CHAPTER IV

POSITIVE EXPANSIVITY AND G-SHADOWING FOR MAPS ON G-SPACES

We recall that expansivity is another important dynamical property of maps on metric spaces. For homeomorphisms, it was defined by Utz **[45]** in 1950 and for continuous onto maps it was defined by Williams in **[49]**. Expansive maps have wide applications in topological dynamics, ergodic theory, continuum theory and symbolic dynamics **[47]**.

We also recall that notion of G-expansivity was defined and studied in detail for homeomorphism on metric G-spaces [16]. We introduce and study here the notion of G-expansivity for continuous maps on G-spaces. In Section 1, we define and give some interesting examples of positively expansive maps on G-spaces termed as positively G-expansive maps. In Section 2, we study properties of positively G-expansive map and provide necessary examples to strengthen hypothesis. We relate the positive G-expansivity of a map f on a metric G-space X with G-expansivity of the shift map σ on the inverse limit space X_f generated by f. In Section 3, observing that positive G-expansivity and G-shadowing property are independent concepts, we obtain a necessary and sufficient condition for a positively G-expansive map to possess G-shadowing property. In Section 4, we define and study the notion of non wandering points, chain recurrent points for maps on G-spaces and study the properties of sets of such points which we use in the Chapter 5 to obtain some applications of maps having G-shadowing property. Some of the results from this Chapter are accepted for publication in the Journal of Indian Mathematical Society.

1. Positively G – expansive maps : Definitions and examples.

In this section we define and give some examples of positively expansive maps on G-spaces termed as positively G-expansive maps. We begin with the following definition.

Definition 4.1.1. Let (X,d) be a metric G-space. A continuous onto map $f: X \to X$ is said to be *positively* G-expansive, if there exists a positive real number c such that for all x, y in X with $G(x) \neq G(y)$, there exists a non-negative integer n such that

$$d(f^n(u), f^n(v)) > c$$
, for all $u \in G(x)$ and $v \in G(y)$;

c is then called a G-expansive constant for f.

We first consider the following examples.

Examples 4.1.2 (a) Let $X = Z - \{0\}$ and let $G = Z_2$ act on X by the action 1x = x and (-1)x = -x, for all $x \in X$. Let d_1 be the usual metric on X and d_2 be the metric given by

$$d_2(m,n) = \left|\frac{1}{m} - \frac{1}{n}\right|, m, n \in X.$$

Let f be the identity map on X. Clearly f is positively Z_2 -expansive with respect to metric d_1 with G-expansive constant δ , $0 < \delta < 1$. For a given $\varepsilon > 0$, choose $n, m \in X$ such that $\frac{1}{n} < \frac{1}{m} < \frac{\varepsilon}{2}$. Then $d_2(n, m) = \left|\frac{1}{n} - \frac{1}{m}\right| < \varepsilon$ which gives $\left|f^k(\frac{1}{n}) - f^k(\frac{1}{m})\right| < \varepsilon$ for all $k \ge 0$. Therefore for a given $\varepsilon > 0$ there exists $n, m \in X$ with $G(n) \neq G(m)$ such that $d_2(n, m) < \varepsilon$. Hence f is not positively Z_2 -expansive with respect to metric d_2 .

4.1.2. (b) For each $n \in \mathbb{N}$, let X_n denote the (m-1) sphere centered at origin and or radius $\frac{1}{n}$. Let G = SO(m) act on $X = \bigcup_{n=1}^{\infty} X_n \cup \{0\}$ of \mathbb{R}^m by the usual action of matrix multiplication, where 0 is the origin in \mathbb{R}^m . Note that if $z \neq 0 \in X$ lies in X_n , then $G(z) = X_n$. Define $f : X \to X$ by

 $f(x) = \begin{cases} z, & \text{if } z = 0 \text{ or } z \in X_1 \\ z', & \text{if } z \in X_n, n \neq 1, \text{ where } z' \text{ is the point of intersection of the sphere } X_{n-1} \\ & \text{with the line joining } z \text{ and the origin} \end{cases}$

Take δ such that $0 < \delta < \frac{1}{6}$. For $z_1, z_2 \in X$ with $G(z_1) \neq G(z_2)$, there is an integer $n \ge 0$ such that $f^n(u) \in X_2$ and $f^n(v) \in X_3$ or $f^n(u) \in X_3$ and $f^n(v) \in X_2$. Therefore $d(f^n(u), f^n(v)) > \frac{1}{6} > \delta$. Hence f is positively SO(m) – expansive with SO(m) – constant δ , $0 < \delta < \frac{1}{6}$. Observe that f is not positively Z_2 -expansive as the points of X_1 cannot be separated by f, f being the identity map on X_1 . By similar arguments, f is not positively expansive on X_1 .

4.1.2. (c) For each $n \in \mathbb{N}$, let X_n be the circle centered at origin and of radius n. For fix $k \in \mathbb{N}$ consider the subspace $X = \bigcup_{n=1}^{k} X_n \cup \{\overline{0}\}$ of \mathbb{R}^2 . Consider the usual action of SO(2) on X. Then the identity map on X is not positively expansive but is positively G-expansive with G-expansive constant δ , $0 < \delta < 1$.

4.1.2. (d) Consider the space X and the homeomorphism h defined in Example 2.1.2 (C) Suppose $G = \{h^n : n \in \mathbb{Z}\}$ acts on X by usual action. Then the map $f : X \to X$ defined by

$$f(x) = \begin{cases} x, & \text{if } x \in \{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\} \\ 1 - \frac{1}{n-1}, & \text{if } x = 1 - \frac{1}{n}, \ n \neq 1, 2 \\ \frac{1}{n-1}, & \text{if } x = \frac{1}{n}, \ n \neq 1, 2 \\ -\left(1 - \frac{1}{n-1}\right), & \text{if } x = -\left(1 - \frac{1}{n}\right), \ n \neq 1, 2 \\ -\frac{1}{n-1}, & \text{if } x = -\frac{1}{n}, \ n \neq 1, 2 \end{cases}$$

is positively expansive with expansive constant δ , $0 < \delta < \frac{1}{6}$. Suppose f is positively G-expansive with G-expansive constant δ . Then for $G(\frac{1}{2}) \neq G(\frac{1}{3})$, there exists an integer $k \ge 0$ such that

$$d(f^k(u), f^k(v)) > \delta$$
 for all $u \in G(\frac{1}{2})$ and $v \in G(\frac{1}{3})$ (*)

Choose an integer n > k such that $\frac{1}{2n-k}$, $\frac{1}{2n-k+1} < \frac{\delta}{2}$. For $u = \frac{1}{2n} \in G\left(\frac{1}{2}\right)$,

$$v = \frac{1}{2n+1} \in G\left(\frac{1}{3}\right)$$
, we have $f^{k}(u) = \frac{1}{2n-k}$ and $f^{k}(v) = \frac{1}{2n+1-k}$. Hence

$$d(f^{k}(u), f^{k}(v)) = d\left(\frac{1}{2n-k}, \frac{1}{2n+1-k}\right) < \frac{\delta}{2},$$

- a contradiction to (*). Therefore f is not positively G – expansive.

4.1.2. (e) Consider the subspace
$$X_1 = X \times \mathbb{R}$$
 of \mathbb{R}^2 , where $X = \left\{ \pm \frac{1}{n}, \pm \left(1 - \frac{1}{n}\right) | n \in \mathbb{N} \right\}$. Let $G = \mathbb{R}$ act on X_1 by the action

g(x,y) = (x, y+g). Then the map $f_1: X_1 \to X_1$ defined by $f_1(x,y) = (f(x), y)$, where f is the map defined on X as in Example 4.1.2 (d), is not positively expansive. For given $\delta > 0$, choose $y_1, y_2 \in \mathbb{R}$ with $|y_1 - y_2| < \delta$. Then for $(x_1, y_1), (x_2, y_2) \in X_1$ there exists no integer $k \ge 0$ such that

$$d(f_1^k(x, y_1), f_1^k(x, y_2)) > \delta$$
.

In fact, for each k, $d(f_1^k(x, y_1), f_1^k(x, y_2)) = |y_1 - y_2| < \delta$. Further, note that f_1 is R-expansive with R-expansive constant δ , $0 < \delta < \frac{1}{6}$. On the other hand if $h_1: X_1 \to X_1$ is defined by $h_1(x, y) = (h(x), y)$, where h is the map h defined on X as in Example 4.1.2. (d) and $G_2 = \{h_1^n | n \in Z\}$ acts on X_1 by the usual action, then f_1 is not positively G_2 – expansive follows in a similar manner as in Example 4.1.2. (d).

Remark 4.1.3.

(i) Under the trivial action of G on a space X, notion of positive G-expansivity coincides with the notion of positive expansivity for a continuous onto map $f: X \to X$.

(ii) Examples 4.1.2 (b), 4.1.2 (c), 4.1.2 (d), and 4.1.2 (e) show that under a non-trivial action of G on X both the concepts are independent.

(iii)Example 4.1.2 (a) shows that for non-compact spaces positive G – expansivity depends upon the metric considered on the space.

(iv)Examples 4.1.2 (b), 4.1.2 (c), 4.1.2 (d), 4.1.2 (e) show that the notion depends upon the choice of G in the sense that it may be positively G-expansive with respect to one group but need not be with respect to another group.

2. Properties of positively G – expansive maps.

In this section we study some properties of positively G – expansive maps and give necessary examples to strengthen the hypothesis.

Following result gives the relation between the positive G – expansivity of a map f with the positive expansivity of the induced map.

Theorem 4.2.1. Let (X,d) be a metric G – space, where G is compact and d is invariant. Then a pseudoequivariant map $f: X \to X$ is positively G – expansive if and only if the induced map $\hat{f}: X/G \to X/G$ is positively expansive, where X/G is considered as a metric space with metric d_1 induced by d.

Proof. Suppose f is positively G – expansive with G – expansive constant c. Then for $x, y \in X$ with $G(x) \neq G(y)$ there exists an integer $n \ge 0$ such that

 $d(f^n(u), f^n(v)) > c$, for all $u \in G(x)$ and $v \in G(y)$.

We show that \hat{f} is positively expansive with expansive constant α , $0 < \alpha < c$. Let $G(x), G(y) \in X/G$ with $G(x) \neq G(y)$. Since f is positively G-expansive there exist an integer $n \ge 0$ such that

$$d(f^n(u), f^n(v)) > c$$
, for all $u \in G(x)$ and $v \in G(y)$.

Observe that for this n, $d_1(\hat{f}^n(G(x)), \hat{f}^n(G(y)) > \alpha$ which proves \hat{f} is positively expansive on X/G with expansive constant α .

Conversely, suppose \hat{f} is positively expansive with expansive constant *e*. Then for G(x), $G(y) \in X/G$ with $G(x) \neq G(y)$, there exists an integer $n \ge 0$ such that $d_1(\hat{f}^n(G(x)), \hat{f}^n(G(y)) > e$. We show that *f* is positively *G*-expansive with *G*-expansive constant *e*. Let $x, y \in X$ with $G(x) \neq G(y)$. Since \hat{f} is positively expansive, there exists an integer $n \ge 0$ such that $d_1(\hat{f}^n(G(x)), \hat{f}^n(G(y)) > e$ which implies

$$Inf\left\{d\left(f^{n}(u), f^{n}(v)\right): u \in G(x), v \in G(y)\right\} > e$$

and hence

$$d(f^n(u), f^n(v)) \ge \inf \left\{ d(f^n(u), f^n(v)) | u \in G(x), v \in G(y) \right\} > e,$$

for all $u \in G(x)$, $v \in G(y)$. Therefore f is positively G – expansive with G – expansive constant δ .

Corollary 4.2.2. Let (X,d) be a compact metric G-space, where G is compact and d is an invariant metric. If $f: X \to X$ is a pseudoequivariant positively G-expansive homeomorphism then the orbit space X/G is a finite space.

Proof. Since f is positively G-expansive homeomorphism on X, by Theorem 4.2.1. the induced map \hat{f} is positively expansive homeomorphism on a compact metric space X/G. Therefore by Theorem 1.10, X/G is finite.

If X is a metric G-space and $f: X \to X$ is a continuous onto map such that f^n is positively G-expansive for some n > 1 then clearly f is positively G-expansive. The following example shows that $f: X \to X$ is positively G-expansive need not imply f^n is positively G-expansive for all n > 1.

Example 4.2.3. Let

$$X_{1} = \{(n,0) | n \in \mathbb{Z}, n \text{ odd}\} \cup \left\{ \left(n, \frac{1}{n}\right) | n \in \mathbb{Z} - \{0\}, n \text{ even} \right\}$$

and $X = X_1 \cup X_2$ with the usual metric of \mathbb{R}^2 . Suppose $G = \mathbb{Z}_2$ act on X by the action $1 \cdot x = x$ and $(-1) \cdot x = -x$, for all $x \in X$. Define $f : X \to X$ by

$$f(z) = \begin{cases} (n+1,0), & \text{if } x = (n,0), n \neq -1 \\ (1,0), & \text{if } x = (-1,0) \\ \left(n+1,\frac{1}{n+1}\right), & \text{if } x = (n,n), n \text{ odd and } n \neq -1 \\ (1,1), & \text{if } x = (-1,1) \\ (n+1,n+1), & \text{if } x = \left(n,\frac{1}{n}\right), n \text{ even} \end{cases}$$

We show that f is positively Z_2 -expansive with Z_2 -expansive constant δ , $0 < \delta < 1$. Let $z_1, z_2 \in X$ with $G(z_1) \neq G(z_2)$. Then there is an integer k > 1

such that $d(f^k(u), f^k(v)) > 1 > \delta$ for all $u \in G(z_1)$ and $v \in G(z_2)$. Therefore f is positively Z_2 – expansive. On the other hand observe that

$$f^{2}\left(\left(n,\frac{1}{n}\right)\right) = \left(n+2,\frac{1}{n+2}\right)$$
 and $f^{2}(n,0) = (n+2,0)$

and hence

$$f^{2k}\left(\left(n,\frac{1}{n}\right)\right) = \left(n+2k,\frac{1}{n+2k}\right)$$
 and $f^{2k}\left((n,0)\right) = (n+2k,0)$,

which implies

$$d\left(f^{2k}\left(n,\frac{1}{n}\right),f^{2k}(n,0)\right) \to 0 \text{ as } k \to \infty.$$

Thus there is $z_1 = \left(n, \frac{1}{n}\right)$, $z_2 = (n, 0)$ in X such that $G(z_1) \neq G(z_2)$ and there is

 $u \in G(z_1)$ and $v \in G(z_2)$ for which $d((f^2)^k(u), (f^2)^k(v)) \to 0$ as $k \to \infty$. This proves that f^2 is not positively Z_2 – expansive though f is.

Our next result gives a sufficient condition under which $f: X \to X$ positively *G* – expansive implies f^n positively *G* – expansive for all n > 1.

Theorem 4.2.4. Let X be a compact metric G – space and let $f: X \to X$ be a positively G – expansive map. Then f^n is positively G – expansive, for any integer n > 0.

Proof. Choose a positive integer *n* and fix it. Let e > 0 be a *G*-expansive constant for *f*. Since $f^i, 0 < i \le n$, is uniformly continuous and *X* is compact, there exists $\eta > 0$ such that $d(x, y) < \eta \Rightarrow d(f^i(x), f^i(y)) < e$ for all

i, $0 < i \le n$ or equivalently we have

$$d(f'(x), f'(y)) \ge e \implies d(x, y) \ge \eta$$
 (I)

For $x, y \in X$ with $G(x) \neq G(y)$, since f is positively G – expansive, there exists an integer $m \ge 0$ such that

$$d(f^{m}(u), f^{m}(v)) > e$$
, for all $u \in G(x)$ and $v \in G(y)$.

Note that if *m* and *n* are integers, then there exists $j \in N \cup \{0\}$ and $p \in \{0, 1, ..., n-1\}$ satisfying m = nj + p Thus we have

$$e < d(f^{m}(u), f^{m}(v)) = d(f^{ny+p}(u), f^{ny+p}(v))$$

and therefore by using (I) we obtain

$$d(f^{\eta}(u), f^{\eta}(v)) \ge \eta \Longrightarrow d((f^n)^j(u), (f^n)^j(v)) \ge \eta.$$

Thus for $x, y \in X$ with $G(x) \neq G(y)$, there is an integer $j \ge 0$ such that

$$d((f^n)^j(u), (f^n)^j(v)) \ge \eta'$$
, for all $u \in G(x)$ and $v \in G(y)$,

where $0 < \eta' < \eta$. Therefore f^n is positively G-expansive with expansive constant η' .

Note. Example 4.2.3. justifies compactness in Theorem 4.2.4.

Following result deals with product of positively G – expansive maps.

Theorem 4.2.5. Let *X* and *Y* be two metric *G* – spaces with metrics *d* and ρ respectively. Suppose $f: X \to X$ and $h: Y \to Y$ are positively *G* – expansive maps. If *G* acts diagonally on the product space $X \times Y$, then the product map $f \times h: X \times Y \to X \times Y$ defined by (f, h)(x, y) = (f(x), h(y)) is positively *G* – expansive.

Proof. Let e_1, e_2 be *G*-expansive constants for *f* and *h* respectively and let $0 < \delta < \min\{e_1, e_2\}$. We consider the metric *D* on $X \times Y$ defined by

$$D((x_1, y_1), (x_2, y_2)) = [[d(x_1, x_2)]^2 + [\rho(y_1, y_2)]^2]^{\frac{1}{2}}.$$

Let $(x_1, y_1), (x_2, y_2) \in X \times Y$ such that $G(x_1, y_1) \neq G(x_2, y_2)$. Then either $G(x_1) \neq G(x_2)$ or $G(y_1) \neq G(y_2)$. Suppose $G(x_1) \neq G(x_2)$. Then positive G – expansivity of f implies there exists an integer $n \ge 0$ such that

$$d(f^{n}(u_{1}), f^{n}(u_{2})) > e_{1}$$
 for all $u_{1} \in G(x_{1})$ and $u_{2} \in G(x_{2})$.

Therefore, for any $(u_1, v_1) \in G(x_1, y_1)$, $(u_2, v_2) \in G(x_2, y_2)$, we have

$$D((f \times h)^{n}(u_{1}, v_{1}), (f \times h)^{n}(u_{2}, v_{2}))$$

$$= [[d(f^{n}(u_{1}), f^{n}(u_{2}))]^{2} + [\rho(h^{n}(v_{1}), h^{n}(v_{2}))]^{2}]^{\frac{1}{2}}$$

$$\geq d(f^{n}(u_{1}), f^{n}(u_{2})) > e_{1} > \delta.$$

Similarly, if $G(y_1) \neq G(y_2)$ then *h* being positively G - expansive, there exists an integer $k \ge 0$ such that $\rho(h^k(v_1), h^k(v_2)) > e_2$, for all $v_1 \in G(y_1)$ and $v_2 \in G(y_2)$. Hence for any $(u_1, v_1) \in G((x_1, y_1))$, $(u_2, v_2) \in G((x_2, y_2))$, $D((f \times h)^k(u_1, v_1), (f \times h)^k(u_2, v_2)) > e_2 > \delta$. This proves $f \times h$ is positively G - expansive with G - expansive constant δ .

Theorem 4.2.7. Let *X* and *Y* be compact metric *G* – spaces, with metric *d* and ρ respectively and $f: X \to X$ be a positively *G* – expansive map. If $h: X \to Y$ is a pseudoequivariant homeomorphism, then $f_1 = hfh^{-1}: Y \to Y$ is a positively *G* – expansive map on *Y*. **Proof.** Let *e* be a *G*-expansive constant for *f*. Since h^{-1} is a uniformly continuous map, there exists a $\delta > 0$ such that for all $y_1, y_2 \in Y$

$$d(h^{-1}(y_1), h^{-1}(y_2)) \ge e \Rightarrow \rho(y_1, y_2) \ge \delta$$
 (I)

Suppose $x_1, x_2 \in X$ be such that $h^{-1}(y_1) = x_1$ and $h^{-1}(y_2) = x_2$. Then we have

$$d(x_1, x_2) \ge e \Rightarrow \rho(h(x_1), h(x_2)) \ge \delta$$
 (II)

Note that if $y_1, y_2 \in Y$ be such that $G(y_1) \neq G(y_2)$, then pseudoequivariancy of *h* gives $G(h^{-1}(y_1)) \neq G(h^{-1}(y_2))$ or equivalently $G(x_1) \neq G(x_2)$. Since *f* is positively *G* – expansive, there exists an integer $n \ge 0$ such that

$$d(f^n(u), f^n(v)) > e$$
, for all $u \in G(x_1)$ and $v \in G(x_2)$.

Therefore from (II) for all $u \in G(x_1)$, $v \in G(x_2)$

$$\rho(hf^n(u), hf^n(v)) \ge \delta$$
 and hence $\rho(f_1^n(h(u)), f_1^n(h(v))) \ge \delta$

Thus we have $\rho(f_1^n(u'), f_1^n(v')) \ge \delta$ for all $u' \in G(y_1)$ and $v' \in G(y_2)$. This proves f_1^n is positively *G*-expansive map with *G*-expansive constant δ .

We recall the definition of G-expansive homeomorphisms defined and studied in [17]. Let X be a metric G-space and $h: X \to X$ be a homeomorphism. Then h is called G-expansive if there exists a $\delta > 0$ such that for $x, y \in X$ with $G(x) \neq G(y)$ there exists an integer n satisfying $d(f^n(u), f^n(v)) > \delta$, for all $u \in G(x)$ and $v \in G(y)$; δ is then called a Gexpansive constant for h. In the following result we relate the positive G-expansivity of a continuous onto map f with G-expansivity of the homeomorphism σ , the shift map on the inverse limit space X_f . **Theorem 4.2.8.** Let *X* be a compact metric *G* – space, with *G* compact, and $f: X \to X$ be a positively *G* – expansive equivariant map. Consider the inverse limit space X_f and suppose *G* acts diagonally on X_f . Then the shift map σ defined on X_f by $\sigma((x_i)) = (f(x_i))$ is an *G* – expansive homeomorphism.

Proof. Let *e* be a *G*-expansive constant for *f* and let $\tilde{x}, \tilde{y} \in X_f$ with $G(\tilde{x}) \neq G(\tilde{y})$. Suppose $\tilde{x} = (x_m)$ and $\tilde{y} = (y_m)$. Then $G(\tilde{x}) \neq G(\tilde{y})$ implies that there exists $m \in \mathbb{Z}$ such that $G(x_m) \neq G(y_m)$. Since *f* is positively *G*-expansive there exists an integer $k \ge 0$ such that $d(f^k(u), f^k(v)) > \delta$ for all for all $u \in G(x_m)$ and $v \in G(y_m)$. Set n = k - m and observe that $\tilde{d}(\sigma^n(\tilde{u}), \sigma^n(\tilde{v})) > \delta$ for all $\tilde{u} \in G(\tilde{x})$ and $\tilde{v} \in G(\tilde{y})$. Hence σ is positively *G*-expansive homeomorphism on X_f .

The following result gives a class of maps which are not positively G-expansive.

Theorem 4.2.9. Let $f: X \to X$ be a pseudo equivariant minimal open map defined on a compact metric G - space X, where G is compact and action of G on X is non-transitive. Then f is not a positively G - expansive map. **Proof.** If possible, suppose f is a positively G - expansive map. Then by Lemma 4.2.1, \hat{f} is positively expansive. Thus \hat{f} is a positively expansive open map. Therefore by Theorem 1.13 \hat{f} has a fixed point in X/G, say G(x). Observe that $\hat{f}(G(x)) = G(x)$ implies $f''(x) \in G(x)$ for each $n \ge 0$ and hence $O_f(x) \subset G(x)$. Minimality of map f and compactness of G gives X = G(x) But this implies G acts on X transitively – a contradiction. Therefore f is not positively G – expansive.

3. Positively G – expansive maps having G – shadowing property.

Observing through examples that positive G-expansivity and G-shadowing property are independent concepts, we obtain here a necessary and sufficient condition for a positively G-expansive map to possess G-shadowing property. Consider the following examples:

Example 4.3.1. (a) Consider Z_2 -space I and let f be a pseudoequivariant continuous onto map defined on I satisfying the hypothesis of Theorem 3.3.2. Then f has the Z_2 -shadowing property. Observe that f is not positively Z_2 -expansive. For if f is positively Z_2 -expansive then by Theorem 4.2.1 the induced map \hat{f} will be positively expansive map on $I/Z_2 \cong [0, \frac{1}{2}]$. But there exists no positively expansive map on interval. Therefore f is not positively Z_2 -expansive.

4.3.1. (b) Consider the space, group and the map f of the Example 2.1.2 (e). Recall that f defined by $f(z) = z^2 = e^{2i\theta}$, does not possess the G-shadowing property. We show that f is positively G-expansive. Observe

that for
$$z = e^{i\theta}$$
, $G(e^{i\theta}) = \left\{ e^{i\theta}, e^{i(\theta + \frac{\pi}{2})}, e^{i(\theta + \pi)}, e^{i(\theta + \frac{3\pi}{2})} \right\}$ and $f^k(z) = e^{i2^k\theta}$. Let δ

be such that $0 < \delta < 1$. Then for $z_1, z_2 \in S^1$ with $G(z_1) \neq G(z_2)$ there is an integer $k \ge 0$ such that

$$d(f^k(u), f^k(v)) > 1 > \delta$$
 for all $u \in G(z_1)$ and $v \in G(z_2)$.

The above examples justifies that the notion of positive G – expansivity and G – shadowing property for a continuous onto map on a metric G – space are independent. So we obtain a necessary and sufficient condition for a positively G – expansive map to possess the G – shadowing property. We first observe the following result.

Lemma 4.3.2. Let (X,d) be a compact metric G – space with G – compact. Then for each $\varepsilon > 0$ there exists $\eta > 0$ and $\delta > 0$ satisfying $U_{\eta}^{d}(gx) \subset gU_{\varepsilon}^{d}(x)$ and $gU_{\delta}^{d}(x) \subset U_{\varepsilon}^{d}(gx)$ for all g in G and all x in X. Here $U_{\delta}^{d}(x)$ denotes the δ – neighbourhood of x with respect to metric d.

Proof. Since (X,d) is a metric G-space, with G-compact, there is an invariant metric ρ on X, i.e. there is an equivalent metric ρ on X satisfying

$$\rho(gx, gy) = \rho(x, y)$$
, for each $g \in G$ and for all $x, y \in X$.

Let $\varepsilon > 0$ be given. Since d and ρ are equivalent metrics on a compact space X, there exists $\delta > 0$ such that for each $x \in X$, $U^{\rho}_{\delta}(x) \subset U^{d}_{\varepsilon}(x)$ which implies

$$gU_{\delta}^{\rho}(x) \subset gU_{\varepsilon}^{d}(x), \ g \in G$$
 (I)

But ρ is an invariant metric on X. Therefore for all $x \in X$ and $g \in G$

$$gU_{\delta}^{\rho}(x) = U_{\delta}^{\rho}(gx). \tag{II}$$

Again, *d* and ρ being equivalent metrics on a compact space *X* we have $\eta > 0$ such that for all $x \in X$ and $g \in G$

$$U_{\eta}^{d}(gx) \subset U_{\delta}^{\rho}(gx).$$
 (III)

Therefore from (I), (II) and (III) for all $x \in X$ and $g \in G$

$$U_{\eta}^{d}(gx) \subset U_{\delta}^{\rho}(gx) = gU_{\delta}^{\rho}(x) \subset gU_{\delta}^{d}(x),$$

Thus for given $\varepsilon > 0$ there exists an $\eta > 0$ such that for each $x \in X$ and each $g \in G$

$$U^d_\eta(gx) \subset gU^d_\sigma(x)$$
,

Similarly there exists $\delta > 0$ such that for each $x \in X$ and each $g \in G$

$$gU^d_\delta(\mathbf{x})\subset U^d_\varepsilon(g\mathbf{x}).$$

Theorem 4.3.3. Let X be a compact metric G – space with G compact and let $f: X \to X$ be a positively G – expansive pseudoequivariant map. Then fhas the G – shadowing property if and only if for every open set U of X and for each x in U, there exists a $\delta > 0$ and a $g \in G$ such that

$$gU_{\delta}(f(x)) \subset f(U) \tag{*}$$

where $U_{\delta}(x)$ denotes the δ – neighbourhood of x.

Proof. Suppose for every open set U of X and for each x in U, there exist a $\delta > 0$ and a g in G such that $gU_{\delta}(f(x)) \subset f(U)$. We show that f has the

G-shadowingproperty. Since is a positively f G-expansive pseudoequivariant map on X, by Theorem 4.3.1, the induced map \hat{f} is positively expansive on X/G. We first show that \hat{f} is an open map. Let U be an open subset of X/G and let $y \in \hat{f}(U)$. Then there exists $x \in X$ such that $z = \pi(x) \in U$ and $y = \hat{f}(z) = \hat{f}(\pi(x))$. Since π is continuous $U_1 = \pi^{-1}(U)$ is open in X and $\pi(x) \in U$ implies $x \in \pi^{-1}(U) = U_1$. By hypothesis there exists $\delta > 0$ and g in G such that $gf(x) \in gU_{\delta}(f(x)) \subseteq f(U_1)$ which implies $y \in \pi(V) \subseteq \hat{f}(\pi(U_1)) = \hat{f}(U)$, where $V = U_{\delta}(f(x))$ is open in X. Since π is an open map, $\pi(V)$ is open in X/G. Therefore $\hat{f}(U)$ is open in X/G. Thus \hat{f} is an open map. Further, since \hat{f} is a positively expansive open map on compact metric space X/G, therefore by Theorem 1.12, \hat{f} has the shadowing property. Next we show that f has the G-shadowing property. Let $\varepsilon > 0$ be given. By Lemma 4.3.2 there exists an $\eta > 0$ such that for each x in X and $g \in G$, $gU_{\eta}(x) \subset U_{\varepsilon}(gx)$. Since \hat{f} has the shadowing property, for $\eta > 0$ there is a $\delta > 0$ such that every δ -pseudo orbit for \hat{f} is η -traced by a point of X/G. In order to show that f has the G-shadowing property, we show that every $\delta - G$ pseudo orbit for f is ε -traced by a point of X. Let $\{x, |i \ge 0\}$ be a $\delta - G$ pseudo orbit for f Then for each $i \ge 0$, there exists a $g_i \in G$ such that $d(g_i f(x_i), x_{i+1}) < \delta$ which gives $d_1(G(f(x_i)), G(x_{i+1})) < \delta$ and hence $\{G(x_i) | i \ge 0\}$ is a δ -pseudo orbit for \hat{f} . Thus $\{G(x_i) | i \ge 0\}$ is η -traced by a point of X/G, say G(x), which implies for each $i \ge 0$

 $d_1(G(f'(x)), G(x_i)) < \eta$. Since *G* is compact there exists $l_i, m_i \in G$ such that $d(l_i, f'(x), m, x_i) < \eta$ which implies

$$f'(x) \in l_i^{-1} U_{\eta}(m_i x_i) \subset U_{\epsilon}(l_i^{-1} m_i x_i)$$

and hence $d(f'(x), p_i x_i) < \varepsilon$ for $p_i = l_i^{-1} m_i \in G$. Therefore f has the G-shadowing property.

Conversely, suppose f has the G-shadowing property. Let U be an open subset of X and $x \in U$. Choose an $\varepsilon > 0$ such that $x \in U_{\varepsilon}(x) \subset U$. By Lemma 4.3.2, there exists an η , $0 < \eta \le e$ such that $U_{\eta}(gy) \subset gU_{\varepsilon}(y)$ for all $y \in X$ and $g \in G$. Here e is a G-expansive constant for f. Since f has the G-shadowing property there exists δ , $0 < \delta \le e$, such that every $\delta - G$ pseudo orbit for f is η -traced by a point of X. Let $z \in U_{\delta}(x)$. Then the sequence $\{y_i | i \ge 0\} = \{x, z, f^2(z),\}$ is a $\delta - G$ pseudo orbit for f and therefore is η -traced by a point of X, say y, which implies for each $i \ge 0$, there exists $p_i \in G$, such that

$$d(p_i y_i, f'(y)) < \eta \tag{I}$$

Hence for $i \ge 1$, there exists $p_i \in G$ such that $d(p_i f^{i-1}(z), f^i(y)) < \eta \le e$. Replacing *i* by i+1 we obtain for all $i \ge 0$, $d(p_{i+1}f^i(z), f^{i+1}(y)) \le e$. Using pseudoequivariancy and positive G-expansivity of f, we get G(z) = G(f(y)) and therefore f(y) = gz, for some $g \in G$.

Also from (I) we get $d(p_0y_0, f^0(y)) < \eta$ which implies $y \in U_\eta(p_0x) \subset p_0U_{\epsilon}(x)$ and hence $gz = f(y) \in f(p_0U_{\epsilon}(x))$. Using pseudoequivariancy of f we get $z \in g^{-1}f(p_0U_{\varepsilon}(x)) = tf(U_{\varepsilon}(x))$ and therefore $U_{\delta}(f(x)) \subset tf(U)$ for some t in *G* and hence $t'U_{\delta}(f(x)) \subset f(U)$, where $t' = t^{-1} \in G$. Thus the required condition holds. Hence the proof.

Note. Recall example 4.3.1 (b) in which map f on S^1 is defined by $f(e^{i\theta}) = e^{2i\theta}$. f being an open map satisfies the condition (*) of Theorem 4.3.3. Also f is positively U_4 – expansive but f does not have the U_4 – shadowing property. Observe that f is not a pseudo equivariant map. In fact for $e^{\frac{\pi}{2}i} \in S^1$.

$$G(f(e^{\frac{i\pi}{2}})) = G(e^{i\pi}) = \left\{ e^{i\pi}, e^{i(\pi + \frac{\pi}{2})}, e^{i(\pi + \pi)}, e^{i(\pi + \frac{3\pi}{2})} \right\} = \left\{ e^{i\pi}, e^{\frac{i3\pi}{2}}, e^{2\pi}, e^{\frac{i\pi}{2}} \right\}$$

where as

$$f(G(e^{\frac{i\pi}{2}})) = f\left(\left\{e^{i\pi}, e^{\frac{i3\pi}{2}}, e^{2\pi}, e^{\frac{i\pi}{2}}\right\}\right) = \{e^{i\pi}, e^{0\pi}\}.$$

This proves $G(f(e^{\frac{i\pi}{2}})) \neq f(G(e^{\frac{i\pi}{2}}))$. Thus pseudoequivariancy is a necessary condition in Theorem 4.3.3.

4. G – non wandering points and G – chain recurrent points: Definitions, examples and properties.

In this section, we define and study the notion of non wandering points, chain recurrent points for maps on G-spaces and study the properties of sets of such points. We first define these terms.

Definition 4.4.1. Let X be a metric G-space and $f: X \rightarrow X$ be a continuous onto map.

(a) A point x in X is said to be G-non wandering point of f if for every neighbourhood U of x, there exists an integer n > 0 and a $g \in G$ such that $gf^n(U) \cap U \neq \varphi$. We shall denote the set of all G-non wandering points of f by $\Omega_G(f)$.

(b) For $x, y \in X$ and $\delta > 0$, x is said to be δ -Grelated to y (denoted by $x \sim G y$) if there are finite δ -G pseudo orbits $\{x = x_0, x_1, ..., x_k = y\}$ and $\{y = y_0, y_1, ..., y_n = x\}$ for f. If for every $\delta > 0$, x is δ -Grelated to y, then x is said to be G related to y (denoted by $x \sim G y$).

(c) A point x is said to be G-chain recurrent point of f if $x \sim_G x$. We shall denote the set of all G-chain recurrent points of f by $CR_G(f)$.

Remark 4.4.2. (i) If the action of *G* on *X* is trivial then $\Omega(f) = \Omega_G(f)$. Under the non-trivial action $\Omega(f) \subset \Omega_G(f)$ (refer 4.4.3 (i)).

(ii) If X is compact then $\Omega(f) \neq \varphi$ and $\Omega(f) \subset \Omega_G(f)$ implies $\Omega_G(f) \neq \varphi$.

(iii) $x \sim_G y'$ is an equivalence relation.

(iv) If the action of G on X is transitive, then for any $f: X \to X$, $\Omega_G(f) = X$. Example 4.3.3 (a) shows that $\Omega_G(f) = X$ need not imply that action is transitive. **Example 4.4.3. (a)** Recall the space, map and group of Example 2.1.2 (c). In this case $X/G = \{G(0), G(1), G(-1), G(\frac{1}{2}), G(\frac{1}{3})\}$. Since -1, 0, 1 are fixed points of f, $-1, 0, 1 \in \Omega_G(f)$. Suppose $x \in X - \{-1, 0, 1\}$. Then $x \in G(\frac{1}{2})$ or $x \in G(\frac{1}{3})$. Now $f^2(G(\frac{1}{2})) = G(\frac{1}{2})$ and $f^2(G(\frac{1}{3})) = G(\frac{1}{3})$. Therefore if U is an ε – neighbourhood of x, then there is an integer n = 2, such that $gf^n(U) \cap U \neq \varphi$. Thus $x \in \Omega_G(f)$ and $\Omega_G(f) = X$. Since f is a left shift fixing $-1, 0, 1, \Omega(f) = CR(f) = \{-1, 0, 1\}$.

4.4.3. (b) Denote by $\sum_{t} = \{0,1\}^{Z}$, t = 1, 2, and let $X = \sum_{1} \bigcup \sum_{2}$ where \sum_{1}, \sum_{2} are disjoint copies having one point in common $\overline{0} = (..., 0, 0,)$. For x in X, we denote $x^{t} = (..., x_{0}, x_{1},) \in \sum_{t}, t = 1, 2$. Define a metric d on X by

$$d(x, y) = \begin{cases} 0, & \text{if } x = y \\ 2^{-|l|}, & \text{if } x, y \in \Sigma_t \\ 1, & \text{otherwise} \end{cases}$$

where *l* is the smallest integer for which $x_l = y_l$. Let σ_k be the shift map on $\sum_{t}, t = 1, 2$. Suppose $G = Z_2$ act on X by the action 1x = x for each x in X and $(-1)x^1 = x^2$ and $(-1)x^2 = x^1$. Consider the map $f: X \to X$ defined by

$$f(x) = \begin{cases} \sigma_1(x), \text{ if } x \in \sum_1 \\ \sigma_2(x), \text{ if } x \in \sum_2 \end{cases}$$

We show that every point of X is a G-non wandering point of f. Let U be the ε -neighbourhood of $x^1 = (\dots, x_0, x_1, \dots)$ then there exists an integer N > 0 such that $\frac{1}{2^N} < \frac{\varepsilon}{4}$. Let n = 2N + 1. Consider the point z^1 of Σ_1 such that

$$z^{1} = \begin{cases} x_{i}, \text{ if } -N \leq i \leq N \\ y_{i}, \text{ if } -3N - 2 \leq i \leq -N \text{ and } N+1 \leq i \leq 3N+2, \\ \text{where } y_{i} = x_{j}, (-N \leq j \leq N) \\ 1, \text{ otherwise} \end{cases}$$

i.e. consider that point z^1 of Σ_1 which has 3 consecutive blocks of length n, where each block of length n is same as a block of length n in x^1 (i.e. a block from -N to N). Then $z^1 \in U$. Also, $f^n(z^1) = \sigma_1^n(z^1) \in U$ as z^1 has 3-blocks of same length. Therefore $f^n(U) \cap U \neq \varphi$ and hence $x^1 \in \Omega_G(f)$. Similarly if $x^2 \in \Sigma_2$ then $x^2 \in \Omega_G(f)$. Thus $\Omega_G(f) = X$. Also, $\Omega_G(f) \subset CR_G(f)$ implies $CR_G(f) = X$.

We now observe some properties of sets of G – non wandering points and G – chain recurrent points of f.

Theorem 4.4.4. Let *X* be a compact metric *G* – space and $f: X \to X$ be a continuous pseudoequivariant onto map. Then $\Omega_G(f)$ is a non-empty closed *G* – invariant subset of *X*.

Proof. We first show that $\Omega_G(f)$ is a closed subset of X. Let x be a limit point of $\Omega_G(f)$. Then there is a sequence $\{x_n\}$ in $\Omega_G(f)$ such that $x_n \to x$ as $n \to \infty$. For a given $\varepsilon > 0$ let U be the ε -neighbourhood of x in X. Then there exists an integer N > 0 such that $x_n \in U$, for each $n \ge N$. Choose $n \ge N$ and fix it. Then for this $n, x_n \in U \cap \Omega_G(f)$ implies there exists an integer k > 0 and $g \in G$ such that $gf^k(U) \cap U \neq \varphi$ which implies $x \in \Omega_G(f)$. This proves $\Omega_G(f)$ is a closed subset of X. Next we show that $\Omega_G(f)$ is a G-invariant subset of X. Let U be a neighbourhood of gx. Then $g^{-1}U$ is a neighbourhood of x. Since $x \in \Omega_G(f)$ there is an integer n > 0 and $k \in G$ such that $kf^n(g^{-1}U) \cap g^{-1}U \neq \varphi$. Observe that f^n is pseudoequivariant for each n > 0 and which gives $gkf^n(U) \cap U \neq \varphi$ and hence $gx \in \Omega_G(f)$. Thus $\Omega_G(f)$ is a G-invariant subset.

The following result gives a condition under which $f(\Omega_G(f))$ is contained in $\Omega_G(f)$.

Theorem 4.4.5. Let *X* be a compact metric *G*-space and $f: X \to X$ be a continuous onto pseudoequivariant map. Then $f(\Omega_G(f)) \subset \Omega_G(f)$. Moreover, if *f* is a homeomorphism then $f(\Omega_G(f)) = \Omega_G(f)$ and $\Omega_G(f) = \Omega_G(f^{-1})$.

Proof. We first show that $f(\Omega_G(f)) \subset \Omega_G(f)$. Let $y \in f(\Omega_G(f))$. Then there exists an x in $\Omega_G(f)$ such that f(x) = y. Let U be a neighbourhood of y. Then $f^{-1}(U)$ is a neighbourhood of x. Since $x \in \Omega_G(f)$, there exists an integer k > 0 and $g, g' \in G$ such that $gf^k(f^{-1}(U)) \cap f^{-1}(U) \neq \varphi$ implies $f(gf^{k-1}(U) \cap f^{-1}(U)) \neq \varphi$ and hence $g'f^k(U) \cap U \neq \varphi$. This establishes $f(\Omega_G(f)) \subset \Omega_G(f)$. Further, let f be a homeomorphism. Then $\Omega_G(f) = \Omega_G(f^{-1})$. Next applying the result $f(\Omega_G(f)) \subset \Omega_G(f)$ to the map f^{-1} we obtain $f^{-1}(\Omega_G(f^{-1})) \subset \Omega_G(f^{-1})$. Since $\Omega_G(f^{-1}) = \Omega_G(f)$, we have g_1 $f^{-1}(\Omega_G(f^{-1})) \subset \Omega_G(f)$ which implies $\Omega_G(f^{-1}) \subset f(\Omega_G(f))$ and hence $f(\Omega_G(f)) = \Omega_G(f)$.

The following example justifies the necessity of pseudoequivariancy in Theorem 4.4.5.

Example 4.4.6. Consider the unit circle S^1 of \mathbb{R}^2 , with the usual metric. Let G be the multiplicative group of fourth roots of unity acting on S^1 by the usual action of complex multiplication. We denote the points of S^1 by its argument θ . Consider the map $f: S^1 \to S^1$ defined by $f(\theta) = \frac{\theta}{2}$. Then for each $\theta \in S^1$, $f^n(\theta) \to 0$ as $n \to \infty$. For $\frac{\pi}{2} \in S^1$, let U be a neighbourhood of $\frac{\pi}{2}$. Then $f^n(\frac{\pi}{2}) \to 0$. Observe that $G = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$. Since for $g = \frac{\pi}{2} \in G$, $g_0 = \frac{\pi}{2} \in U$ Therefore $gf^n(U) \cap U \neq \varphi$, where *n* is such that $f^n(\frac{\pi}{2}) \in U'$, for a neighbourhood U' of θ . Thus $\frac{\pi}{2} \in \Omega_G(f)$. But $f(\frac{\pi}{2}) = \frac{\pi}{4} \notin \Omega_G(f)$. For U is an open neighbourhood of $\frac{\pi}{4}$ such that $0, \frac{\pi}{2} \notin U$ then for no $g \in G$ and $n \in N$, $gf^n(U) \cap U \neq \varphi$. In fact we can always choose a small neighbourhood V of 0 such that gV, which is a neighbourhood of either $\frac{\pi}{2}$ or π or $\frac{3\pi}{2}$ does not contain $\frac{\pi}{4}$. Thus $f(\Omega_G(f)) \not\subset \Omega_G(f)$.

Theorem 4.4.7. Let *X*, *Y* be compact metric *G*-spaces and *f*, *p* be continuous onto self maps on *X* and *Y* respectively. Suppose $h: X \to Y$ is a pseudoequivariant homeomorphism such that ph = hf then $h(\Omega_G(f)) = \Omega_G(p)$.

Proof. Let $y \in h(\Omega_G(f))$ then there exists x in $\Omega_G(f)$ such that h(x) = y. If U is a neighbourhood of y = h(x) then $h^{-1}(U)$ is a neighbourhood of x. Since $x \in \Omega_G(f)$, using condition ph = hf we get $y \in \Omega_G(p)$. Hence $h(\Omega_G(f)) \subset \Omega_G(p)$. Arguing as above we get $(\Omega_G(p)) \subset h(\Omega_G(f))$ and hence $h(\Omega_G(f)) = \Omega_G(p)$.

We now observe certain properties of sets of G-chain recurrent points of f.

Theorem 4.4.8. Let *X* be a compact metric *G* – space where *G* is compact and *f* be a pseudo equivariant continuous onto map on *X*. Then $\Omega_G(f) \subset CR_G(f)$.

Proof. Let $y \in \Omega_G(f)$ and let $\varepsilon > 0$ be given. We show that $y \sim_G y$. By Lemma 4.3.2 there is an $\varepsilon > \eta > 0$ such that $gU_n(x) \subset U_{\varepsilon'_2}(g(x))$ for each $g \in G$ and each x in X. Also uniform continuity of f implies there is a δ , $0 < \delta < \varepsilon$ such that $d(x, y) < \delta \Rightarrow d(f(x), f(y)) < \eta$. Let $U = U_{\delta}(y)$. Since $y \in \Omega_G(f)$, there is an integer k > 0 and $g \in G$ such that $gf^k(U) \cap U \neq \varphi$. Let $x \in gf^k(U) \cap U$. Then there exists $t \in U$ such that $f^k(g't) = x$. Observe that $\{y_i \mid 0 \le i \le k\} = \{y, f(t), f^2(t), ..., f^{k-1}(t), y\}$ is a finite $\varepsilon - G$ pseudo orbit from y to itself. Hence $\Omega_G(f) \subset CR_G(f)$.

Theorem 4.4.9. Let X be a compact metric G – space where G is compact and $f: X \to X$ be a pseudoequivariant continuous onto map. Then $CR_G(f)$ is a non-empty closed G – invariant subset of X.

Proof. Since $\Omega_G(f) \subset CR_G(f)$ and for compact space $\Omega_G(f) \neq \varphi$ therefore $CR_G(f) \neq \varphi$. Let x be a limit point of $CR_G(f)$ and let $\varepsilon > 0$ be given. Choose an η , $0 < \eta < \frac{\varepsilon}{2}$, such that for each $y \in G$ and $x \in X$, $gU_\eta(x) \subset U_{\frac{\varepsilon}{2}}(gx)$. Since f is uniformly continuous therefore corresponding to η there exists a δ , $0 < \delta < \frac{\eta}{2}$ such that $d(x, y) < \delta \Rightarrow d(f(x), f(y)) < \frac{\eta}{2}$. Because x is a limit point of $CR_G(f)$, there is a sequence $\{x_k\}$ in $CR_G(f)$ such that $x_k \to x$ as $k \to \infty$. Therefore there exists an integer N > 0 such that $d(x, x_k) < \frac{\delta}{2}$ for all $k \ge N$.

Choose $k \ge N$ then $x_k \in CR_G(f)$ implies $x_k \stackrel{o}{\sim}_G x_k$. Therefore there is a finite $\frac{\delta}{2} - G$ pseudo orbit from x_k to itself, say $\{x_k = y'_0, y'_1, ..., y'_m = x_k\}$. We show that there exists a finite $\varepsilon - G$ pseudo orbit $\{x = y_0, y_1, ..., y_m = x\}$ with $y_0 = y_m = x$, $y_i = y'_i$, $1 \le i \le m-1$. For each $i \in \{1, 2, ..., m-2\}$ there exists $g_i \in G$ satisfying $d(g_i f(y'_i), y'_{i+1}) < \frac{\delta}{2} < \varepsilon$. If i = 0, then there is a $g_0 \in G$

satisfying $d(g_0 f(x_k), y_1) < \frac{\delta}{2} < \frac{\varepsilon}{2}$. Note that whenever $d(x_k, x) < \frac{\delta}{2}$ we have $d(g_0 f(x_k), g_0 f(x)) < \frac{\varepsilon}{2}$. Therefore

$$d(g_0 f(x), y_1) \le d(g_0 f(x), g_0 f(x_k)) + d(g_0 f(x_k), y_1).$$

If i = m - 1, there is $g_{m-1} \in G$ satisfying $d(g_{m-1}f(y_{m-1}), x_k < \frac{\delta}{2} < \frac{\varepsilon}{2}$. Thus

$$d(g_{m-1}f(y_{m-1}), x) \le d(g_{m-1}f(y_{m-1}), x_k) + d(x_k, x)$$

Hence $\{x = y_1, ..., y_m = x\}$ is an $\varepsilon - G$ pseudo orbit from x to itself. Therefore $x \stackrel{\varepsilon}{\sim}_G x$, for every $\varepsilon > 0$, which implies $x \in CR_G(f)$. This proves $CR_G(f)$ is a closed subset of X.

Next, we show that $CR_G(f)$ is a G-invariant subset of X. Let $\varepsilon > 0$ be given. Choose an η , $0 < \eta < \frac{\varepsilon}{2}$, such that for all $g \in G$ and $x \in X$, $gU_{\eta}(x) \subset U_{\frac{\varepsilon}{2}}(gx)$. Since $x \in CR_G(f)$, $x \sim_G x$ implies there exists a finite $\eta - G$ pseudo orbit $\{x = x'_0, x'_1, ..., x'_m = x\}$ from x to itself. We show that $\{gx = x_0, x_1, ..., x_m = gx\}$, where $gx = x_0 = x_m$, $x_i = x'_i$ for $1 \le i \le m-1$, is an $\varepsilon - G$ pseudo orbit from gx to itself.

Hence $\{x_0 = gx_1, x_2, ..., x_m = gx\}$ is a finite $\varepsilon - G$ pseudo orbit from gx to itself. Therefore $gx \sim_G gx$ for each $\varepsilon > 0$. This further implies that $gx \in CR_G(f)$. Thus $CR_G(f)$ is a G-invariant set. **Theorem 4.4.10.** Let X be a compact metric G – space where G is compact and $f: X \to X$ be a pseudoequivariant continuous onto map. Then $f(CR_G(f)) \subset CR_G(f)$.

Proof. Let $y \in f(CR_G(f))$ and $x \in CR_G(f)$ be such that f(x) = y. Let $\varepsilon > 0$ be given. Uniform continuity of f implies that there exists $\delta > 0$ such that $d(x,y) < \delta$ implies $d(f(x), f(y)) < \varepsilon$. Since $x \in CR_G(f)$ there exists a finite $\delta - G$ pseudo orbit $\{x = x_0, x_1, ..., x_m = x\}$ from x to itself. Observe that $\{f(x) = f(x_0), f(x_1), ..., f(x_m) = f(x)\}$ is a finite $\varepsilon - G$ pseudo orbit for f from f(x) to itself. Therefore $y = f(x) \in CR_G(f)$. Hence $f(CR_G(f)) \subset CR_G(f)$.

Recall the Example 4.4.6 which says that $f(\Omega_G(f))$ may be a proper subset of $\Omega_G(f)$. In the following theorem we obtain the conditions under which $f(\Omega_G(f)) = \Omega_G(f)$ and $\Omega_G(f) = CR_G(f)$.

Theorem 4.4.11. Let *X* be a compact metric G – space where *G* is compact. Suppose a pseudoequivariant continuous onto map *f* defined on *X* has the *G* – shadowing property. Then

- (i) $f(\Omega_G(f)) = \Omega_G(f)$.
- (ii) $CR_G(f) = \Omega_G(f)$.

Proof. (i) In view of Theorem 4.4.5 it is sufficient to show that $\Omega_G(f) \subset f(\Omega_G(f))$. If possible, suppose $\Omega_G(f) \not\subset f(\Omega_G(f))$. This implies that there exists $x \in \Omega_G(f)$ such that $x \notin f(\Omega_G(f))$. Since $\Omega_G(f)$ is

compact and f is continuous, $f(\Omega_G(f))$ is a compact subset of X and Xbeing Hausdorff is closed in X. Therefore $X - \Omega_G(f)$ is open and hence there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset X - \Omega_G(f)$. By Lemma 4.3.2, there exists an η , $0 < \eta < \varepsilon$, such that for each $g \in G$ and each $x \in X$, $U_{\eta}(gy) \subset gU_{\varepsilon}(y)$. Since f has the G-shadowing property, for $\eta > 0$ there exists $\delta > 0$ such that every $\delta - G$ pseudo orbit for f is η -traced by a point of X. Also f is uniformly continuous. Therefore there is $\gamma > 0$ such that $d(y,z) < \gamma \Rightarrow d(f(y), f(z)) < \delta$. Let $U = U_{\gamma}(x)$. Since $x \in \Omega_G(f)$, there exists k > 0 and $g \in G$ such that $gf^k(U) \cap U \neq \varphi$. Let $z \in gf^k(U) \cap U$, then there that $z = g f^k(t)$. Observe that $\{x_n \mid n \ge 0\} =$ exists $t \in U$ such $\{x, f(t), f^{2}(t), ..., f^{k-1}(t), x,\}$ is a $\delta - G$ pseudo orbit for f and hence is η - traced by a point of X, say y. This implies for each $\eta \ge 0$ there is $p_n \in G$ such that $d(p_n x_n, f^n(y)) < \eta$. In particular, for $n = k_i$, $x_n = x$ and for each $i \ge 0$ there exists $p_{k_l} \in G$ satisfying $d(p_{k_l}x, f^{k_l}(y)) < \eta$ which implies $f^{k_i}(y) \in U_{\eta}(p_{k_i}x) \subset p_{k_i}U_{\varepsilon}(x)$. Thus for each $i \ge 0$ there is $p_{k_i} \in G$ satisfying $f^{k_i}(y) \in p_{k_i}(U_{\varepsilon}(x)) \subset G(U_{\varepsilon}(x)), \text{ where } G(U_{\varepsilon}(x)) = \bigcup_{g \in G} gU_{\varepsilon}(x). \text{ Therefore }$

 $\{f^{k_i}(y)|i \ge 0\} \subset G(U_{\varepsilon}(x))$. Since X is compact there is a subsequence of $\{f^{k_i}(y)|i \ge 0\}$ which is convergent. Suppose subsequence converges to y' in X. Since y' is a limit point a subsquence of $\{f^{k_i}(y)|i \ge 0\}$ and $\{f^{k_i}(y_i):i \ge 0\} \subset G(U_{\varepsilon}(x))$, there is $m \in G$ such that $f(my') \in U_{\varepsilon}(x)$. Thus

 $y' \in \omega(f)$, where $\omega(f)$ is the limit point set of f orbit of y and $\omega(f) \subset \Omega_G(f)$. Therefore $my' \in \Omega_G(f)$, $\Omega_G(f)$ being G-invariant subset of X, implies $f(my') \in f(\Omega_G(f))$ and also $f(my') \in U_{\epsilon}(x)$, which is a contradiction. Hence $f(\Omega_G(f)) = \Omega_G(f)$.

(ii) In view of Theorem 4.4.8 it is sufficient to show that $CR_G(f) \subset \Omega_G(f)$. Let $\varepsilon > 0$ be given. By Lemma 4.3.2 there exists $\eta > 0$ such that for all $y \in X$ and $g \in G$, $U_{\eta}(gy) \subset gU_{\varepsilon}(y)$. Since f has G-shadowing property there is a $\delta > 0$ such that every $\delta - G$ pseudo orbit for f is η -traced by a point of X. Let $x \in CR_G(f)$, $x \sim_G x$. Therefore there exists a finite $\delta - G$ pseudo orbit $\{x = x_0, x_1, ..., x_k = x\}$ for f. Since f has the G-shadowing property therefore there is a point y in X, η -tracing $\{x = x_0, x_1, ..., x_k = x\}$ which implies for each i, $0 \le i \le k$ there exists $p_i \in G$ satisfying $d(p_i x_i, f^i(y)) < \eta$. In particular, for i = 0 and i = k there exists $p_0, p_k \in G$ such that $d(p_0 x, y) < \eta$ and $d(g_k x, f^k(y)) < \eta$. If $d(p_0 x, y) < \eta$ then $y \in U_{\eta}(p_0 x) \subset p_0 U_{\varepsilon}(x)$ which gives $f^k(y) \in p_0 f^k(U_{\varepsilon}(y))$. Also $d(g_k x, f^k(y)) < \eta$ implies

$$p_k U_{\varepsilon}(x) \cap p_0 f^k(U_{\varepsilon}(x))$$
.

This implies that for the ε -neighbourhood U of x there exists an integer k > 0 and $p \in G$ such that $pf^k(U) \cap U \neq \varphi$. Therefore $x \in \Omega_G(f)$ and hence $CR_G(f) = \Omega_G(f)$.