CHAPTER V

SOME APPLICATIONS OF G-SHADOWING PROPERTY

In this chapter we continue with our study of G -non wandering points,
G ~chain recurrent points of a continuous map f on a metric G-space X
and obtain certain applications of G -shadowing property. Recall that if f is a
continuous onto map defined on a compact metric space X and f has the
shadowing property, then the set of non wandering points gets decomposed
into smaller sets, called as basic sefs.

In Section 1, we obtain such a decomposition for the set of G-non
wandering points and use it to obtain a result similar to that of Theorem 1.15
proved by Aoki [3].

In Section 2, we define the concept of periodic points on a metric
G -space and call it as G -periodic points. We mainly study the behavior of the
set of G-periodic péints of a positively G-expansive map having the
G -shadowing property.

In Section 3, we introduce notion of specification for homeomorphisms
on metric G -spaces. We find conditions under which a homeomorphism on a
compact metric G -space having G -shadowing has G -specification.

in section 4, we study relation of G -shadowing of a homeomorphism

with minimality on G -space.
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1. Decomposition Theorem.
In this section we obtain a decomposition for the set of G-non
wandering point of a continuous onto map defined on a compact metric

G-space X and use it o show that jT has the G -shadowing property, if

Q. (N
f has the G -shadowing property.

The following result gives decomposition for the set of G-non
wandering points.

Theorem 5.1.1 If a pseudoequivariant map f defined on a compact metric
G -space X has the G -shadowing properly, then Q.(f) can be written as a
disjoint union of sets B, where each B, is an open subset of Q;(f).

Proof. Since f has the G-shadowing property, by Theorem 4.4.11

)
Qs(f)=CRs(f). For a given §>0, x~; y Is an equivalence relation on

CR;(f) and Qg (f) =CR;(f) ={B g : B € A}is the set of equivalence classes.

&
Let xe B, then for every ye B;, x~, y. Take any ye B;. Then there

exists finite J6-Gpseudo orbits from x to y and y to x, say,
01={x=x'0, X1s X g gmeeccnnns s X g =y} a'ld 02={y=y0,y1,y2, .......... > Vi =x}. Since
6, is a finite &-Gpseudo orbit for f, there is g,eG, such that

d(gof(xg), ) <d or d(g,f(x),x)<d. This implies g,f(x)eUs(x).

Continuity of map f implies there exists y, 0<y<—§—, such that

f(U},(x))cgaan(xl), In order to show B, is open we show that
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Uy(x)mQG(f)cBﬂ. Let zeUr(x)nQG(f). We complete the proof by

)
showing that y ~, z i.e. there is a finite & -G pseudo orbit for f from y to z

and z to y.let ye B, . Since 6 is a finite 5 -G pseudo orbit for f from x to
y and zeUy(x)mQG(f), therefore 6 ={z=x"j, x1, X 5,e0rereeee , X, =y} is a
finite & -G pseudo orbit for f from z to .

Now 6, is a finite §- pseudo from y to x. Therefore there is a
p;, € G such that

d(pif ) ¥) <6
= d(f(p.1yi), x) <0, forsome p,_,eCG

= f(pryi) €Us(x)
Observe that every point of 8, and @, are in Q; (f). For, consider a point x,
of G, then {x,, X1, X 000Xy =Y = Vo5 Visos Vi = X = Xg5 Xpoecnee ,x,} is a finite
5-Gpseudo orbit for f from x to itself. Hence x, eQg (f). Now

y.€Qs(f) and f has the G-shadowing property, therefore

FBayD) € Q6(f). Hence f(piy) € Us()NQ6(f). Since 7<%, we
consider the following two cases:

Casel. f(pryyir) € cllU, (N Qs(f)

Then either f(p,,y) €U, (x) or f(p1y) is a limt point of U,(x). If
Fpayi)elU,(x), then {y=yo, ¥, ¥z , ¥1.1,2} 18 a finite §-G pseudo
orbit from y to z. If f(p,_yy,1) is a limit point of U,(x) then there is teU,(x)

such that d(f(p, ¥;4),t) <7 . This implies
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d(f (Pray), D)2 d(f (P v, D+ d({t, 2) <y +y <6
Therefore, {(y=yg, Vs ¥ 2seereernnne , Vi1,Z} is again a finite J-Gpseudo orbit
from y to z.
Case 2. f(p,1 1) & U, (x)]NQs(f)
Since Q. (f) is a compact subset of X, therefore cl[U,(x)]NQs(f) is a
compact subset of Qg (f). Because [f(p_y-1)eQ;(f) but
F(pryi) € cllU, ()N Qs (f), it follows that

d(f (P13 Y1), U, (DN Q6 () > 0.
Also, there is 1 € cl[U, (x)] " Qg(f) such that

d(f (P Y1) ) <6 1Y)
Therefore, tecl(U,(x)) and zeU r(x) implies

dt,2)<d{t,x)+d(z,x) < 2y

14
Since e clfU,(0NINQ(f), t ~t. Therefore there is a finite y-G pseudo

d(q,f(,), ) <y . Consider

d(q,f(,), 2) <d(q,f(t,), )+ d(t, 2)<y+2y =3y <&
ie. d(g,f(t,), 2)<d (I

From (I) and (II) we have {y =y, Vissdiois b bseeslynz} @S @ finite
6-Gpseudo orbit y to z. Therefore in each case there is a finite

& -G pseudo orbit from y to z. Hence z € B, which implies B, is open
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Iin the following theorem we show that if f has the G-shadowing

property then so does le 0"
G

Theorem 5.1.2. Let f: X — X be a pseudoequivariant onto map defined on
a compact metric G-space X, where G is compact. If f has the

G -shadowing then so does f, ("
G

Proof. Let £ > 0 be given. Since f has the G -shadowing property, there is a
& >0 such that every & -G pseudo orbit for f is %-traced by a point of X .

Also, G-shadowing of f implies Qg(f)=CR;(f)=|JB;, where
BeA

By n"B, =¢,a# . By Theorem 5.1.1, each B; is open. Therefore,
{Bs:f e A} is an open cover of Q. (f). Compactness of Qg (f) implies
there is a finite sub cover B, B,.......B, of Q; (f). Hence Q. (f) is a disjoint
union of open sets B, and therefore each B, is a closed subset of Q. (f)
and hence compact. Thus Sy =d(B,, B ,)>0, for all i, j, i#j. Let
Sy=min{6, :i# j,1<i,j<n}. Choose a such that 0<a <min{s, 6}. In

order to show that f 2.0 has the G -shadowing property we show that every
G
-G pseudo orbit for fi, . in Qg (f) is £-traced by a pointof Q¢ (f). Let
G

{x,:1 20} be an a-G pseudo orbit for fI in Q4 (f). Then by the choice

Q)

of a, {x,:120}c B, for some k. Take x,,x, €{x,:i>0}such that p<q.
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)

Then x,, x, € Qg (f) implies x, ~ Therefore there exist finite

G *p-
6 -G pseudo orbits
O ={x, = Yo, Visres Yy = X4}
and
& ={x, = zy,2,m.... 22y = xp}
say. Put k=4 +k, and construct a §-Gpseudo orbit {f,:i= 0} su.ch that

tk,=xp, t}cH‘j =yj’0SjSkl’ tkl_””:xq and tk1+kl+_] =2z OSjSkz ance f

J’
has the G -shadowing property {#,:i>0} is %-traced by a point of X, say,

X, - This implies that for each i 2 0, there exists / e G such that

A(f () 1t) < %-—-—-—--—(I)

o (s, ) gkwfkwyg, forall j,0<j<k

Consider the set T=cl({fk'(xp’q):z'20}). Following are the two possible

cases.

Case 1. Suppose T is discrete. Then T is finite being closed subset of a

compact set Therefore there is r>0 such that f"(x,,)=x,,. Thus,

Xpq € QG (f ) .
Case 2. Suppose T is not discrete. Then by compactness of T, there is a

subsequence {f* (x, )} Which is convergent. Let it converge to x/, , i.e.

fo(x, ) > x,, a8 n—>w

= there exists N > 0 such that d(/* (Xpq)s X5 4) <§, forall n2 N.
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From (I) foreach n, ne N thereis p, G satisfying

d(plan tkt,, ’x;,q) < d(pkt,, tktn » fk’" (xp,q )) + d(fk'" (xp,q )s x;),q)

oy
<=t+=—=g
2

But 7, =x,. Thus , thereis p, G such that A(py, Xps%p,) <&. We show
that x, , € Qs(f). Let B>0 be given. Uniform continuity of f implies there
exists an 7>0 such that d(x, y)<n=d(f(x), f(3)<pB. Also,
fFn(x,)—>x,, implies there exists N,>0 and N,>0 such that
d(f* (x, ) x, ) <n, forall i, =N, and d(f* (x,,), %,,)< B forall i, 2 N,.
This implies {x, ., f #n (X540 Xpq) is @ finite B-G pseudo orbit for f.
Therefore x}, , € Qs(f).

Thus for x

peXg €4, 1120} there is a point x),,€Qg(f). Since

X, %, €{x,:120} is arbitrary, it follows that for each x,,x, € {x,:720} with
p<q, there exists x), , e Q;(f). Consider the sequence {x, } in Qg (/).
Since Q (f) is compact, a subsequence of {x,, .} will converge. Suppose it
converges to y. Since Q  (f) is a closed subset of X, it follows that

yeQg (f). Since f(x, ) x,, and x,, -y, it follows that {x,:i>0} is

g-traced by the point y of X. Therefore f,Q 0 has the G -shadowing
G

property.
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Let X be a compact metric G-space and f:X—>X be a
pseudoequivariant map having the G -shadowing property. Then by Theorem

5.1.1 we have Q ()= | JB;, where a # = B;n B, =¢. With the above
BeA -

assumptions we have the following theorem.

Theorem 5.1.3. If U and V are open subsets of B, then there is\an n>0
and ge G suchthat Ung f"(V)=¢.

Proof. Let x, y € B, such that xeU and yeV . It is sufficient to show that
for any £>0, there exists »n>0 and geG such that
U, ®)ng"(U.(»)#¢. By Lemma 4.3.2 there exists an 5, 0 <7 <&, such
that forall xeX and geG, U,(gx) c gU,(x). By Theorem 5.1.2, f‘“c;(f)
has the G -shadowing property, therefore there exists a ¢ > 0 such that every

& -G pseudo orbit in B, is ;7-traced by a point of B;. Now x,y € B; < Qg (f)

)
implies  x~, y. Therefore there is a finite J-Gpseudo orbit

property, it therefore follows & is n-traced by a point of B,, say, z. This
implies that for each i,0<i<k, there exists p eG such that
d(f'(2), p,y,) <n. In particular for i=0 and i =k, there are p,,p, € G such
that d(z, ppy)<n and d(f*(2), px)<n. But d(z, p,y)<n implies
zeU,(pyy) < poU,(¥) . This implies
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7t @e (oo U ().
Pseudoequivariancy of f implies there exists a p € G such that

ff@epf U0 M
Also, d(f*(z), pix) <7 implies f*(z) e U, (pyx) < pU,(x) ie.

@ epUe@ an
Therefore from (I) and (II)

prAUONN pU(0) %0

or g U.MNU.(x)#¢,forsome geG.

2. G - periodic points.
In this section, we define the concept of G -periodic point of f a

continuous map defined on a metric G~-space X and relate it with a G-non

wandering point of 1.
Definition 5.2.1. Let X be a metrnc G-space and f: X — X be a continuous

map. A point x of X is said to be a G -periodic point of f if there is an integer

n>0 and g e G such that f"(x)=gx.
Smallest such positive integer » is said to be the G - period of x. We denote

the set of all G - periodic points of f by Per,(f).

Obviously, every periodic point of f is a G - periodic point of f. But

converse need not be true. Refer Example 5.2.2(a) and 5.2.2(b).
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Example 5.2.2.(a) Consider the space, map and group G, of Example

2.1.2(c). It is observe there that X/G={G(0),G(1),G,(-1),G;(3).G,(3)}.
Observe that —;: is not a periodic point of f. Also, f*(})=1,n*()=1.
Therefore, f>(4)= 7 (). This implies LePerg(f). Infact £*(G())=G@2)).

Therefore by Proposition 5.2.4, every point of G(%) is a G-periodic point.

Similarly, every point of G(3) is a G —periodic point.

3z

5.2.2.(b)*' Note that G={e'°,e‘5,em,e“f}. Here ¢°cPerg(f) and

E 3z 1z L\ e .
G(e') ={e'°,e 2,67 ¢ 2 } We observe that e 2 is not a G -periodic point of f.

in fact for any », f"(e'%)———e‘;m and forno neN, f"(e'%)zge"%, forany geG,
ie. ff(e?)#ge? forany neN and any geG. In fact Per;(f)={e",e'"}and
Per ()={¢'"°}. Note that f is not a pseudoequivariant map.

5.2.2.(c) Consider S'and suppose G=S' by the usual action complex

multiplication. Then for each ¢ e S, G(e?)=8'. If f:S' > §' is defined as

8
f(e’gFe'% then forg=e™ieS", f(e)=g.e®. Therefore ¢’ ePery(f) and

hence Per;(f)=X . Observe that here Per f={¢"}.

Remarks 5.2.3. (i) Examples 5.2.2(b) and 5.3 3(c) show that a point may be a

G - periodic point with respect to one group but need not G -periodic with
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respect another group. Thus G- periodicity of a point depends upon the
action of the group.
(ii) If the action of G on X is transitive then every point of Xis a G - periodic

point for any continuous onto maps fon X .
(i) If x is a G -periodic point of a continuous onto map f defined defined on
a metric G -space X then x is a G - non wandering point of 1.

{(iv) That G -non wandering point need not be a G -periodic point is justified by

the following example.

Consider the map f on S’ and group G of Example 4.4.6. Then from from

= 3
Example 4.4.6 we have Q;(f)={¢,¢ 2,¢'",e ? } whereas Per,(f)={e",e"}.

We first observe in the following result which relates G - periodic point
of fand the periodic points of the induced map f .
Proposition 5.2.4. Let X be a metric G- space and f:X —>X be a
pseudoequivariant map. If xe Xis a G - periodic point of f with period k,
then every point of G(x) is a G - periodic point of f with period k. Moreover,

a point x is a G - periodic point of f if and only if G(x) is a periodic point of

~

/-

Proof. Let x be a G -periodic point of f with period ke N and let ge G
such that f*(x) Now for any reG, f being pseudoequivariant,
@) =rf*(x)=t'gx=mx where m =t'geG. Therefore m is a G- periodic

point of f with period &'
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Now if x is a G - periodic point of f, then there exists k>0 and ge G
such that f*(x)=gr. For this k>0 F4(G(x)=G{r* (x))=G(gx)=G(x), which
implies G(x) is a periodic point of f’ .

Conversely, suppose G(x) is a periodic point of  with period k. Then,

F(G)=G)
= G(*()=6()
= g./*(x)=mx, for some g,meG.
= [ (x)=Ix
= x is a G -periodic point of 1.

The following result gives the relation between Per;(f)and Q;(f).

Theorem 5.2.5. Let X be a compact melric G - space, with G - compact and
let f:X — X be an onto pseudoequivariant map. Suppose f is positively
G -expansive map having G -shadowing properly. Then the set of G -periodic

points of f are dense in Q;(f).
Proof. Let ¢ be a G - expansive constant for f and £ be such that 0 <e<e
and x e Q;(f). We show that U, (x) " Per;(f)=¢. Choose 7, 0 <n <& such

that for each xeX and geG, gU,(x)cU,(gx). Since f has the G-
2

shadowing property, there is a § > 0such that every § -G pseudo orbit for f
is n- traced by a point of X. Also, G-shadowing of f implies

Qe (f=CR;(f)and f‘"c;(f) has the G-shadowing property. Since

xeQu(f)=CR;(f) there is a S6-Gpseudo orbit f{x=x,,x,,...,%, =x}.
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Consider the -G pseudo orbit {y, :z‘zo}={x ,xl,...,xk=x,xi,...} of fo (s i€
G

for each i>0, ie. for each i, Y, = Y- G-shadowing property of ﬁg o
G

implies {y, 0> 0} is 77~ traced by a point of Q. (f), say, y. Therefore for each
i20, there exists peG such that d(f'(y), py)<n. Also,
A ) Praden) <n. But for each i20, Y,=Yin=x, for some
S, 0<j<k-1. This implies there exist p, p,, G such that
d(f'O),px,) <n and d(f*"(v), p,x,)< 1. Now, d(f'(»), px,)<7 implies

f'»el,(px,)cpU.(x)

= d(p* f‘(y),x,)<—§-

Similarly, d(pz, fk+’(y),xj)<—§.

=d@ f O pen S (ff ) <s , forall i20.
But f positively G - expansive Therefore, G(»)=G(f* (1))

= f¥(»=g, forsome geG
=y is a G- periodic point of f

Now for i=0, there is p,eG such that d(p,y,x)<p<e which implies
poyeU,(x). Since f is a pseudoequivariant map, every point of G(y) is a
G -periodic point of f. Therefore, p,yeU,(x)"Qgz(f). Thus, G -periodic

point of / are dense in Q;(f).
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3. G -specification.

In this section we discuss another application of G -expansive maps
having G -shadowing property. We first define the necessary terminologies.

Definition 5.3.1. Let f: X —» X be a homeomorphism of a compact metric
G -space. Then f is said to have G -specification if for any ¢ > 0 there exists
M=M@E)>0 such that for any finite sequence of points
81%1 8%y 8% € X , for some gy, g5,....,8, € G and for 2< j <k, choosing
any sequence of integers g <b<g,<b <...<aq, <b, such that
a,-b,_,2M(2<j<k) and an integer p with p>M(h, —a) there exists a
point xeX with fP(x)=gx, for some geG and satisfying

d(f'(x), p,f'(x,))<e some p,eG andfora,<i<bh, 1<j<k.

In the following result we relate the G -specification with other
dynamical properties.

Theorem 5.3.2 Let (X,d) be a compact metric G -space with G compact and -
d an invariant metric. Suppose [f:X—>X is a G-expansive

pseudoequivariant homeomormphism having the G -shadowing property. If for

non-empty open sets U,V in X there is an N >0 such that for all n=z N

there exists g, e G satisfying Ung,f"(V)= ¢, for some p, e G thenf has

the G -specification.

112



Proof. Let ¢>0 be a G-expansive constant for f and take £ such that
0<e <§-. Since f has the G-shadowing property, there exists 6 >0 such
that every §-Gpseudo orbit for f is ¢-traced by a point of X. Let
@ ={U,,U,,....,U,} be a finite open cover of X with U, #¢ and diam U, <~§-,

for each i, ie{l,2,...,m}. By hypothesis for each open sets U,, U, there is
M, , >0 such thatforall n> M, , there is g, € G satisfying
U, "gf"(U,)# ¢ (D)

Let M=max{M,, 6 :1<i,j<m} and gx,gx,....e%5 X, for some
g1 228 €G and for 2<j<k, choosing any sequence of integers
asbh<a,<b,<...<g sbh suchthata,—b _, 2 M(2< j<k) and an integer
}; with p2M +(b, —a)). Define g, =8, =p+a, x,=1""%(gx). By
U(z) we mean an open ball U in g containing z. Since a,,, -5, > M, by (I)

there is g;m“b; e G such that
+ [ +17 b
UG (@) O 8y S W (8,%,)) # 6

This implies there is y e f“f”""l(U(fbf(gjx_,)))¢¢ such that

f"’“'bf )= k;“rbj y,. Construct a & -G pseudo orbit {z,:ieZ} for f in X
as follows:

z,=f'(g,x,) ifa, <i<h,

-b .
Z =f1 J(J’,) lfb} SjsarH

Z.p =2, VieZ
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Since f has the G -shadowing property, {z, :ie Z} is ¢-traced by a point of

X, say, x. Therefore foreach ie Z, thereis /,1, e G such that

12 ‘14 p

d(f'(x).1z,) <e and d(f"P(x),1,,,
= d(f'(x),1,z,) <¢ and d(f"P(x),l,, ,2,) <&
= foreach ic Z, thereexist [,/ , e G
satisfying

Zpp) <E

AU, @), () <26 <e
But f is a G -expansive homeomorphism. Therefore G(f”(x))=G(x). This

implies f?(x)=gx, for some geG. Alsofor a, <j or b<b,, z, = f'(g,x,).
Therefore, d(f'(x),Lz)=d(f'(x),l.f'(g,x,)))<e and fF(x)=gx. Therefore
by definition 1 has the G -specification.

We now give a example of G -specification. We first recall the following

terminologies from [22].

Let ¥, ={0,1}", be space of all sequences of 0 and 1, with the metric

d(%,5) = Zw where X =(x), ¥ =(y,) € X,. Consider the natural shift

=0 !
map o defined on 2, by o(xyxx,......) =(xx, ). Then it is observed that the
periodic points of o are dense in >, and also there is a point in 3, whose
o -orbit is dense in X,, say, . Therefore for any open sets U and ¥V in X,

there is a periodic point in each of Uand V' and also there is a point from the

o-orbit of ¥ in U and V. Hence o is a topologically mixing. Walters has
proved in [48] that o is an expansive homeomorphism having shadowing

property.
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Example 5.3.3. Consider two disjoint copies of 3,, say, 3! and X2 having
one point in common, namely, 0=(0,0,...). Let X =Y'UY?. We denote
points of X' by x’, t=1,2. Define a metric d on X by d(%, 7) equal to zero
if both ¥=%,is 27, if ¥,7 e X' for same ¢, where / is the smallest integer
for which x, # y,, and it is one if ¥ and 7 are in different X'. S.uppose
G=2Z, acton X by the action 1x = x; ~1x' =x* and —1x* = x'. If &, denotes
the corresponding shift maps on X', then the map f: X > X defined by

0y (X), if xe zl

is a Z,-expansive homeomorphism havin
o(x), if xeX, 2P P g

f(x)={

Z,-shadowing property since induced map is expansive as well as the
induced map has the shadowing property. Also the hypothesis of Theorem
5.3.2 holds. Infact by the above discussion there is a point whose f -orbit is
dense each of X.'. Therefore unionis dense in X Hence by Theorerﬁ 53.2,

f has Z,-specification.

4. G - minimality.
In this section we define the notion of minimality for a continuous self

map on a metric G - space. Recall the definition of a minimal map on a metric

space Amap fis said to be a minimal map if for eachxe X, cl(O;(x))=X .

Suppose the action of G on Xis trivial. Then for each xe X and geG,
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cl(0,(gx))= X . This implies cI(| JO,(gx)) = X . This motivates our definition
geG .

of G - minimal map.

Definition 5.4.1. Let X be a compact metric G-space and f: X > X be a

continuous onto map. Then f is said to be G-minimal if for each xe X

c((Jos (@) =X

geG

Remark 5.4.2, (i) Under the trivial action of G on X, both the notions of G-
minimality and minimality coincides.

(ii) If X is a compact metric G - space and continuous ontomap f: X > X is

minimal then it is G - minimal.

Examples 5.4.3. (a) Let X =S' and suppose G =S'acts on X by the usual
action of complex multiplication. We denote a point of S! by its argument.

Consider the map f:S'—>S' defined byf(@)=20. Also for
fes,GO)=S',0<[027). Now, for each #eS', choose geG such that
go =0, where &' is an irrational number. ConsiderO,(0") ={f"(6")/n20}.
Then ¢' being an irrational number, O,(¢')is dense in S'. Therefore

X =cl(| JO,(g8)) implies f is an S’- minimal map. Since 0e S is a fixed
geG

point of /', f is not a minimal map.
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Real Numbers {j,,0,,...5,} are said to be rationally independent if
{By; B>, B,51} are linearly independent over Q. Recall that a rotation f on
T" defined by f((6,,6;,,0,))=(6 + 51,60, + B ,....0, + B,) is minimal iff
{B:, B, B, } are rationally independent [46].

5.4.3. (b) Consider n- dimensional Torus T"=5'xS"...xS'.Suppose
G =8'acts on T” by the action 6(6,,6,,...,6,)= (6 +6,,6,,...6, ). Define a map
h:T" = T"by h6,,6;.....6,)=6,.6, + p,.....0, + B,), where (B, B;,.... B,) are
rationally independent. Then, since 6,(6,,6,,....6,) is dense in {g}xT"! it

follows that | J0,((6(6,.6,.....6,))) is dense in T". Therefore, # is G-
fes’

minimal. % is not minimal as 0,,((0,0,0,...,0))is not dense in T".
Now if G =TH:k<n, acts on T' by the action
1>1300e0118) (61,05.-20,) = (0 +61,7, +6,,...,77; +6,,64,4,...,6,) then by a
similar argument B :T" —>T" defined by
1((6,05,.+,0,))= (61:03,..,64, 841 + BrutsOpaz + Brazs-, + ) where
{Bri1>Prsas B, are rationally independent, is a T” minimal homeomorphism

but not a minimal homeomorphism,

In the following result we characterize G -minimal homeomorphisms

through G invariant, f -invariant subsets of a compact metric G -space X .
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Theorem 5.4.4. Let X be a compact metric G-space and f:X - X be a
homeomorphism. Then f is G-minimal if and only if the only f-invariant
G -invariant closed subset of X is either X or empty set.

Proof. Suppose G is a minimal homeomorphism and E is a closed
f-invariant G -invariant subset of X. f E=4¢, nothing to prove. Suppose
E # ¢ then we show that E=X. Since E is G - invariant, xe £ and geG,

gre E. Also, E is f-invariant. Therefore f(E) = E. This implies forany xe E

f*(gx)e E,foreach ge G andeach neZ.

=0/ (gx)c E,forgeG.

= JO,(g0)cE
geG

= (| JO;(gx) < E
geCG
Therefore G - minimality of f impliessE=X.

Conversely, suppose the only f-invariant G -invariant subset of X is either

X or empty set. We show that f is a G-minimal homeomorphism. For

xelX, Uof(gx) is an f-invariant G -invariant subset of X . Therefore,
geG

cl(|JO,(gx)) = X . This implies f is G -minimal.
geG

Further studying relation of G -minimality with G -shadowing, we

observe first the following Lemmas.
Lemma 5.4.5. Let f:X —> Xbe a pseudoequivariant homeomorphism

defined on a compact metric G - space with metric d, where G is compact. If

118



[ has the G - shadowing properly then for given £>oand x e Qg(f)there
exists yeXand k=k(x,e)such that cZ(O i (G( y)))c U.(G(x)), where

UE(G(x)) is a -neighbourhood of G(x)with respect to metric d, on X/G

induced by d .
Proof. Let £>0 be given. Since = is a uniformly continuous map, there

exists S >0suchthatforx,ye X,
d(x,y) < B = dy(z(x), ()< §

B

Choose an 7, o<77<—-2—-, such that for each geG and each yelX,

gU,(»)=Uz(gy). Since f has the G-shadowing property, therefore there
2

exists 5,0<d <~§—, such that every & —G pseudo orbit for f is 7-traced by a

point of X'. Forxe Qg(f), consider the —i— - neighbourhood of X, say U.

Since x is a G -non wandering point of f therefore there is an integer
k>0and g'e G such that g f*(U)nU=4¢.let zeg' f*(U)NU, then there
exists y e U such that z=g'f*(U)QU i.e. z=f*(g)eU, forsome g eG.
Construct a k-periodic 6—-Gpseudo orbit {y,:ieZ} for f as follows:
Yuk = Vs Yok, =S (@)1 j< k-1

Le. {y:ieZ}={.f e, y, f(gy),...,...}. But f has the G -shadowing
property. Therefore {y,:ieZ} is n - traced by a point of X, say, z. This

implies for each i € Z, there exists p, € G such that d(f'(2),p,z,) <7.
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In particular for i = nk, there exists p,, « G such that

d(f™ (), puy) <7
= y € ppU, (f™(2) < Up(pia /™ ()
2

= dl.pites™ )<L
=>foreach ne Z, d(p;,f™(2),x) < d(phf™(2),y) + d(x,¥)
B

6
<E+—<B.
2 2 p

=d, (ﬂ(p;;if e (Z),ﬂ(x))< :_j:
= &(G(™.600)<5
= /™ (6(2)eU, (6()

= cl(04(G(2))) cel(U ,(G(x)) < U, (g(x))
3

wm

Hence the proof.

In the following Lemma we observe that every point of a compact

metric G-space Xis a G-non wandering point of a map f if f is a
G -minimal map.
Lemma 5.4.6. Lef X be a compact metric G - space, where G is compact

and f:X — X is a pseudoequivariant G -minimal map. Then every point of
Xis a G - non wandering point of f .

Proof. For a givene>0, let U =U_(x), xe X . Since fis G-minimal map, for

eachye X, ci(| JO,(g) = X. Therefore, there are g,,g, eGand integers
geG

m,k >0with m <k, say, such that f™(g,»), " (g,y)eU
Now, f"(geU=gye f™U)
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= f*(g) e fk(gzgflf“m(U))

= f*(g,y) egf ™), for some ge G
=g ffUNU =g

= xeQs(f)

Since x in X 1s arbitrary, we obtain X =Q;(f)

Theorem 5.4.7. Let X be a compact connected melric G - space with metric
d and having more than one point, where G is compact then a pseudo

equivariant G -minimal homeomorphism does not posses the G -shadowing

property.

Proof. Since X is compact therefore X /G is also compact. Let I=diam X /G
and ¢ :-g. Suppose fis a G - minimal homeomorphism by Lemma 5.4.6.

every point of X is a G- non wandering point of f. Therefore for each
xeX, by Lemma 545. there exists yeXand £k>0such that

cl(Ofk (G(») cU.(G(x)), where U, (G(x)) is the ¢-neighbourhood of G(x)with

respect to metric d, on X/G. Since f is a homeomorphism.

k-1 k-1
UeJ 0. (" @m = (U 04 (7@ =c1(JO, (@) = X as [ isa

J=0  geG J=0 geG geG

G - minimal. We show that from connectedness and G -minimality we get,

c(lJo  +(29)) =X . For suppose k=3. Let 4, = (| jo 2 (f (@), J=0.1,2.
geG 2eG

Then 4,=f(4,) & 4,=f*(4,). Connectedness of X implies 4,,4;,4,are

not pairwise disjoint. Let zeA4 ;N4 then z f(z)ed,. We claim
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that By | J f(By)=X , where B,=cl(| JO +(82)) . Let r € X be such that t € 4, .

geG
Then there exists {»,} such that f 3, (80—t

Also ze 4,

= There exists {p,} such that f*” (k, y)—>z.
= PPk, 2)> .
=5 f 3P, (k;,j £)—> g, Y- for each n, .forsome &, €G
= g, 17, ) 17 gy}
= (g;J z)—>t
=te B,
Similarly if ref(4,) or f(4)then reB, or tef?(B,). Hence,

F2(B,)UB,=X . Again f2(By)NBy#¢ . Let we F2(B,) B,. Then by similar
0

argument we have cl(|J 0 (gw)=X . But gweBy=cl(| ] O  +(g2)). This
ge@ geG

implies ci(| J O E (gv))=X . Thus, in general there is ye X, k>0 such that
geCG .

(| 0 u()=X.
geG

= z(l(|J O (@) = w(X)=X/G.
geG

But = JO (@M = O (o) and  #(JO,u () =05 (G0)).
gelG geCG geG

Therefore, X /G cCIO G))

= cl(0; (GM=X/G
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But (0 (GOM<U, (G(x)), implies X/GcU,(G(x)). Therefore I<2¢,

which is not possible as / =—'§—. Hence fdoes not have the G- shadowing

property.
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