
CHAPTER VI

Economic Design of Multivariate Control Charts

o6.1 In this chapter the economic design of Hotelling T^-control 
chart is developed. The cost model developed is an adaptation of 
the cost model developed by us for np-cantrol chart in chapter 
II. Hotelling T -chart is a multivariate analog of ontrol 
chart. The economic design of x-control chart is already 
developed in the chapter III using the cost model mentioned 
above. Hook-Jeeves search technique is used to find the optimal 
values of the sample siae, the interval between samples and the 
critical region of T^-control chart. Numerical results are 

provided for several bivariate problems. When the out of control 
signal is given by Hotelling T^-control chart* the problem of 

immediate interest is which subset of p variates caused the 

signal. The solution of this problem is discussed in detail.

6.2 Multivariate Guality Control
There are many situations in which the simultaneous control 

of two or more related quality characteristics is necessary. For 
example, Suppose that a bearing hats both an inner diameter <xj> 
and an outer diameter (xp) that together determine the quality of 
the product. Suppose that Xj and xp have a bivs\riate normal 
distribution. As both quality characteristics are measurements, 
they could be controlled by applying the usual x-chart to each
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characteristic as illustrated in Figure 6.1 » The process is 
considered to be in control if both the sample means Jij and Xp 
fall within their respective control limits.
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Controlling these two quality characteristics independently 
can be very misleading. Suppose the probability that either xj or 
y-2 exceeds 3-sigma control limits is 0.0027. However, the joint 
probability that the sample means -for both variables exceed their 
control limits simultaneously when they are both in control is 
(0.0027)<0.0027) “0.00000729 which is considerably smaller
than 0.0027. Furthermore, the probability that both wj and xg 
will simultaneously plot inside the control limits when the 
process is really in control is (0.9973)(0.9973) « 0.9946 which 
is different from 0.9973. Therefore, the use of two independent 
x-charts has distorted the simultaneous control of Xj and x<p, in 
that the probability of type 1 error and the probability of a 
point correctly plotting in control are not equal to their given 
levels for individual control charts.

This distortion in the control procedure increases as the 
number of quality characteristics increases. In general, if there 
are p statistically independent quality characteristics for a 
particular product and if an x-chart with PCType I Error} “ a is 
monitored on each independently, then ‘ the true probability of 
type I error for the joint control procedure is

a' » 1 -• (1 - a)P ...(6.2.1)

and the probability that all p means will simultaneously plot 
inside their control limits when the process is in control is

Pfall p means plot in control 1 “ (1 - et)P. ...(6.2.2) 
Clearly the distortion in the joint control procedure can be 
severe even for moderate values of p.
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Furthermore, it p quality characteristics are not 
independent, which would usually be the case if they relate to 
the same product, then equations (6.2.1) and (6.2.2) do not hold.
In this situation we have no easy way even to measure the
distortion in the joint control procedure.

Quality control problems in which the several related 
variables are of interest are known as multivariate quality
control problems. The original work on multivariate quality
control was done by Hotelling (1947). Multivariate quality
control is important today, as automatic inspection procedures 
make it relatively easy to measure many parameters on each unit 
of the product. Also the installation of PC reduces the
complexity of execution of multivariate control charts.

6.3 Hotelling T^-Control Chart

Suppose that the output of a process is described by p
quality characteristics and that X is a (p x 1) random vector 
whose jth element is the jth quality characteristic. Suppose that 
X is distributed according to p variate normal so that

f(x) * C <2te)P/2 |S|1/2 3 expE~(x -- |.i)' S-1(x •- jj>/23

...(6.3.1)
We assume that the covariance matrix S is unknown but remains 
constant.

The control procedure for X due to Hotelling (1947) is as 
follows.

From a random sample of sa'ze n say X15 , « .., Xn we
compute the sample mean vector and the sample covariance matrix as
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X ss
1 n
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II u u <6.3.2)

S,n~l n-l
ri.E <X. 1*1 •- <x.

■X)

„<6.3.3)

We then compute the test statistic

T2 * n(X - p0>' S“ij<X ~ mq) ...<6.3.4)

where p0 denotes the value of p corresponding to the in-control 

state.

Then T*- is distributed as Hotelling T' with p and n--p 

degrees of freedom.

Define T2 p n_p as ^^e upper 100a percentage point of 

Hotelling T2 distribution with p and n-p degrees of freedom such 

that

PCT2 > T2?pjn„p3 » a ...(6.3.5)

The decision rule for T2-control chart is as follows.

If T-" i p n_pii Pr°cess i® in control.

If -p.A y Tg p n_p, the process is out of control.
Thus Hotelling T2--control chart has only the upper control

limit
1 avp,n-p ‘

The percentage points of Hotelling T"“ distribution cam be 

found from the tables of the cummulative F distribution since the 

random variable F given by

f- as n-p
TrrT) <6.3.6)

has F distribution with p and n-p degrees of freedom.
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We, therefore, have

r * \ v I «l» r ^"'"SjPs.n-p 35 ~("n-pl ^ctfPjn-p . ..<6.3.7)

where p,n--p is defined by
p r p > F i a a
Samples of size n are taken periodically, the quantity T2 is 

computed according to the expression (6.3.4) and T2 is plotted as
— Ia time oriented sequence on T"—control chart. The matrix Sn±j is 

computed only once from the preliminary sample of size n taken 
when the process is in control. This practice is suggested by 
Montgomery and Klatt <1972 b) and also by Heikes, Montgomery and 
Yeung <1974) while developing the economic design of T*---control 
charts. The justification for this is due to the assumption made 
that 2 remains constant during the control process.

The power associated with the Hotelling T^-control chart 
depends on the distribution of T"11- when p =|= pC)» It is shown in 
several text books such as Anderson <1958) that if p -ji pp then T,e" 
has noncentral T2 distribution with p and n-p degrees of freedom 

and the noncentrality parameter
V = n < p - pQ) * 2” * < p - pQ) . . . < 6.3.8)

Also it may be shown that if p £ p$ then the random variable 
F defined by (6.3.6) has noncentral F distribution with p and n-p 
degrees of freedom and the same noncentrality parameter as given 
by (6.3.8).

If the variance covariance matrix 2 were known with
— 1 w 4certainty then Sn±j in (6.3.4) would be replaced by 2 . The

statistic T2 would then be distributed as X2 with p degrees of
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•freedom. Under this situation one has to use X'^-control chart 

with upper control limit X£ p. Here X^p uPPer lOOta
percentage point o-f X** distribution with p degrees o-f -freedom.

We feel that in practice the perfect knowledge of 2 is
Ounusual and hence X^-controI chart can be applied rarely. Thus

the application of X chart is restricted even though it is
*ideal. On the other hand T -control chart is used widely. Hence 

we prefer to develop the economic design of T^-control chart 
rather that X “control chart.

The following practical difficulties would arise while 
developing the economic design of T -control chart .

I(1) In the computation of the power of T“-control chart the value 
of noncentrality parameter T given by (6.3.8) can not be computed 
exactly as 2 is unknown. Hence one has to use the approximate 
noncentrality parameter

-.iV - n < p - pQ)' V 1(p - p0) ,..<6.3,9)
in place of the true noncentrality parameter T, Here V is an 
assessment of 2 based on some sample of suitable sise taken when 
the process is in control.
<2> In the computation of the proportions p^ <i=0,i) of 
nonconforming units also there is a difficulty due to unknown 2, 
Hence the approximate values of p0 and p^ are obtained by using 
the assessment V in place of 2, The derivation of the expressions 
for pQ and p^ is discussed in Section 6.4.4.

In the next Section 6.4 we develop the expected cost model 
for T“-control chart.
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o6.4 Development of Economic Model for T^-control Chart 
6.4.1 Introduction

Montgomery and Klatt<1972 b) developed the economic design 
of T^-control chart. The cost model used by them is the single 

assignable cause version of Knappenberger and Brandage's (1969) 
cost model for x chart. We have seen in chapter II that 
Knappenberger and Brandage's (1969) cost model involves too many 

unrealistic assumptions.
In Chapter II we have developed a single assignable cause 

model which does not involve any of the unrealistic assumptions 
of Knappenberger and Brandage's (1969) cost model. The 
improvements of our model over Knappenberger and Brandage's model 
are already explained in Section 2.2 of Chapter II and hence not 
explained here.

Using this cost model the economic design of np-control 
chart is developed in chapter II Section 2.3, and the economic 
design of control charts for variables are developed in chapter 
III.

In this chapter the economic: design of T^-control chart is 
developed using the same cost model. The expected cost model for 
T^-control chart is developed in the remaining sections of this 

section.

6.4.2 The Production Process and the Control Procedure
The production process starts in an in-control state in 

which the process mean vector is p « p^ There is only one out-of- 
control state in which the process mean vector is pj * p$ + $ v
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where the (p x 1) vectors Pj-j, S are known. The time until the 
process remains in the in-control-state before shifting to the 

out-of-control state is assumed to be exponential random variable 

with mean 1/X operation hours. The process is not self 

correcting. Once the process is out of control it stays there 

until the shift is detected by the chart.

The sampling and the inspection procedure is as follows. A

sample of size n is taken after the production of every k units.
__The sample mean vector X is calculated and the quantity T*- is 

computed according to the expression (6.3.4). If 7 i "l'a,p,n~p» 

the process is declared to be in control and the production
*7 *7continues. If T-1- > T£j ^ p ^n_p the process is declared to be out of 

control. The production may or may not be halted and a search for 

the assignable cause is undertaken. If the assignable cause 

exists then the process is corrected and brought to the in

control state.

We want to find the optimal values of the design variables 

n, kj T‘5^p(in_p which minimise the expected cost per unit of 
controlling the process during the production cycle.

6.4.3 The Probability of Type-I Error and the Power of T^-Control 

Chart
The probability of type-I error, qQ, is the probability of 

concluding that the process is out of control when p « p^,»

The expression for q(-, is given by



q0 = P C T2 > T2?piin_p | P - Mp 3 .--<6.4.1)
where TA has Hotelling distribution with p and n-p degrees of 

freedom.
It may be noted that Pq represents the probability of a 

false alarm.
The power of T2-control chart, q^, is the probability of 

concluding that the process is out of control when p » p$ + Scr.
The expression for q^ is given by
qj » P L‘ T2 > T2_|P!|n_p j p « p(-> + S'cr 3 ,,.(6.4.2)

where T*“ has noncentral T** distribution with p and n-p degrees of 
freedom and noncentrality parameter T given by the expression 
(6.3.8).

As described in Section 6.3, it is not possible to compute 
the exact value of V because S is unknown. Hence one has to use

-A

the approximate noncentrality parameter Y given by (6.3.9) in 
place of T' in the computation of qi.

6.4.4 The Proportions of Nonconforming Units
Let Pq be the proportion of nonconforming units when the 

process mean vector is p$. Let pj be the proportion of 
nonconforming units when the process mean vector is p ® pq+Sc .

Let uj, U2 be the given specification limit vectors. 
Assuming that a unit is nonconforming if its measurements fall 
outside the given specification limits (Uj, uy>), the expressions 
for Pq and pj are as follows.

p0 ■ 1 '- P(-UA < X < U2 | p *= »io> a n u ( & « 4 b 3

Pi ■ 1 *- P < u j < X < us | p « Pq + $«r) 8 8 8 ( 6J ,4)
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Recalling that X <%, Np(p>, S) one can see that the evaluation' 
of pq and p^ requires the knowledge of S. In the absence of such 
knowledge, one has to obtain Pq and pj approKimately replacing E 
by its assessment V.

6.4.5 The Expected Cost Model
Since the basic structure of the model under study of this 

chapter is the same as the structure of single assignable cause 
model developed in the Section 2.3 of Chapter II, the total 
expected cost incurred during the production cycle far T^-cantrol 
chart is given by

E(C) => (a|+a20>N + a^^ < 1”6) + a^r, + a^jS ■*" a4,,?^"“^
* . . ( 6.4 u ti)

where the definitions and the meaning of the various constants 
involved are already explained in Chapter II.

The expressions for qQ and q^ required in the computation of 
E(C) are derived in the Section 6.4.3 and are given by (6.4.1) 
and (6.4.2) respectively. The expressions for P0 and P| are 
derived in the Section 6.4.4 and are given by (6.4.3) and (6.4.4) 
respectively.

The total expected cost per unit of the product, ECPU, is 
then given by

E(C)
ECPU = ------ . . . (6.4.6)

Nk
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In the next Section we give the method for finding the optimal 
values of n, k, which minimize ECPU given by (6.4.6) for 
bivariate case.

6.5 Solution Method and Numerical Examples 
(A) Solution Method

We consider the bivariate sample problem given by Montgomery 
and Klatt (1972 a). The systems parameters and the cost 
coefficients, reproduced from their example, are as follows.

P0 = CO,03,

Assessment of 2 = *V 1 0,5
0.5 1

The specification limit vectors 
u j "* C 3 , *■ C *»■, o 3 ,
Three shifts to be investigated are <i> 2cr (ii) 2.5c (iii) 3c.The

*

corresponding three values of pj are (i) pj « C2,23 (ii)
r*o tss o
L .&• * W p •£. « W J sj (iii) pj 355 l« p Cl* 3 p so that <i) £' » C2,23,

(ii) S' - ‘£2.5,2 .53, (iii) £' *"** it V1 J| •} . The cost coefficients are

al "
$ 1 p 552

$ 0.1, a-?* •—1 p
1 - $ i0? "If 851 i$> A 0 a

•m* 3
a4,1 ” ^ 1»

a4,2 “ * 1»5» X 1, 10000.
The noncentrality parameter, for the bivariate case, is

computed using the following expression,



¥ n
r-p2
n

I-1!(------- —
»i

^li^oi )( |Ji2“^02 l-42"l-t02
O‘o

i-p2
C $f - 2J5S1«2 + $2 3

°'2

<6.5.1)

To evaluate the above expression (6.5.1) we have used P 85 0.5 
from the assessment V of £. This approximate evaluation of ¥ is 
used in the computation of qj.

It is clear from the expression (6,5.1) that the 
noncentrality parameter Y is independent of o'i and and depends 
upon only the correlation coefficient P so far the elements of S 
are concerned.

We now explain the method for computing the proportions of 
nonconforming units Pq and pj.

The value of p@ and the three values of p^ for the three 
shifts are calculated using Table 2 of Pearson and Hartely Vol II 
and the results 26.3.7, 26.3.8, 26.3.9 and 26.3.10 given by
Abramowitz and Stegun (1972) on pp 936. These results
listed below.
26.3.7 L<h, k, P) - L(k, h, P)
26.3.8 L(-h, k, P) + L(h, k, -P) - Q(k)

26.3.9 L(-h, -k, P) - L(h, k, P) » P<k) - Q( h)
26.3.10 2C L(h,, k, P) + L(h, k, -P) + P(h) - Q(k) .1

h k
g(x, y, P)dx dy
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where

L(hj, k, P> = y, P)dy s

P(h) =
1

iTC_
exp<-t2/2> clt 9

Q< X > =
1

' ZTt X

«
exp(-t2/2) dt

g(x, ys S') - ----------- exp [-< x^-ZS'xy+y^) /2( l-f"*") 3
2t£*T j „p2

In the evaluation of p@ and pj the assessment V is used in 
place of S,

In computation of and qj9 F and nancentral F
distributions are utilised.

Let P(F j Vj ? v2) be the distribution function of F with v.j P 

V2 degrees of freedom.
Let Q(F | Vj, v2> 25 1 - P(F | vj j, v2>

Then

Q(F | vj j 
v2where Iv (----x 2

Vo
V9) ® !,,(■ )
V1---- ) is the incomplete beta

.<6.5.2)

integral with

v?x a--- 11---- .
v2 + VjF

For bivariate case we have Vj = 2S v2 83 n~2 
We therefore have
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q0 •» Q(F | 2, n-2) *x<' n-2 1) (6.5.3)

Thus the computation of q0 becomes easy in bivariate case. 
Let P(F | vj, vp, Y) be the distribution function of 

noncentral F with vj, v2 degrees of freedom and the noncentrality 
parameter Y,

We have
w exp(~Y/2) (Y/2)J 

P<F I vt, Vo, Y) = 2-----------------
1 A -*■' j »0 j ,

V1 v2I<l-X)<o"+j5 "o>
itlM l)lU

(6.5.4)
For bivariate case this expression becomes

p (p o>2, n-2, Y) ■ 2J-0
exp(-Y/2>(Y/2)j n_o
----------------  la.x)(i+j( ~> .

j ! *
...(6.5.5)

The probability q^ given by the expression (6.4.2) can be 
obtained by using (6.5.5).

A computer program on Fortran is developed for evaluation of 
ECPU for given values of n, k„ Tjjj 2 n~2"

This program uses a subroutine for the computation of

incomplete beta integrals 1< > (1+j n -2 0, 3 J 8 » 8 M H

required in computation of qj. This program computes q$ and qj 
and ultimately ECPU. The values p$ and p^ are computed externally 
and supplied as input parameters of the program. This program is 
linked to Hooke-Jeeves technique to find the optimal values of 
n’ TS,2,n-2- ThB luting of the program is given at the end of 

this chapter.
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(B) Numerical Findings

In the -following Table 6.1 we give the optimal values o-f the 

design variables n, k, TA with minimum ECF'U -for the three shifts.

Table 6.1

Shift PQ Pi Pq Pi n k T2 ECFU

<1> (2) (3) (4) (5) (6) <7> (8) <9)

C2, 23 0.0053 0.21348 0.0107 0.9898 10 370 19.00 0.0211

£2.5,2.53 A .*•.»**?»* rt*0 a QUOs.’« 0.4538 0.0146 0.9938 8 370 21.50 0.0260

C3, 33 0.0053 0.6667 0.0087 0.9982 8 190 27.00 0,0279

From this table we observe that the larger shift in the 

process mean leads to smaller sample size, slightly smaller (or 

same) sampling intervals and larger control limits. The same 

trend has been observed by Montgomery and Klatt <1972a) while 

studying the economic design of T*"-control chart using

Knappenberger and Grandage's (1969) model.

We now consider the effect of changing the sign of J* on the 

three design variables.

Let V 1.0 --0. S
0.5 1.1

The effect of this change in the sign of S-' is studied on the

optimal design variables in case of shift E2, 23. The results are 

given in the Table 6.2.



Table 6.2

Design
Variables P - 0.5 P « -0.5

(1) (2) (3)

n 10.00 6.00
k 370.00 370.00T2 19.00 32.00

ECPU 0.0211 0.0219

The column(2) gives the optimal design variables and minimum ECPU 
in case of shift C2, 23 when P - 0.5. The column (3) gives the 
optimal design variables and minimum ECPU derived in case of 
shift C2? 23 when P ™ "0.5,

Comparing the columns (2) and (3) one can see that negative 
value of P leads to smaller sample size, slightly smaller (or the 
same) sampling interval9 and larger control limit.

This is the same effect observed while increasing the 
magnitude of the shift of positive P, This is not unexpected 

because increasing & and negative P both increase the power of 
the test.

6.6 Determination of Out-of-Control Variables
6.6.1 The main advantage of T^-control chart is that the state of 
the production process is characterized by a single number. 

However, if a point falls outside the control limits, it is not 
immediately obvious which subset of r (rip) quality 
characteristics are out of control. The work done in this respect 
is cited in the next para.
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Jackson (1959) and Jackson and Mudholkar (1979) have
suggested principle components technique to deal with this 
problem. Montgomery and Wadsworth (1971) have suggested 
simultaneous confidence intervals to deal with this problem. 
Murphy (1987) has suggested discriminant analysis for selecting 
the out of control variables. Recently Hawkins (1991) has 
suggested the multivariate quality control based on regression 
adjusted variables.

The method given by Murphy (1987) using discriminant 
analysis is described in the next Section.

£>.6.2 Determination of out of control variables when £ is known
The method based on discriminant analysis given by Murphy 

(1987) is as follows.
The' decision on whether the process is in control or not is 

based on X^-corttrol chart mentioned in the Section 6.3. Samples 

of size n are taken periodically and the quantity
y2 a n (X ™ )' S"1 < 1 - pc,) ...(6.6.1)

is computed.
The decision rule is as follows.

If X < Xjj p „ the process is in control.
” x2 > x|,p . the process is out of control.

Here Xjj p the uPP®r 100 a percentage point of X

distribution with p degrees of freedom so that
ct ...(6.6.25r c *2 > *2,p 3

When p = p0„ X^ is distributed as X^ with p degrees of
freedom.
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When p =j= J4q» X"~ is distributed as noncentral X'*1' with p 

degrees of freedom and noncentrality parameter

Y = n (p _ Mo*' E”’* (p - p@) .,.(6.6.3)

When the out of control signal is given by X-’-control chart, the 

question of immediate interest is which subset of p variables 

caused the signal. An effective approach is to partition X, |..iq, 2 

as follows

^ ( 1 ) r
r „ (i)

Mo
M0 aa

p-r (2)Mp

'SFn ^ .1.2 r

S21 S22 p-r

r p-r
where X*1 * is the mean of the subset of r variables which we 

suspect caused the signal, and X is the mean of the remaining 

p-r variables. p$ and £ are partitioned as X.

W© compute the full squared distance as

X| * n<X - p0)' 2”1<X - p0) ...(6.6.4)

We compute the reduced squared distance corresponding to the 

subset of r variables as

i(X<:l) - Mnm>' ET}<Xa> - p0<l)>

...(6.6,5)

Xp * n i x ' “ ' — Pq ■ “ ■ > £t | j

Consider the difference 

D * Xp - Xp ,.»(6,6.6)
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If D is small we accept the hypothesis that the subset of r 
variable caused the signal, if D is large we reject the 
hypothesis.

This D test is similar to the one which is well known in 
discriminant analysis for dealing with the variable selection 
problem.

In discriminant analysis we define the true full squared 
distance between the populations with means Pq and p as

Ap = n (p “ Mq>' S’” * < p - Pf;) .,.(6.6,7)

and the true reduced squared distance as
Ap ■ n (p *1 * - Pq **)' EjJ(p * * * - Pq * *) .,.(6.6.8)

Then to test Hq s is equivalent to test that subset of r
variables discriminate as good as the full set of p variables.

Murphy (1987) has shown that when H$ s Ap » Ap is true, D 
defined in (6,6.6) .is distributed as X*“ with p-r degrees of 
freedom.

The above method given by Murphy (1987) is applicable if 2 
is known. As we have seen in the Section 6.3, the knowledge’ of I! 
is unusual, and hence the application of Murphy's (1987) method 
based on Xz-control chart is restricted. In the next Section we 

describe the method for determining the out of control variables 
when S is unknown. The appropriate F test used in this method is 
based on Rao's U statistic described by Kshirsagar (1972),

6.6.3 A Method for Determination of out of control Variables
when E is unknown

The decision on whether the process is in control or not is



based on Hotelling T^-control chart described in the section 6.3, 
When out of control signal is given by Hotelling T -control 
chart5 we are interested in finding which subset of r variables 
of the given set of p variables caused the signal. The method for 
finding this is as follows.

Partition X., Hq, S as done in the Section 6.6.2. The sample 

covariance matrix Sn„.;l is also partitioned as E.

sn~l
S11 S12 r
S-21 p-r
r p-rWe compute the full squared distance based on the sample of p 

variables as

T| « na - m0>' sn-l(* ~ Mo> <6.6.9)

and the reduced squared distance based on the sample of r <r < p) 
variables as

T‘ - n<X < 1 > Mo < 1 ) ) ' >11 <5? < 1) - Mo < 1 >

<6,6.10)

We then find Rao's’U statistic as
1 + Tp/<n-l)

LJ .... —„ 0 a <6.6.11)
1 + Ip/ <n-l)

Let Ap and &p be the true full squared distance and the true 
reduced squared distance as defined by <6.6.7) and <6.6.8) 
respectively.

To test HQ s Ap ~ is equivalent to test that the subset 
of r variables discriminates as good as the full set of p 
variables.
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Taking vector u ~ *Tn (X - p0> and noting that
u -v Np(4"n< M“Mo^ > ^ » and using Theorem 4 of Section 3 of Chapter
5 given by Kshirsagar (1972) it can be seen that when
H0 ! AP * Ar is the"

is distributed as F with p-r and n-p degrees o-f -freedom. This 
statment that the above statistic is distributed as F under HQ is 
also in accordance with the Theorem 2.11 on page 52 of Seber 
(1984). If Fr(X***) is small we accept the hypothesis that the 
subset of r variables caused the signal, if Fr(X*^) is large we 

reject the hypothesis. This conclusion is similar to the one 
derived by Murphy (1987) for the case where S is known.

Particular Case s p = 2
Using the above method we study the situation when there are 

only two characteristics under study.
Let X Ai (p, 2).
Let Xs, P0, 2, Sn_j be partitioned as

X . *1 1 Mp “ lJ01
1 P<>2

a- O
' K)

3 
11

3 M
i I
 1 I -i 1 
1 f
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where

s2}:l

a2Oo

1 n 
—— S
n-1 i-1

.1 n

E (^,-S,)2

E ( X X»3 )
n-1 i = l

S 12
1 n

E (Xjlj-K! > <xi2-~x2> 
n-1 .1=1

For a given bivariate sample we compute
T2(X) ,,:B n (X "■ hq )' S|.j,i, j (X — )

8? S§-8?
12

S2 ( X j — Mq-[ ) 4~ "i* S'!” { x2 — He)'?)

2S12(!!1 “ l"l015 <k2 “ lJ02)

a a B ( & a n 1 u* )

o „ oIf Tp(X) > "i"^>2?n-2 process is declared to be out of control.

When the out of control signal is given by TJ—control chart, we 

are interested in finding which of the two variables Kj, x~> or 

both caused the signal. We put p = 2 and r = 1 in the procedure 

described earlier. Then for this particular case we calculate

T? <xi) n<!!r~ i-loi>’
SA <1 it t ((be£)tt 14)
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Tf (^2)

Fl<Ki>

n ( X2”^02f
*~y. S^5

1I?

..2,(n-2> CT|(X>~Tf < k x ) □ 
<n~lH""l"f <Kj)

>...» nnaaiaiK.iaiaaai „

(l“) 1 ) “I" 1 ‘|’ ( X )

<6.6.15)

* « it (6.6.16)

»,.<6.6.17)

Let F«,1,0-2 upper 100« percentage point of F
distribution with 1 and n-2 degrees of freedom.

Then on® of the following four possibilities will occur.
(A) F j < x ^ ) tf Fet, 1 s, n™2 * F«, 1 ,n--2
(B) F1<*1> > F«pl,n-2» f1<*2> f'a„ 1 j,n~2
<C) F1<*1> y Fa, 1 ,0-2* Fj <x2> *!) Fet, 1, n—2
<D> F1<*1> > Fa 11,, it-2» F<(xo>

tfa
> Fa 1,1, n-2

It may be noted that the above Fj <xj), Fj (s^) statistics are 
calculated after receiving the out of control signal by the T-*1- 
control chart. Using this information we draw the following 
conclusions.
If (A) occurs, we conclude that Xj alone caused the signal.
If (8) occurs, we conclude that xp alone caused the signal»
If either <C> or <D> occurs, w© conclude that both x^ and xy 
caused ' the signa1.



C LISTING OF CHAPTER VI
SUBROUTINE MULT2!RK,NSTAGE,SUM,A1,A2,A3,A3P,A4,A4P,ALEMDA, 

1 RATE,CPN,FNOT,FONE)
C FILE NAME IS MCCA
C PROGRAM FOR ECPU OF MULTIVARIATE TSQR CHART

DIMENSION P!100),Q(iOO),R<100),RK!10)„T(100)
WRITE(1,2) A1sA2sA3,A3P,A4,A4P

2 FORMAT C1X s'Al = ',F10.4,'A2=',F10.4,'A3='„F10.4'A3P=',F10.4,
1 'A4='SF10.4,'A4P=',F10.4)

WRITE(*s4) ALEMDA9RATE,CPN
4 FORMAT ! 1X, 'ALEMDA=',F10.4,'RATE='9F10.4,'CPN=',F10,4)

N-RK(1)
K=RK ! 2)
TSQR=RK ! 3)
WRITE!*,6) N, K 9TSQR

6 FORMAT( 1X, 'N=' 9 15, 'K=' s 15,'TSQR=' ,F10„4)
WRITE!*,S) FNOT9FONE8 FORMAT( iX, ' FNOT=' ,,FI0.6, 'FONE=' ,F10.6)
CPN1=N*CPN
P0WER=ALEMDA *K/RATE 
PPOWER=—POWER 
THEETA=EXP!PPOWER)
WRITE!*,9) THEETA

9 FORMAT CIX 9'THEETA='9FI0.6)
F= (N-2)*TSQR/(2*(N-1))
PNOT—!N-2)/(C N-2)+2*F)
QNOT=(PNOT)**!(N-2)/2)
WRITE!#,10) PNOT,QNOT

10 FORMAT!IX,'PNOT=',F10,6,'QN0T='.F10.6)
DO 12 J=1590
NN=N-2
MM=J
X=2*F/!2*F+!N-2))
CALL BETA!NN 9 MM,X„BI)
P!J)=BI
IF! P!J).LT.0.00001) GO TO 13

12 CONTINUE
13 ISTOP=J—1

WRITE!*,20) !P!J), J=1,ISTOP)
20 FORMAT!1X.7F10.6)

P0W=CPNl/2
PPOW=-POW
R!1)=EXP!PP0W)*P0W*P!1)
IST=ISTOP—1 
DO 16 J=15IST

16 R!J+1)=P0W*P!J+I)*R!J)/!P!J)*!J+l))
WRITE!*,20) !R!J),J=1,ISTOP)
RNOT=EXP!PPOW)*!1-QNOT)

, TEM=RNOT
DO 35 J=l9ISTOP I TEM=TEM+R!J)

j35 CONTINUE| Q0NE=1—TEM
write C # 5 45)gone 

45 FORMAT!1X9'QONE=',F10.6)
TNOS=THEETA/!1-THEETA)+1/GONE
N0S=TN0S+0„5
WRITE!*,50)NOS
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FORMAT ? 1X,'NOS=',15)
EC1=?A1+A2*N)*N0S 
BNOT=GNOT*THEETA/ (1-THEETA)
EC2=A3*BN0T+A3P
TAW=(1-(1+POWER)*THEETA) / (1-THEETA)
WRITE($s55) TAW 
FORMAT(1X,'TAW=',F10.4)
H=K/RATE
D=(RATE#FNDT/ALEMDA)+(H/QONE—TAW)*RATE*FONE 
S=THEETA*N*FNOT/(1-THEETA)+N*FONE/BONE 
WRITE?*,60) D,SFORMAT?ix,'D=*,F12.4,'S=',F12.4)
EC3=A4*S+A4P*? D-B)
EC=ECI+EC2+EC3 
ECPU=EC/? NOStK)
WRITE? *,65)EC1,EC2,ECS,EC,ECPU
FORMAT?IX,'EC1=*,F12.4,'EC2=',F12.4,'EC3=',F12.4,'EC=*,F12.4, 
'ECPU=',F12.4>
SUM=ECPU
RETURN
END

SUBROUTINE MULT2(RK,NSTABE,SUM,A1,A2,A3,A3P,A4,A4P,ALEMDA, 
RATE,CPN,FNOT,FONE)

C FILE NAME IS MCCB
C PROGRAM FOR ECPU OF MULTIVARIATE TSQR CHART

DIMENSION P(100) ,0? 1.00) ,R< 100) ,RK? 10),X ? 100) ,T?100)
WRITE?* ,2) A1,A2,A3,A3P,A4,A4P

2 FORMAT?1X,'A1=',F10.4,'A2=',F10.4,'A3=',F10.4'A3P=',F10.4, 
1 'A4='„F10„4,'A4P=',F10„4)

WRITE?4) ALEMDA,RATE,CPN
4 FORMAT?IX, 'ALEMDA=',F10=4,'RATE=',F10.4,'CPN=',F10.4)

M=RK ?1)
K=RK?2)
TSBR=RK?3)
WRITE?51,6) N,K,TSQR

6 FORMAT ?1X,'N=',15,'K=',15,'TSQR=',F10»4)
WRITE?*,8) FNOT,FONE

8 FORMAT ?1X,'FNQT=', F10 „ 6,'FONE=',F10.6)
CPN1=N*CPN
POWER=ALEMDA f-K / RATE 
PPOWER=-POWER 
THEETA=EXP ? PPOWER)
WRITE?*,9) THEETA

9 FORMAT ?IX,'THEETA=',F10.6)
F= (N-2)*TSQR/?2*(N-1))
PNOT =(N-2)/? ? N—2)+2*F)
QNOT=(PNOT)**<(N—2)/2)
WRITE?*,10) PNOT,QNOT

10 FORMAT?IX,'PNOT=',F10„6,'QNOT=',F10.6)
DO 12 J=1,90 
HM=?N~2)/2 
NN-MM+J 
NT=NN—MM+1
PROB=(N-2)/? ? N-2)+2«F)

50

55

60

65
1
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CALL BIN(PROB,MM,NT,CPR,CPL„PI)
Q < J)=CPR 
P(J)=1~Q{J)
IF( P(J> =LT.0.00001) GO TO 13

12 CONTINUE
13 ISTOP=J—1

WRITER,20) (P(J),J=1,IST0P)
20 FORMAT(1X,7FI0.6)

P0W=CPNl/2 
PPOW=—POW
R(1)=EXP < PPOW)tPOWSP(1)
IST=ISTOP—1 
DO 16 J=1s1ST

16 R(J+1)=P0W*P(J+1)«R(J)/<P(J)*<J+1))
WRITE($,20) <R(a),J=1,IST0P)
RNOT=EXP < PPOW)tC1-QNOT)
TEM=RNOT
DO 35 J=1,ISTOP
TEM=TEM+R(J)

35 CONTINUE
Q0NE=1—TEM 
write($,45)qone 

45 FORMAT{1X,'QONE=',F1O.6)
TNOS=THEET A/(1-THEETA)+1/QONE 
N0S=TNQS+0.5 
WRITE($„50)NOB 

50 FORMAT(1X,'N0S=',15)
EC1=(A1+A2$N)«N0S
BNOT=QNOT STHEETA/<1—THEETA)
EC2=A3 fBNOT+A3P
TAW=(1-(1+POWER)$THEETA)/(1-THEETA)
WRITE!*s55) TAW 

55 FORMAT<IX,'TAW=',F10.4)
H=K/RATE
D=< RATE*FNOT/ALEMDA) + (H/OONE—TAW)*RATE*FONE 
S=THEETA$NSFNOT/(1-THEETA)+N*FONE/GONE 
WRITE($ ,60) D,S

60 FORMAT <1X,'D=',F12„4,'S=',F12.4)
EC3=A4*S+A4P*(D-S)
EC=EC1+EC2+EC3 
ECPU=EC/(NOS*K)
WRITE!*„65)EC1„EC2,EC3,EC,ECPU

65 FORMAT ! 1X, 'EC1=',F12.4,'EC2=',F12.4,'EC3=',FI2.4S'EC=',F12„4,
1 'ECPU=',F12.4)

SUM=ECPU
RETURN
END

SUBROUTINE BETA(NN,MM,X„BI)
C FILE NAME IS BTIC1
C COMPUTATION OF INCOMPLETE BETA INTEGRAT 

DIMENSION TT(100)„B(100)
MM1=MM—1 
B(i)=2.G/NN 
DO 60 J=1,MM1
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B(J+1>=(J/<J+NN/2.0>)SB(J)
60 CONTINUE 

BAB=B(HM)
RM=HM
RN=NN
TT(1 ) = (2fRM+RN)SX/(2*(RM-»-l) ) 
SUM=TTU>
BO 70 K=1,19 
RK=K
COE={2 %RM+RN+2 SRK)/< 2*(RM+RK+i)) 
TT(K+1)=COE*X*TT(K) 
SUM=SUH+TT(K+i)

70 CONTINUE
CURLY=i+SUM
RNN=NN/2»0
TE=(X**RM)t( (1-X)**RNN)/R!i
TEE=TE*CURLY
BI=TEE/BAB
RETURN
END
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