—1—-—, if x:l——~1~, nzl,2
n-1 n
f(x)r:<-1-—, if x=~1~,n¢l,2
n-1 n
-{ ---l-—), if x=-—(l-—1-—], n#1,2
n-1 n
-~-~L-, if xz—l, n#12
L n""l n

is positively expansive with expansive constant &, 0 <6 < %
Suppose f is positively G —expansive with G —expansive constant §. Then

for GG) = G(3), there exists an integer & > 0 such that

d(f*@), f¥) > forallue G&) and ve GE) *

Choose an integer n >k such that 1 s L <£. For u =ieG 1 \
2n—-k 2n—-k+1 2 2n 2
1 i’ £ 1
= Gl = |, we have = and = . Hence
VoS (3) SW=g g ad M= Tk
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k P 1 1 )
e, s (V))*d(zn-k’zn+1-k)< 2’

- a contradiction to (*). Therefore f is not positively G — expansive.

41.2. (e) Consider the subspace X,=XxR of RZ2, where
X——-{il,i(k%]}neN}. Let G=R act on X, by the action
/]

g(x,y)=(x,y+g). Then the map f,:X, - X, defined by LG =((x),»),
where f is the map defined on X as in Example 4.1.2 (d), is not positively
expansive. For given §>0, choose y,, y, e R with |¥1 - ¥2|<&8. Then for
(x1,n), (x,,¥,) € X, there exists no integer & >0 such that

dlfitGe ), £ 7)) 5.

In fact, for each &, d(fl"(x, ), £, yz)):: |»1 - y,| < & . Further, note that f,
is R-expansive with R -expansive constant &, 0<4J < é-. On the other hand

if & : X; = X, is defined by A (x,y) = (h(x), ), where 4 is the map 4 defined
on X as in Example 4.1.2. (d) and G, ={# |[ne Z} acts on X, by the usual

action, then £, is not positively G, —expansive follows in a similar manner as

in Example 4.1.2. (d).

Remark 4.1.3.
(i) Under the trivial action of G on a space X , notion of positive
G -expansivity coincides with the notion of positive expansivity for a

continuousontomap f: X - X.
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(if) Examples 4.1.2 (b), 4.1.2 (c), 4.1.2 (d), and 4.1.2 (e) show that under a
non-trivial action of G on X both the concepts are independent.

(ili)Example 4.1.2 (a) shows that for non-compact spaces positive
G - expansivity depends upon the metric considered on the space.
(iv)Examples 4.1.2 (b), 4.1.2 (c), 4.1.2 (d), 4.1.2 (e) show that the notion
depends upon the choice of G in the sense that it may be positively
G - expansive with respect to one group but need not be with respect to

another group.

2. Properties of positively G —expansive maps.
In this section we study some properties of positively G —expansive

maps and give necessary examples to strengthen the hypothesis.

Following result gives the relation between the positive G — expansivity

of a map f with the positive expansivity of the induced map.

Theorem 4.2.1. Let (X,d) be a metric G - space, where G is compact and

d is invariant.. Then a pseudoequivariant map f:X — X s positively

G — expansive if and only if the induced map f” 1 X/G - X /G is positively

expansive, where X /G is considered as a metric space with metric d,

induced by d .

Proof. Suppose [ is positively G - expansive with G —expansive constant

c. Thenfor x,y e X with G(x) = G(y) there exists an integer » >0 such that
d(f"(w), f"(v)) >c, forall ue G(x) and ve G(y).
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We show that f” is positively expansive with expansive constant «,
O<a<c. Let G(x),G(y)e X/G with G(x)=G(y). Since f is positively
G - expansive there exist an integer » > 0 such that

d(f"(w), f*(v)) >c, for all ueG(x) and ve G(y).
Observe that for this n, d,(f"(G(x)),f"(G(»)>a which proves f is
positively expansive on X /G with expansive constant «.

Conversely, suppose f is positively expansive with expansive
constant e¢. Then for G(x), G(y) e X/G with G(x)#G(y), there exists an
integer 720 such that d4,(f"(G(x)),f"(G(y))>e. We show that f is
positively G —expansive with G -expansive constant e. Let x,ye X with
G(x) # G(»). Since f is positively expansive, there exists an integer n>0
such that d,(f"(G(x)), " (G(»)) > e which implies

Inf{d(f" @), ) ):u eG(x),ve G(y)}> e
and hence
d(f" @), f7 ) )2 inf {d(F7 @), £ 0))u € G(x),v e GO} > e,
for all ueG(x), veG(y). Therefore f is positively G-expansive with

G —expansive constant & .

Corollary 4.2.2. Let (X,d) be a compact metric G- space, where G is
compact and d is an invariant metric. If f:X — X is a pseudoequivariant

positively G — expansive homeomorphism then the orbit space X/G is a

finife space.
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Proof. Since [ is positively G -expansive homeomorphism on X, by

Theorem 4.2.1. the induced map f is positively expansive homeomorphism

on a compact metric space X /G . Therefore by Theorem 1.10, X /G is finite.

Iif X is a metric G-space and f:X — X is a continuous onto map

such that f” is positively G- expansive for some »>1 then clearly f is
positively G -expansive. The following example shows that f: X > X is
positively G —expansive need not imply f” is positively G-—expansive for all
n>1.

Example 4.2.3. Let

Xy ={(n0)|ne, Z -{0}}

Xy, ={(n,m)|neZ,n odd}u{(n,—’l;){n €eZ-{0}, n even}

and X =X, UX, with the usual metric of R?. Suppose G =Z, acton X by

the action 1.x=x and (-1)-x=-x, forall xe X . Define f: X - X by

(n+1,0), if x=(n0), n+-1
1,0), if x=(-1,0)

f(z)=<(n+1,~———1—-—), if x=(n,n), nodd and n 1.
n+l
@, if x = (—1,1)

(n+Ln+l), ifx =(n,1), n even
n

We show that f is positively Z, —expansive with Z, —expansive constant

d,0<o<l. Let z,z, e X with G(z,) # G(z,). Then there is an integer t >1
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such that d(f* (), f*v))>1>6 forall ue G(z)) and ve G(z,). Therefore f

is positively Z, —expansive. On the other hand observe that

fz((n,%n = (n+2,n—j_~2~) and f?(n,0)=(n+2, 0

and hence

2% 1 1 2%
~I=in+2k =(n+
/ ([n, nD (n 1o k} and f ((n, O)) (n+2k,0),
which lmplles

d( fz"(n, 1), *n, 0)) —0as k—>w.
n
Thus there is z, =(n,—1~), z, =(n,0) in X such that G(z,) = G(z,) and there is
n

ueG(z;) and ve G(z,) for which d((fz)k(u), (fz)k(v))——é() as k-» . This

proves that f* is not positively Z, —expansive though £ is.

Our next result gives a sufficient condition under which f:X>X
positively G - expansive implies 7” positively G — expansive forall n>1.
Theorem 4.2.4. Let X be a compact metric G- space and let f:X — X be
a positively G ~ expansive map. Then 1" is positively G — expansi\(e, for any
integer n>0.

Proof. Choose a positive integer » and fix it. Let ¢>0 be a G - expansive

constant for f. Since f',0<i<n, is uniformly continuous and X is

compact, there exists 77 >0 such that d(x,y)<n= d(f* x), ' (»)) <e forall
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i, 0<i<n orequivalently we have
d(f (. ') ze =dx,y)2n @
For x,ye X with G(x)=G(y), since f is positively G- expansive, there
exists an integer m > 0 such that
d(f" ), fm" () >e, forall ue G(x) and ve G(y).
Note that if m and » are integers, then there exists je Nu{0} and
pe{0,1,..,n-1} satisfying m=m + p Thus we have
e<d(f" @), f" ) =d(f7" ), 77 (v))
and therefore by using (I) we obtain
d(f* @) "N zn=d4d(f") @,(f"Y @) z79.
Thus for x,y e X with G(x) # G(»), there is an integer j >0 such that
d{(f"Y w),(f")Y (v) zn', forall ue G(x) and ve G(»),
where 0<n' <n. Therefore f" is positively G- expansive with expansive
constant n'.

Note. Example 4.2.3. justifies compactness in Theorem 4.2.4.

Following result deals with product of positively G - expansive maps.
Theorem 4.2.5. Let X and Y be two metric G — spaces with metrics d and
p respectively. Suppose f:X—>X and h:Y—Y are positively
G - expansive maps. If G acts diagonally on the product space X xY, then
the product map fxh:XxY —> XxY defined by (f, W(x, y)=(f(x), h(y)) is

positively G — expansive.
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Proof. Let ¢ ,e, be G -expansive constants for f and & respectively and

let 0<J <min{e,, e,} . We consider the metric D on X xY defined by

Dt 70520 1)) =[xy, 20 +1001, 712)2
Let (x;, 1), (x5, ¥,) € XxY such that G(x,, y,) #G(x,, y,). Then either
G(x) = G(x,) or G(y)#G(y,). Suppose G(x;)=G(x,). Then positive
G —expansivity of f implies there exists an integer » > 0 such that

d(f"(w), f"(u,y)) > e forall u, e G(x,) and u, € G(x,).

Therefore, for any (u,,v,) € G(x,,3,), (4,,v,) € G(x,,y,), we have
DS x By @y, v, (f B (tt3,))

= [aCr ) £ @ + LG ) 1 )Y
2d(f" (), f"(u,)) >e >6.
Similarly, if G(»,) # G(y,) then h being positively G - expansive, there exists
an integer k20 such that p(h*(v)), B*(v,)) > e,, for all v, eG(y,) and
v,€G(y,). Hence for any (u,v)eG((x.y)), @,,v,)eG((x,,y,),
D((fx Y @,v), (th)k(uz,vz)) >e, >5. This proves fxh is positively

G — expansive with G — expansive constant &.

Theorem 4.2.7. Let X and Y be compact metric G - spaces, with metric d

and p respectively and f:X — X be a positively G- expansive map. If
h:X > Y is a pseudoequivariant homeomorphism, then f, =hth™ :Y > 7Y is

a positively G - expansive map on Y.
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Proof. Let ¢ be a G- expansive constant for f. Since A~ is a uniformly
continuous map, there exists a 6 >0 such thatforall y,, y,eY

A ) E ) ze = p(y,3,) 268 1y
Suppose x,, x, € X be such that #™'(y,)=x, and 7' (»,) =x,. Then w e have

d(x;,x,) = e = p(h(x,), h(x,)) =6 (Im)
Note that if y,, y,€Y be such that G(y,) # G(»,), then pseudoequivariancy
of 1 gives G(h7'(y,)) # G(h™'(3,)) or equivalently G(x,)# G(x,). Since f is
positively G — expansive, there exists an integer » > 0 such that

d(f"(u), f*(v))>e, foral ueG(x;) and ve G(x,).

Therefore from (II) for all u € G(x,), ve G(x,)

p(hf" (), hf"(v)) 26 and hence p(f"(h(w), fi" (h(v))) 26
Thus we have p(f"("), ["(W))=48 for all u'eG(y,) and v e G(y,). This

proves f;" is positively G —expansive map with G — expansive constant & .

We recall the definition of G—expansivé homeomorphisms
defined and studied in [17]. Let X be a metric G-space and 4: X - X be
a homeomorphism. Then & is called G- expansive if there exists a 6 >0

such that for x,y e X with G(x) # G(y) there exists an integer » satisfying
d(f"w, f"()>é, forall ueG(x) and veG(y); & is then called a G-

expansive constant for h. In the following result we relate the positive

G - expansivity of a continuous onto map f with G- expansivity of the

homeomorphism &, the shift map on the inverse limit space X, .
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Theorem 4.2.8. Let X be a compact mefric G — space, with G compact, and

f:X—>X be a positively G- expansive equivariant map. Consider the
inverse limit space X , and suppose G acts diagonally on X ;. Then the shift
map o defined on X, by ol(x))=(f(x)) is an G-expansive
homeomorphism.

Proof. Let ¢ be a G-expansive constant for f and let ¥, yeX, with
G(X) = G(¥). Suppose X =(x,,) and ¥ =(y,,). Then GX) = G(y) implies that
there exists meZ such that G(x,)#G(y,). Since f is Dpositively
G - expansive there exists an integer k£ >0 such that d(f* (), f*(v))> & for
all forall ueG(x,) and veG(y,). Set n=k-m and observe that
d(o"(@),a"(¥)) >3 for all # e G(¥) and ¥eG(¥). Hence o is positively

G -~ expansive homeomorphism on X ,.

The following result gives a class of maps which are not positively G-
expansive.

Theorem 4.2.9. Lef f:X — X be a pseudo equivariant minimal open map

defined on a compact metric G — space X , where G is compact and action of

G on X is non-transitive. Then f is not a positively G — expansive map.

Proof. If possible, suppose f is a positively G —expansive map. Then by
Lemma 4.2.1, f’ is positively expansive. Thus f is a positively expansive
open map. Therefore by Theorem 1.13 f has a fixed point in X/G, say

G(x). Observe that f(G(x)) = G(x) implies f"(x)e G(x) for each n>0 and
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hence O,(x) c G(x). Minimality of map f and compactness of G gives

X =G(x) But this implies G acts on X transitively — a contradiction.

Therefore f is not positively G - expansive.

3. Positively G —expansive maps having G —shadowing property.
Observing through examples that positive G-expansivity and

G —shadowing property are independent concepts, we obtain here a

necessary and sufficient condition for a positively G —-expansive map to

possess G —shadowing property. Consider the following examples:

Example 4.3.1. (a) Consider Z,-space / and let /' be a pseudoequivariant
continuous onto map defined on 7 satisfying the hypothesis of Theorem

3.32. Then f has the Z,-shadowing property. Observe that f is not
positively Z,-expansive. For if f is positively Z,-expansive then by
Theorem 4.2.1 the induced map f will be positively expansive map on
1/Z,=[0,1]. But there exists no positively expansive map on interval.

Therefore f is not positively Z,-expansive.
4.3.1. (b) Consider the space, group and the map f of the Example 2.1.2

(e). Recall that f defined by f(z)=z>=¢*’, does not possess the G-

shadowing property. We show that f is positively G -expansive. Observe

TCrES) t(8+3—”) k
that for z=e", G(e'ﬁ)*—-{e'e,e 2 'O g2 } and f*(z)=e?"?. Let &
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be such that 0<&5<1. Then for z,z,eS' with G(z)# G(z,) there is an
integer k& >0 such that

d(f* @), f¥(v)>1> 6 forall ueG(z) and ve G(z,).

The above examples justifies that the notion of positive
G - expansivity and G - shadowing property for a continuous onto map on a
metric G —-space are independent. So we obtain a necessary and sufficient
condition for a positively G —expansive map to possess the G - shadowing

property. We first observe the following result.

Lemma 4.3.2. Let (X,d) be a compact metric G - space with G - compact.

Then for each ¢ >0 there exists n >0 and & >0 satisfying U,‘;' (gx) gU: (x)

and gU%(x) cU : (gx)forall g in G and all x in X . Here U (x) denotes the

o —neighbourhood of x with respect to metric d .

Proof. Since (X,d) is a metric G -space, with G -compact, there is an
invariant metric o on X, i.e. there is an equivalent metric p on X satisfying
plgx,2y) = p(x,y),foreach ge G and forall x,ye X.

Let £¢>0 be given. Since d and p are equivalent metrics on a compact
space X, there exists & >0 such that foreach xe X, Uf(x) cU : (x) which
implies

gUZ(x) < gU (), geG M
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But p is an invariant metric on X . Therefore forall xe X and geG

gUf(x)=U% (gv). (Im)
Again, d and p being equivalent metrics on a compact space X we have
n>0 suchthatforall xe X and geG

Uy (g0) cUS (g0). (1)

Therefore from (I), (II) and (IIl) forall xe X and ge G

Uf(gx) c U (gx) = gUE(x) < U’ (),
Thus for given ¢£>0 there exists an n>0 such that for each xe X and

eachgeG

Uy (8x) € gUZ ().,

Similarly there exists § > 0 such that foreach x€ X and eachge G

gU; (x) c U (gx).

Theorem 4.3.3. Let X be a compact metric G - space with G compact and
let f:X — X be a positively G - expansive pseudoequivariant map. Then f
has the G - shadowing properly if and only if for every open set U of X and

foreach x in U, there exists a § >0 and a g € G such that
gUs(f(x)) = fU) ™
where Uz (x) denotes the & — neighbourhood of x.

Proof. Suppose for every open set U of X and for each x in U, there exist

ad>0anda g in G suchthat gU;(f(x)) < f(U). We show that f has the
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G-shadowing property. Since f is a positively G- expansive
pseudoequivariant map on X, by Theorem 4.3.1, the induced map f is
positively expansive on X/G. We first show that / is an open map. Let U
be an open subset of X/G and let ye f (U). Then there exists x ¢ X such
that z=z(x)e U and y= f(z) = f(z(x)). Since 7 is continuous U, ="' (U)
is open in X and #(x)eU implies xex™(U)=U,. By hypothesis there
exists § >0 and g in G such that gf(x) e gU;(f(x)) c f(U,) which implies
yer(V)c f(xU)) = f(U), where ¥ =U,(f(x)) is open in X . Since = is an
open map, z(V) is open in X/G. Therefore f(U) is open in X/G. Thus f
is an open map. Further, since' f is a positively expansive open map on
compact metric space X/G, therefore by Theorem 1.12, }” has the

shadowing property. Next we show that f has the G - shadowing property.

Let £ >0 be given. By Lemma 4.3.2 there exists an 7 > 0 such that for each
xin X and geG, gU,(x)cU,(gx). Since f has the shadowing property,

for n> 0 there is a § > 0 such that every ¢ —pseudo orbit for f’ is n—traced
by a point of X/G. In order to show that f has the G - shadowing property,
we show that every & -G pseudo orbit for f is £—~traced by a point of X.
Let {x, |i> 0} be a § —~ G pseudo orbit for f Then for each i >0, there exists
a g, G such that d(g,f(x,),x,)<d which gives d,(G(f(x,)),G(x,,4)) <6
and hence {G(x,)|i=0} is a §—-pseudo orbit for 7. Thus {G(x,)|i=0} is

n~traced by a point of X/G , say G(x), which implies for each i >0
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d,(G(f' (%)), G(x,))<n. Since G is compact there exists /,, m, € G such that
d(, f'(x), m,x,) <n which implies

i@ el'v,mx) cU (1 'mx,)
and hence d(f'(x), px,)<e for p,=I7'm,eG. Therefore f has the
G —shadowing property.

Conversely, suppose f has the G —shadowing property. Let U be an
open subset of X and xeU. Choose an £ >0 such that xeU, (x)cU. By
Lemma 4.3.2, there exists an 7, 0 <y <e such that U,(gy) c gU.(y) for all
ye X and geG. Here ¢ is a G—expansive constant for /. Since f has
the G -shadowing property there exists &, 0<d <e, such that every
J — G pseudo orbit for f is n—traced by a point of X . Let zeUgz(x). Then
the sequence {y, |i =0} ={x,z, f 2(z),....} is a 6§ ~ G pseudo orbit for f and
therefore is n—traced by a point of X, say y, which implies for each 1> 0,

there exists p, € G, such that

d(p,y,, ffON<n M
Hence for i>1, there exists p, €G such that d(p,f"(2),f' M) <n<e.
Replacing i by i+1 we obtain for all i20, d(p,..f ), (y))<e. Using
pseudoequivariancy and positive G —expansivity of /, we get G(z) = G(f(»))
and therefore f(y)=gz,forsome geG.
Also from (I) we get d(poyo, f °(y)) <n which implies y e U, (pox) < pU.(x)

and hence gz = f(y) € f(p,U.(x)). Using pseudoequivariancy of f we get
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ze g f(pU, () =tf (U, (x)) and therefore Us(f(x)) <4 (U) for some ¢ in

G and hence fU;(f(x))c f(U), where t'=¢t"eG. Thus the required

condition holds. Hence the proof.

Note. Recall example 4.3.1 (b) in which map £ on S' is defined by

f(e?)y=e*. f being an open map satisfies the condition (*) of Theorem
4.3.3. Also f is positively U, —expansive but f does not have the

U, —shadowing property. Observe that f is not a pseudo equivariant map.
In fact for 2’ € S,
74 : z 3z 3z 7.4
G(f(e_z—)) = G(em) — {elﬂ',el(ﬁ‘*“f)’el(ﬁ+ﬂ)’el(ﬂ+7)} - {em,eT ,ezm,ey}

where as
1z in Br om Z ] 0
fGEe)=r {e e ? e ,ez} =e'",e""}.

This proves G(f (e%r')) # f (G(e%)). Thus pseudoequivariancy is a necessary

condition in Theorem 4.3.3.

4. G -non wandering points and G - chain recurrent points: Definitions,
examples and properties.

In this section, we define and study the notion of non wandering
points, chain recurrent points for maps on G-spaces and study the

properties of sets of such points. We first define these terms.
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Definition 4.4.1. Let X be a metric G-space and f:X—>X be a

continuous onto map.

(a) A point x in X is said to be G-non wandering point of f if for every
neighbourhood U of x, there exists an integer »n>0 and a g € G such that
g"U)NU = p. We shall denote the set of all G- non wandering points of f
by Qs(.

(b) For x, ye X and 6>0, x is said to be §-Grelated to y (denoted by

]
x~gy) if there are finite &-Gpseudo orbits {x=xg,%,....x, =y} and

{V=Yo: 015y, =x} for f.If for every 6>0, x is 6§-Grelated to y, then

xis said to be G related to y (denoted by x~g y).
(c) A point x is said to be G- chain recurrent point of f if x ~g x. We shall

denote the set of all G - chain recurrent points of f by CR; ().

Remark 4.4.2, (i) If the action of G on X is trivial then Q(f) = Qs (f). Under
the non-trivial action Q(f) < Qg (f) (refer 4.4.3 (i)).

(ii) If X is compact then Q(f)# ¢ and Q(f) c Qg (f) implies Q- (f)=e.

§
(iif)’ x~c y' is an equivalence relation.
(iv)If the action of G on X is transitive, then forany f/: X - X, Qz(NH=X.
Example 4.3.3 (a) shows that Qg(f)=X need not imply that action is

transitive.
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Example 4.4.3. (a) Recall the space, map and group of Example 2.1.2 (c). In
this case X /G ={G(0), G(I), G(-1), G(), G(3)}. Since -1, 0,1 are fixed points
of f, -1,0,1eQg(f). Suppose xe X —{-1,0,1}. Then xeG() or
xeGE3). Now f2(GG)=G() and f*(GE)=G(). Therefore if U is an
£— neighbourhood of x, then there is an integer n=2, such that
g"U)ynU=¢@. Thus xeQgs(f) and Qs(f)=X. Since f is a left shift
fixing -1, 0,1, Q(f)=CR(f)={-1,0,1}.

4.4.3. (b) Denote by ¥, ={0,1}%, t=1,2, and let X =3, UY, where ¥,,3,
are disjoint copies having one point in common 0=¢(....,0, 0, .....). For x in X,
we denote x* =(....,xp,X,...) €%,, t =1, 2. Define a metric d on X by

0, ifx=y

d(x, y)= 2"‘1}, ifx,ye, ,
1,  otherwise

where [ is the smallest integer for which x;, = y,. Let o, be the shift map on
2., t=1,2. Suppose G=Z, acton X by the action 1x=x foreach x in X
and (-1)x' = x? and (-1)x* = x!. Consider the map f:X — X defined by

o,(x),ifxe,
o, (x),ifxed,’

f(x)={

We show that every point of X is a G- non wandering point of . Let U be

the & —neighbourhood of x'=(..,xy,%,...) then there exists an integer

N > 0 such that ;fv- <-‘§~ . Let n=2N +1. Consider the point z' of ¥, such that
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x,f-N<i<N

y,,if-3N-2<i<-Nand N+1<i<3N+2,
wherey, =x,,(-N< j<N)

1, otherwise

Zl=

i.e. consider that point z! of ¥, which has 3 consecutive blocks of length ,
where each block of length » is same as a block of length » in x' (i.e. a block
from —~Nto N). Then z' eU . Also, f"(z')=07(z')eU as z' has 3-blocks
of same length. Therefore f/"(U)NU = ¢ and hence x' e Qs(f). Similarly if
x> €Y, then x* € Qg(f). Thus Qs(f)=X. Also, Qg(f) c CR;(f) implies

CR(f)=X.

We now observe some properties of sets of G —non wandering points

and G - chain recurrent points of 1.
Theorem 4.4.4. Let X be a compact metric G- space and f:X — X be a
continuous pseudoequivariant onto map. Then Qs (f) is a non-emply closed

G - invariant subset of X .

Proof. We first show that Q;(f) is a closed subset of X . Let x be a limit
point of Q;(f). Then there is a sequence {x,} In Q;(f) such that x, — x

as n—>wo. Foragiven ¢>0 let U be the £ - neighbourhood of x in X. Then

there exists an integer N >0 such that x, e U, foreach n> N. Choose n> N
and fix it. Then for this n, x, €U Qg(f) implies there exists an integer

k>0 and ge G suchthat gf*(U)nU =¢ which implies xeQg(f). This
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proves Qg (f) is a closed subset of X. Next we show that Q;(f) is a
G ~invariant subset of X . Let U be a neighbourhood of gx. Then g7'U is a
neighbourhood of x. Since xeQg(f) there is an integer »n>0 and keG
such that k(g 'U)ng 'U = ¢p. Observe that 7" is pseudoequivariant for

each »>0 and which gives gkf"(U)nU #¢ and hence gxe Q;(f). Thus

Qs(f) is a G-invariant subset.

The following result gives a condition under which f(Qg(f)) is
contained in Q;(f).
Theorem 4.4.5. Let X be a compact metric G—space and f:X —-» X be a
continuous onto pseudoequivariant map. Then f(Qg())<Qgz(f).
Moreover, if f is a homeomorphism then f(Qg(f)=Qs(f) and
QN =Qc(f™).
Proof. We first show that f(Q;(f) < Qs(f). Let ye f(Qs(f)). Then there
exists an x in Qg(f) such that f(x)=y. Let U be a neighbourhood of y.
Then f7(U) is a neighbourhood of x. Since x€ Qg(f), there exists an
integer k>0 and g,g'cG such that gr*(f'@)nf U)=e implies
fg N WU)=2e and hence gf*U)NU=¢. This establishes
fQg(N)) = Qs (f). Further, let f be a homeomorphism. Then Q;(f)=
Qa(f ™). Next applying the result f(Qs;(f) < Qg(f) to the map f we

obtain  fQ(fMNcQ(f). Since Qgz(fH=Qu(f), we have
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QUMM cQg(f) which implies Qg(f™) c f(Qg(f)) and hence

FQs(N=Qc(f).

The following example justifies the necessity of pseudoequivariancy in

Theorem 4.4.5.
Example 4.4.6. Consider the unit circle S! of R?, with the usual metric. Let
G be the multiplicative group of fourth roots of unity acting on S' by the usual

action of complex multiplication. We denote the points of S* by its argument

# . Consider the map f:S' — S! defined by f(c9)=% Then for each e S!,
f"@)—>0 as n—>w. For %eS‘, let U be a neighbourhood of % Then
f”(f-r-)—w. Observe that G ={0, 1’-,7;, Eﬁ}_ Since for g=£eG, g0=£eU
2 2 2 2 2
Therefore gf"(U)NnU=¢@, where n is such that f "(—g-)eU’, for a
neighbourhood U’ of 4. Thus Z’z_e Qqs(f). But f(%)=-;—i- €Qs(f).For U is

an open neighbourhood of 715 such that 0, -ge U thenforno geG and neN,

g (U)nU =e. In fact we can always choose a small neighbourhood V' of 0

such that gV, which is a neighbourhood of either Z— or = or -3%[— does not

contain %. Thus f(Qg(f) & Qs (f).
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Theorem 4.4.7. Let X, Y be compact metric G-spaces and f, p be

continuous onto self maps on X and Y respectively. Suppose h: X ->7Y is a

pseudoequivariant ~ homeomorphism  such that ph=hf then
Qe (N =Qs(p)-

Proof. Let y e i(Q5(f)) then there exists x in Q;(f) such that A(x)=y. If
U is a neighbourhood of y = h(x) then k™ (U) is a neighbourhood of x. Since
xe Qs(f), using condition ph=hf we get yeQg;(p). Hence
hQgs () < Qgz(p). Arguing as above we get (Qg(p)c h(Qgs(f)) and

hence K(Qg (/) =6 (p)-

We now observe certain properties of sets of G -chain recurrent

points of 1.
Theorem 4.4.8. Let X be a compact metric G - space where G is compact

and f be a pseudo equivariant continuous onto map on X Then

Qg (f) cCRs(S)-

Proof. Let ye Qs (f) and let £>0 be given. We show that in y. By

Lemma 4.3.2 there is an £>7>0 such that gU,,(x)c:U% (g(x)) for each
geG and each x in X. Also uniform continuity of f implies there is a &,
0<d8<e such that d(x, »)<d =d(f(x), f()<n. Let U=Usz(y). Since
yeQqs(f), there is aninteger £ >0 and g <G such that g NU=p. Let
xe gf*(U)nU. Then there exists reU such that f*(g't)=x. Observe that
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D, 10i<E =, £©O, 1) £571(2), y} is a finite £ — G pseudo orbit from y

to itself. Hence Qg (f) < CR;(f).

Theorem 4.4.9. Let X be a compact metric G —space where G is compact

and f:X - X be a pseudoequivariant continuous onto map. Then CR;(f)

is a non-empty closed G —invariant subset of X .

Proof. Since Qg;(f) < CR;(f) and for compact space Q;(f) =¢ therefore

CRG(f) # ¢. Let x be a limit point of CR;(f) and let £>0 be given. Choose

an 7, O<n<—§, such that for each ye G and xe X, gU, (x) c U, (gx). Since
2

f is uniformly continuous therefore corresponding to n there exists a &,
0<é <-72—7- such that d(x,y) <& = d(f(x), f(y))<~;z. Because x is a limit point
of CR;(f), there is a sequence {x;} in CR;(f) such that x, - x as k>,
Therefore there exists an integer N >0 such that d(x,xk)<g forall k>N.

g

2
Choose k=N then x, € CR;(f) implies x, ~g x,. Therefore there is a finite
-ngpseudo orbit from x, to itself, say {x, = ¥, 31,0 ¥, =%, }. We show

that there exists a finite &-Gpseudo orbit {x=y,,y,.....0,, =x} with

Yo=Ym=%X, y,=¥,, 1<i<m-1. For each ie{l,2,..,m—-2} there exists

g, €G satisfying d(g,f(y;),y;+1)<§<g. If i=0, then there is a g, G
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satisfying d(g,/(x,), ;) <-§—<§. Note that whenever d(xk,x)<-g— we have

d(gof (%), 80 S (%)) <§ . Therefore
d(gof(x) 1) <d(gof(%),80f(x,)) + d(gef(x). »)) .

ifi=m-1,thereis g, , G satisfying d(g,,, f (V1) Xt <—(2§<-§. Thus

At f Dpt)s X) S Ay [ Wt Do %) + A, , %) .

Hence {x=y,,...,y, =x} is an ¢ -G pseudo orbit from x to itself. Therefore

xiG x, for every £>0, which implies xe CRG(f). This proves CR;(f) is a

closed subset of X .

Next, we show that CRg(f) is a G ~invariant subset of X. Let £>0

be given. Choose an 7, O<r;<—§-, such that for all geG and xeX,

n
gU,](x)c:Uf(gx). Since xe CR;(f), x~¢ x implies there exists a finite
2

n-Gpseudo orbit{x=xy,x;,..,x, =x} from x to itself. We show that
{gx=x9,%,....x,, = gx}, where gx=x,=x,, x,=x, for 1<i<m-1, is an
¢ — G pseudo orbit from gx to itself.

Hence {x, =gx, x,,....,x,, = gx} is a finite £~ G pseudo orbit from gx to itself.

Therefore gxiG gx for each £>0. This further implies that gxe CRg(f).

Thus CR;(f) is a G —invariant set.
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Theorem 4.4.10. Let X be a compact metric G — space where G is compact

and f:X—>X be a pseudgequiva;iant continuous onto map. Then
F(CRG () = CRs(f).

Proof. Let ye f(CR;(f)) and xe CR;(f) be such that f(x)=y. Let £>0
be given. Uniform continuity of f implies that there exists & >0 such that
d(x,y)<¢ implies d(f(x),f(»)<e. Since xe CR;(f) there exists a finite
6 -Gpseudo orbit {x=xy,x,..,x,=x} from x to itself. Observe that
{f(x)=f(x0), f(x)yeer f(x,,) = f(x)} is a finite &G pseudo orbit for f from

f(x) toitself. Therefore y = f(x)e CR;(f). Hence f(CR;(f))cCR;(f).

Recall the Example 4.4.6 which says that f(Q;(f)) may be a proper

subset of Q;(f). In the following theorem we obtain the conditions under

which f(Qg(f) = Qg (/) and Qs(f) =CRs(f).

Theorem 4.4.11. Let X be a compact metric G - space where G is compact.

Suppose a pseudoequivariant continuous onto map f defined on X has the
G — shadowing property. Then

) f(Qe(UN=c(N) .

(i) CRG() = Qg(f).

Proof. (i) in view of Theorem 4.45 it is sufficient to show that
Qs (N f(Qg(f). If possible, suppose Qs;(f) ¢ f(Qg(f)). This implies

that there exists xe Qg(f) such that x¢ f(Qgs(f)). Since Qg (f) is
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compact and f is continuous, f(Qg(f)) is a compact subset of X and X
being Hausdorff is closed in X . Therefore X - Qs(f) is open and hence
there exists £>0 such that B, (x)c X - Qs (f). By Lemma 4.3.2, there
exists an 7, O<np<eg, such that for each geG and each xelX,
U,(&n)cgU,(»). Since f has the G-shadowing property, for >0 there
exists >0 such that every & - G pseudo orbit for 1 is n —traced by a point
of X. Also f is uniformly continuous. Therefore there is »>0 such that
d(y,2)<y = d(f(»), f(2))<F. Let U=U,(x). Since xe Q;(f), there exists
k>0 and geG such that gf*(U)NU=¢. Let zegf*(U)nU, then there
exists reU such that z=gf*(). Observe that {x, [n>0}=
5, f @O, f2WOsees [0, s @ 5-Gpseudo orbit for £ and hence is
n —traced by a point of X', say y. This implies for each 7 >0 there is p,€G
such that d(p,x,, f"(»)) <7 . In particular, for n=k,, x, =x and for each i>0
there exists p, G satisfying d(p,x /% (»)<n which implies
() eU,(p, %) < p U, (x). Thus for each i >0 there is py, €G satisfying

M3 ep,U,(6)cGU,(x), where GU,(x)=|JgU,(x). Therefore
geG

{fh WM]iz0}cGU,(x)). Since X is compact there is a subsequence of
{4 |20} which is convergent. Suppose subsequence converges to »' in
X. Since ' is a limit point a subsquence of {f k(»)]iz0} and

{(f* ()20} cGU,(x)), there is meG such that fmeU_(x). Thus
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y' ew(f), where w(f) is the limit point set of f orbit of y and
o(f) c Qg (f) . Therefore my'e Qg (f), Qgz(f) being G —invariant subset of
X, implies f(my')e f(Qs(f) and also f(my')eU.(x), which is a
contradiction. Hence f(Q;(/N=Qs(f)-

(i} In view of Theorem 4.4.8 it is sufficient to show that CR;(f) < Qg(f).
Let £>0 be given. By Lemma 4.3.2 there exists 7> 0 such that for all ye X
and geG, U, (g9)cgU,(y). Since f has G - shadowing property there is a

5 >0 such that every & — G pseudo orbit for f is r—traced by a point of X .

Let xe CR;(f), x'ic} x. Therefore there exists a finite & — G pseudo orbit
{x=x,,%,...x, =x} for f. Since f has the G -shadowing property
therefore there is a point y in X, p-tracing {x=x,,%,,...x, =x} which
implies for each i, 0<i<fk there exists p, e G satisfying d(p,x,, f'(3))<7n.In
particular, for i=0 and i=k there exists py,p, € G such that d(p,x,y) <7
and d(gkx,f"(y))<77. If d(pyx,y)<n then yeU,(pyx)c pU,(x) which
gives *(3) e poS* (U (). Also d(g;x, f* () <7 implies

PiU: ()N po f* We ().
This implies that for the £—neighbourhcod U of x there exists an integer

k>0 and peG such that pf*(U)nU =¢. Therefore xe Qs (f) and hence

’

CRG(f) = Qg ().
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