CHAPTER VI

Economic Design of Multivariate Control Charts

6.1 In this chapter the economic design of Hotelling Tchontrwl
chart is developed. The cost model devmlmﬁad is an adaptation of
the cost model developed by us for np-~control chart in chapter
IT. Hotelling TE—chart is a multivariate analog of X-control
chart. The economic design of X-control chart is already
developed in the chapter III using the cost model mentioned
above. Hook-Jdeeves search technigue is used to find the optimal
values of the sample size, the interval between samples and the

T2

eritical region of ~zontrol  chart.  Numerdcal results are

provided for several bivariate problems. When the out of control
sigral is given by Hotelling T2-control chart, the problem of
imnediate interest 1a which subset of p varlates caused the

signal. The solution of this problem is discussed in detail.

b.2 ﬁultivariate Quality Control

There are many situationsg in which the simultansous contrpl
of two or more related guality characteristics is necessary. For
example, Buppose that a bearing has both an inner diameter (x¢)
and an outer diameter (x5) that together determing the quality of
the product. Buppose that xy and xo have a bivariate normal
distribution. As both quality characteristics are measuremsnts,

they could be controlled by applying the usual H-chart to each
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characteristic as illustrated in Figure é.1 .« The process
considered to be in control if both the sample means §1 and

fall within their respective control limits.
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Contrelling these two guality characteristics independently
can be very misleading. Suppose the probability that edither ﬁl o
%2 axueeds I-sigma control limits is 0.0027. However, the joint
probability that the sample means for both variables exceed their
control limits simultaneously when they are both in control is
(OLOCA7Y (0, 0027 =0,00000729 which is considerably wsmal ler
than mu0027; Furthermore, the probability that both ¥y and %o
will simultaneously plot inside the control limits when the
process 18 really in control  ds (Q.9975)(0.,9973) = 00,9946 which
ig different from 0.9973. Therefore, the use of two independent
-charts has distorted the simultaneous control of ¥y and %o, in
that the probabllity of type I error and the probability of a
point correctly plotting in control arg not eqgual to thelr given
levels for individual control charts.

This distortion in the control procedure increases as the
number of gquality characteristics increases. In gensral, i+ there
are p statistically independent quality characteristics for a
particular product and if an X-chart with PL{Type I Error) = o is
monitored on each independently, then' the trug probability of
type I error for the jolnt control procedure is

a’ m o~ (1 - )P pon(b.R01)
and the probability that all p means will simultanecously plot
inside their contrel limits when the process is in control is

Flall p mesans plot in control 3 = (1 -~ )P, ... (6.2.2)
Clearly the distortion in the Jjoint wcontrol procedure can  be

severe even for moderate values of p.



Furthermore, if p quality characteristics " are not
independent, which would usually be the case if they relate to
the same product, then equations (6.2.1) and (6.2.2) do not hold.
In this situation we have no esasy way even to measure the
‘digtortion in the joint control procedure.

Guality control problems in which the several related
variables are of interest are known azg multivariate quality
control problems. The original work on multivariate gquality
control was done by Hotelling (19247). Multivariate quality
control is important today, as automatic inspection procedures
make it relatively easy to measure many pa?ametera on each unit
of the product. Also the installation of PC reduces the

complexity of execution of multivariate control charts.

6.3 Hotelling T2-Control Chart

Suppose that the output of a process iSMdEE¢Pibﬁd by p
gquality characteristics and that i is a (p x 1) random vector
whose jth element is the jth quality characteristic. Suppose that
i ig distributed according to p variate normal so that

FO0 = pem P/ E /2 g " eypreoe - 0 27 - /2
P C- T D

We assume that the covariance matrix & is unknown but remains
constant.

The control procedurs for i due to Motelling (1947) is as
follows.

From a random sample of sifze n Bay iip Xexg wawy Xo we

..... o’

compute the sample mean vector and the sample covariance matrix as
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We then compute the test statistic
T2 = n(% = pgd’ Bl (X = uyd e (6.3.4)
where ., denotes the value of p corresponding to the in-control
state.
Then T¢ is distributed as Hotelling T2  with p  and n-p
degrees of freedom.
: 2 5 . . . .
Detfine Tagp,n*p as the upper 100a percentage point of
Hotelling Tg digtribution with p and n-p degrees of freedom such
that
"3 N 2 aae. - H=d
F‘E‘l‘. o T'S(pppﬁ'"pj “:“ [} nnl(éa&.‘ul\.J)
The decision rule for Te-control chart is as follows.
g TR g e . e @ .
I T & Tagpgm"pﬁ the process is in control.
o - o o s 4 KT v e g
If T & rm,m,nwpﬂ the process is out of control.
Thus Hotelling T-contral chart has only the upper control
» 0 - 0“’“‘
limit 'ggp,nmp"
The percentage points of Hotelling T4 distribution can bes

found from the tables of the cummulative F distribution since the

random variable F given by

L vanlhaB.b)

has F distribution with p and n-p degrees of fresdom.
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We, therefore, have

= o pin-1) o
Tﬁ,pgl‘\“p = ”"('F‘:BT"'" F‘a’pﬂn—-p vual@BLB.7)
where Fa,pgnwp is defined by
FLF>Fypn-pd=4a

Samples of size n are taken periodically, the gquantity T is
computed according to the expression (6.3.4) and T2 g plotited as
a time oriented sequence on T~control chart. The matrix Sglliﬁ
conmputed only once from the preliminary sample of size n taken
when the process is in control. This practice is suggested by
Montgomery and Klatt (1972 b)) and also by Heikes, Montgomery and
Yeung (1974} while developing the economic design of Temcontrol
chartg. The justification for this is due to the assumption mads
that & remains constant during the control process.

The power associated with the Hotelling THegontrol chart
depends on the distribution of TR when & % Heye It is shown In
several text books such as Anderson (1958) that if B £ Kp then T
has ﬁmncentral T2 distribution with p and n-p degrees of fresedom
and the noncentrality parameter

Po= o= ) R - g e (B.TL8)

Also it may be shown that if I # Ko then the random variable
F defined by (6.7%.6) has noncentral F distribution with p and n-p
degrees of freedom and the same noncentrality parameter as givem
by (6.7.8).

If the variance covariance mabtrix & were hknown with
certainty then 8511 in (6.3.4) would be replaced by 3“1. The

statistic T would then be digtributed as X2 with p degreses of
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e
freedom. Under this situation one has to use Y control chart

with upper control limit (ﬁqp. Here ‘gup is upper 100

percentage point of XE distribution with p degrees of freedom.

We Ffeel that in practice the perfect knowledge of £ is
unusual an§ hence Xgﬂcontrml chart can be applied rarely. Thus
the application of Xz chart is restricted even though it is
ideal. On the other hand szcmntrml chart is used widely. Hence
we prefer to develop the economic design of T-control chart
rather that ngcmntrml chart.

The Ffollowing practical difficulties would arise while
developing the economic design of T-control chart .

(1) In the compuéation of the powesr of Tz*cmntrml chart the value
of noncentrality parameter 7 given by (6.3.8) can not be computed
exactly as & is unknown. HMHence one has to use the approximate
noncentrality paramater

t ooyl w

o= N(E - ﬂm) v (ﬂ - ﬂw) wan (659D
in place of the true noncentrality parameter 7. Here V is an
assessmant of £ bassed on some sample of suitable size taken when
the process is in control.
(2) In the computation of the proportions p; ((i=0,1) of
nonconformning units also there ls a difficulty due to unknown .
Hence the approximate values of p, and py are obtained by using
the assessment V in place of E. The derivation of the expressions
for p, and p; is discussed in Section &.4.4.

In the next Section &.4 we develop the expected cost model

for Tz*contrcl chart.
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6.4 Development of Economic Model for T2~control Chart
b.4.1 Introduction

Montgomery and Elatt(ig72 b)) developed the sconomic design
of T2~c0ntrml chart. The cost model used by them is the single
assignable cause version of Knappenberger and Grandage’'s (1946%)
cost model for X chart. We have seen in chapter II  that
Knappenberger and Grandage’'s (196%) cost model involves too many
unrealistic assumptions.

In Chapter Il we have developed a single assignable cause
model which does not involve any of the unrealistic assumptions
of Knappenbearger and Grandage s {(19469) cost model. The
improvements of our model over Knappenberger and Grandage ' s model
are alrsgady suplained in Section 2.2 of Chapter II and hence not
axplained here.

Using this cost model the economic design of np-control
chart is developed in chapter I Section 2.3, and the economic
design of control charts for variables are developed in chapter
I1r.

In this chapter the economic design of TP~control chart is
developed using the same cost model. The expected cost model for
Tg-control shart is developed in the remaining sections of this

section.

6.4.2 The Production Process and the Control Procedure
The production process starts in an in-control state in

which the process mean vector is p = p, There is only one out-of-

control state in which the process mean vector is py = gy + & ¢
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where the (p x 1) vectors Kiys ﬁ are known. The time until the
process remains in the in—control-state before shifting to the
out~of~control state is assumed to be exponential random variable
with mean 1/) operation hours. The process is not self
correcting. Once the process is out of control it stays there
until the shift is detected by the chart.

The sampling and the inspection procedure is as follows. A
sample of size n is taken after the production of every k units.
The sample mean vector E is calculated and the guantity T2 is
computed according to the expression (6.3.4). If T2 4 “1‘}?;5,3#”_!39
the process is declared to be in control and the production
continues. If T< » ngp,n*p the process is declared to be oult of
control. The production may or may not be halted and a search for
the assignable cause is undeftaken. I+ the assignable cause
exists then the process is corrected and brought to the in-
control state.

We want to find the optimal values of the design variables

”~

Mg Ky Tﬁ,pﬂn”p which minimize the expected cost per wnit of

T

contralling the process during the production oyole.

6.4.3 The Probability of Type~I Error and the Power of T2-Control
Chart -
The probability of type-I error, q,, is the probability of

concluding that the process is out of control when p = pey.

The expression for g, is given by

o ey
D



Gp = F L T2 5 T5 oonep | B = Hg 3 pee(b.8.1)
where T2 has Hotelling T2 distribution with p and n-p degrees of
freedom.

It may be noted that qq represents the probability of a
false alarm.

The power of T4~control chart, oy, is the probability of
concluding that the process is out of control when Bo= ey + fg.

The expression for gy is given by

qp =P L T2 > TZ onin | B = B + 60 3 cen(b.4.2)
where T has noncentral T2 distribution with p and n-p degrees of
freedom and noncentrality parameter 7 given by the expression
(6.3.8),

As described in Section 6.3, it is not possible to compute
the exact value of v because ¥ is unknown. Hence one has to use
the approximate noncentrality paramsgter ? given by (&.3.9) in
place of T in the computation of ¢y.

6.4.4 The Proportions of Nonconforming Units

Let pg be the proportion of nonconforming units when the
processy  maan  vector is Hos Let py be the proportion of
nonconforming units when the process mean vector is Bo= &Q+§ﬁ .

Lt Ugs Um be the given specification limit vectors.
Assuming that a unit is nonconforming if its measurements fall
outside the given specification limits (&1, 5ﬁ>g the exprassions
for pg and p; are as follows.

F)t:) m ] - F'('L(i A

=<

f.:- E-l’z I E &= ﬂc,} unu(é)uq‘u:'z)

<

py = 1 = Fluy = Eus | W= g o) cvel{bad4.4)
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Recalling that X «~ Nw(Hy ) one can ges that the evaluation
of pg and py requires the knowledge of &. In the absence of such
knowledge, one has to obtain pp and py approximately replacing 2

by its assessment V.

"h.bd.T The Expected Cost Model

Bince the basic structure of the model under study of this
chapter is the same as the structure of single assignable cause
model developed in the Section 2.3 of Chapter II, the total
expected cost incurred during the production cyele for Tmzontrol

chart is given by

E(C) = (aj+ann)N + a3F1q0$/(1"®) + ag o + a4518 + a4¥ﬂ(D~$)
e (G 4.5)

where the definitions and the meaning of the various constants
involved are already explained in Chapter II.

The expressions for gg and g required in the computation of
E(C) are derived in the SBection 6.4.3% and are given by (&.4.1)
and (6.4.2) respectively. The expressions for py and py are
derived in the 8ection &.4.4 and are given by (4.4.3) and (6.4.4)
respectively.

The total expected cost per unit of the product, EBECFU, is

then given by

ECPU = anefba.d.6)
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In the next Section we give the method for finding the optimal
values of ny ky Tg‘p,nmp which minimize ECFU given by (6.4.6) for

hbivariate case.

6.5 Solution Method and Numerical Examples
{A) Solution Method

We consider the bivariate sample problem given by Montgomery
and Klatt (1972 &). The systems parameters and the cost

coefficients, reproduced from their example, are as follows.

By = 0,01,

Assessment of £ = V = { 1 0.5 j

The specification limit vectors

ui = [-3,-31, uh = [3,3],

Three shifts to be investigated are (i) Qo (ii) 2.%¢ (iii) Jo.The
corresponding  three valuaes of By are (i) &i = [R.21 (i)
;_,z_; = [2.5,2.51, (iii) ':ii = [3,31, so that (i) & = [2,21,
(ii) & = [2.5,2.81, (iii) & = [3,31. The cost cosefficients are
ay = % 1, ao = & 0.1, az y = % 10, ag,.n = % 10, ag,.1 = % 1,
84,2 = # 1.9, » = 1, R = 10000,

The noncentrality paramgter, for the bivariate case, is

computed using the following expression.
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To evaluate the above expression (6.3.1) we have used F = 0.0
from the assegsment V of Z. This approximate evaluation of v ig
used in the computation of gg.

It is clear from the expression (4.5.1) that the
noncentrality parameter ¥ is independent of o) and on and depends
upon only the correlation coefficient P so far the elements of Z
are concerned.

We now explain the method for computing the proportions of
nonconforming units py and py.

The value of py and the three values of py; for the three
shifts are calculated using Table 2 of Fearson and Hartely Vol 11
and the results 26.3.7, 26.3.8, 26.3.%2 and 26.3.10 given by
Abramowits: and Stegun (1972) on pp 936 These resulis are as

listed bhelow.

26.35.7 Lth, ke F) = Lk, hy &)
26.3.8 =ty Ky FY + Lihy, ky =Ff) = Q)
2639 luC=hy =ky PI ~ Lih, &y F) = P(R) ~ QD
2b6.3.10 20 Lihy kg MY + Lk, k, =P + F(h) ~ QCk) 1
ook
= J gin, ys Fldx dy
| ~h” =k
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where

. i . ©
Lthy k, £) = J 5 b j gi{x, v, Fldy ,
h k
1 ) N
F(r) = e exp(=~t</2) dt ,
fﬁ;_mJ
0
1 ~¥
Q(x) = ——— exp(-t</2) dt ,
Ton "
1 - - -
gix, y, F) = . S - S7Y I R atird SYIVE VAl WA T & Tl b BN
2ndy 752

In the evaluation of py and py the assessment V is used in

place of 2.
In computation of g, and gy, F and noncentral

distributions are wtilized.

Lat P(F } Vis Vo) be the distribution function of F with K

vo degrees of freedom.

Let QUF | vy, vg) = 1 = F(F | vy, Vo)

Then
Vg V1
Q(F l VI’ VE) = 1'}:("“:""", mm:"") n!n(é’aﬁng)
. VE Vl
where I, 577 3 Y} is  the incomplete beta dintegral
e
Vo
MR D,
VE L VIF

For bivariate case we have vy = 2y vn = n-d.

We therefore have

with



Gg = QF | 2, n=2) = I, (—~r=— s 1) omow < pa(6.5.3)

Thus the computation of qg becomes easy in bivariate case.
Let P(F { Vis Vou T) be the distribution function of
noncentral F with vy, vo degrees of freedom and the noncentrality

parameter T.

We have
o  expl=r/2)(¥/2)d vy Va
FCF ] vis vos ) ”jgo ~~~~~~ ;"; “““““““““ 1(1,.34()(5-‘4"35 ““‘:EE) .

s a I(é}.sﬂq’)

For bivariate case this expression becomes

o  expl-r/2) (/)3

'
~ -t Y T e e e o et o o o ] § toms

P{F { 2, n=2, T jgi} - 1(1*){)(14"3’ 5 } .
I -

wawe (B85
The probability Q¢ given by the expression (6.4.2 can be
pbtainaed by using (6.5.5),
A computer program on Fortran is developed for evaluation of
ECFU for given values of n, k, T%ﬂgynmzu

This program uses a subroutine for the computation of

PR

! . jorld
incomplete beta integrals lgj.,y{i+tiy ~z=) J o= 082000
o £ ‘4

required in computation of qq. This program cmﬁputaa Qg and oy

and ultimately ECFU. The values pp and p; are computed externally

and supplied as input parameters of the program. This program is

linked to Hooke-Jdesves technigque to find the optimal values of
o

ny k, Ta,ﬁpnmﬁ' The listing of the program is given at the end of

this chapter.

ol
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(B) Numerical Findings
In the following Table é&.1 we give the optimal values of the

design variables n, k., TE with mirnimum ECPU for the three shifts.

Table &.1
Shift | Py Py G ay no| ok T ECFU
(1) (@) 3 (4) 5 | e | (@) ()
[2, 21 | 0.005% | 0.5548 | 0.0107 | 0.9858 | 10 | 370 | 19.00 | 0.0211
[2,5,2.51| 0.008F | 0,453 | 0.0148 | 0.9938 | 8 | 370 | 2150 | 0.0260
[T, 31 | O.0053 | 0.6667 | 00087 | O.9982 | B | 190 | 27.00 | 0.0R79

From this table Qa abserve that the larger shift in the
process mean leads to smaller sample size, slightly smaller (or
same) sampling intervals and larger contrel limits. The sans
trend has been observed by Montgomery and Klatt (1972a) while
studying the economic design  of TEmcontrol chart  wsing
Enappenberger and Grandage’'s (1969) model.

We now consider the effect of changing the sign of F on the

three design variables.

et V = 1.0 =0.%5
' ~0.5 1.1

4o
The effect of this change in the sign of P is studied on the
optimal design variables in case of shift [2, 3. The results are

given in the Table 6.2.




Table 6.2

Design
Variables Fowm Q.3 Fow ~0,3
(1) (2) (3
iy 10,00 6 .00
g B70.00 B70.00
™ 19.00 F2.00
ECPU 0.0211 Q.021%9

The column(2) gives the optimal design variables and minimum ECFU
in case of shift [2, 23 when F = 0.3. The column (3) gives the
optimal design variables and minimum ECPU derived in case of
ahift [2, 21 when P = -0,5,

Comparing the columns (2) and (3) one can aee that negative
value of F leads to smaller sample size, slightly smaller (or the
same) sampling interval, and larger control limit.

This is the same effect observed while increasing the
magnituwde of the shift of positive P. This is not unexpectsd
because increasing & and negative F both increase the power of

the test.

6.4 Determination of Out-of-Control Variables

b6.6.1 The main advantage of Tg“cmntrml chart is that the state of
the production process is characterized by a single nuwnber.
Howaver, if a point falls outside the control limits, it is not
immediately obvious which subset of r {rip) quality
characteristics are out of control. The work done in this respect

ig cited in the nexlt para.
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Jackson (1959) and Jackson and Mudholkar (1979) have
suggested principle components technigue to deal with this
problemn. Montgomery and Wadsworth (1971) have suggested
simultaneous confidence intervals to deal with this problem.
Murphy (1987) has suggested discriminant analysis for selecting
the out of control variables. Recently Hawkins (1991) has
suggested the multivariate quality control based on regression
adiusted variables.

The method given by Murphy (1987) using discriminant

analysis is described in the next Section.

6.6.2 Determination of out of control variables when E is known

The methmdAbagwd on discriminant analysis given by Murphy
(1987) is as follows.

The decision on whether the process is in control or not is
hased on X2~cnntrm1 chart mentioned in the Section &6.3. Samples
of size n are taken periodically and the guantity

X2 mn (X = ) BTN - g ceu(bubul)
is computed.

The decision rule is as follows.

It Xg & ngp s the process is in control.
1+ X2 - Xg,p « the process igs oubt of control.

Here (g,p ig the wupper 100a percentage point of Xﬁ

.distributimn with p degrees of freedom so that
PLXE > e,

When B = Mo Xz is distributed as {2 with p degrees of

1 = a suw BB

freedom.
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When % Heps X2 is distributed as noncentral Xg with p

degrees of freedom and noncentrality parameter

L~d

¥o=on (o) ZTE (- g o (babuT)
When the out of control signal is given by XE~control chart, the
question of immediate interest is which subset of p variables
caused the signal. An effective approach is to partition z, Keos Z
as follows

g (1) ]r et |r

o )
- e o vere s ons Hr) o SRyt
2

%(2) Jp”r bo' 2 |p-r

SO "R SRR S S—
oy | Zmp |Pr
r per
where Y(l) iz the mean of the subselt of r variables which we

suspect caused the signal,; and %‘2) js the mean of the remaining
p=r variables. g and & are partitioned as X.

We compute the full sguared distance as

Xg = (X = g ETHR - pgd o (bulad)

We compute the reduced squared distance corresponding to the
subsel of r variables as
xﬁ = n(z<1) - ﬂ0<1))' E;%(g(l) - Hﬁ<1))
aanfbub )
Consider the difference

D= Xg - ‘Xg sualbabod)
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I+ D is small we accept the hypothesis that the subset of
variable caused the signal, i$’ D is large we reject the
hypothesis.

This D test is similar to the one which is well known in
discriminant analysis for dealing with the variable selection
problem.

In discriminant analysis we define the true full sguared

distance between the populations with means pg and p oas

A =n tp gt B~ g cuulbaba?)

and the true reduced squared distance as

af = n il - gt mphatt) -t cen(6,6.8)

Then to test Hy o Ag ] Aﬁ is eguivalent to test that subset of r
variables discriminate as good as the full set of p variables.

Murphy (1987) bhas shown that when Ho @ Aﬁ e Ag im true, D
defined in {(4.6.6) is distributed as XE with p-r degrees of
freedom.

The above method given by Murphy (1987) is applicable i+ Z
is known. As wae have seen in the Section 6.3, the knowledge of £
ig unusual, and hence the application of Murphy’'s (1987) method
based on Y -control chart is restricted. In the next Section we
describe the method for determining the out of control variables

when & is unknown. The appropriate F test used in this method is

based on Rao’'s U statistic described by Kshirsagar (1972).
6.3 A Method for Determination of out of control Variables
when £ is unknown

The decision on whether the process is in control or not is

14%



based on Hotelling Tecontrol chart described in the section &.%.
When out of control signal is given by Hotelling Tﬁmcmntrml
chart, we are interested in finding which subset of  variables
of the given set of p variables caused the signal. The method for
finding this is as follows.

Partition 3, Hos i as done in the Section 6.6.8. The sample

covariance matrix 8,.; is also partitioned as &.

Si1 Syn r
Sn ~1 = [RUTIEURN, Wi————
Sa1 Spp p-
I p et

We compute the full sguared distance based on the sample of p

variables as

T2 = m(X = pgd’ Spii (X ~ pg) e n(6.6.9)

TR

and the reduced squared distance based on the sample of r {(r < p)
variables as
nuu(é’uélnlc’)
We then find Rao’'s U statistic as
1+ TE/(n=1)
U = e e saufbhad i)
1+ T5/(n=1)

Lat Ag and AE be the true full sguared distance and the true
reduced sguared distance as defined by (6.6.7) and (6.6.8)
respectively.

To test H, ¢ A% = AE is eguivalent to test that thse subset
of r variables discriminates as good as the full set of p

variables.
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Taking vector y = dIn (X -~ Bo) and noting that

o

L~ Np($n(u~pﬂ), Z ), and using Theorem 4 of Section 2 of Chapter

5 given by Eshirsagar (1972) it can be =seen that when

Hy @ Ag o Ag is true then
n-p ~ 1
Fr(X?) = e e ]
- P ]
'2 Lo
n-p Fp~Fr
BR e o i o o s o i e b o o e st 8 n A (é)né) " 12)
p-r (n~1)+T§

is distributed as F with p-r and n-p degrees of Freedom. This
statment that the above statistic is distributed as F under H, is
also in accordance with the Theorem 2.11 on page 352 of Sesber
(1984). 1f Fr(z(i}) is small we accept the hypothesis that the
subset of r variables caused the signal, if Fw‘K(i)) is large we
reject the hypothesis. This conclusion is similar to the one

derived by Mwrphy (1987) for the case where £ is known.

Particular Case = p = 2

Using the above mathod we study the situation when there are
only two characteristics under study.

Let i ~ Nm (ﬁ, Z).

Let Xy Mpys B, 8,4 be partitioned as

ae
u

. - .
i 1 } R} o1 i
Pl &i O =

- 1 Hpoo 1

e 2ot Saaas wane o

x4

f
K=~
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, oy oy | 5T | Sz ] 1
o m — By = B
21 | 92 1 S21 | 53 { 1
1 i 1 1
where
. 1 n
8F = wmmem B Gy =Ry 02
n—1 d=l
- 1 n
B8 m ——m=m B Oty oRin) 2
-1 im=l
i n
613 TR oo s e ‘E (xii"')‘(i)(}(iz"‘?{r‘a)
n—-1 i=1
For a given bivariate sample we compute
TE(R) = n (R = o) ‘875 (X = )
n
o - o
IR [ 62 7y - wo? + 87 5 = wop?
81 BE-91n

casfBaba13)
If T%(K) *> Tg,ﬁyﬁwz the process is declared to be out of control.
kWhen the out of control signal is given by T —control chart, we
are interested in finding which of the two variables x;, xo or
both caused the signal. We put p = 2 and v = 1 in the procedure
described sarlier. Then for this particular case we calculate
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_ (n=2) [TH(X)~TF(%,)]
Fglig) @ s Do o s b s cen(bubalé)

(=g )+ TF ()
L I - e .
(r=2) ETHCN =TF(Ram)
Py (Fmp) 8 oo e oo e T ARCS
(=L )T (Hem)
Lot Fy oy pep be the upper 100x percentage point of F

diatribution with 1 and n-2 degrees of fresdom.

Then ons of the following four possibilities will ocour.

{(A) Fl(ﬂl) 3 anivn“gg Fl(NE) > Wﬂplyﬂ“ﬂ

(B) Fy(¥y) » F my Fy (i)

oty L gnm2e

F

i~

.’-:( 3 1 5”‘“".’2

(C) Fy(Ry) & Fgoq poms Fyiind & Fy q pen

~

(DY Fy(Xy) » Fanlpnmﬁﬁ Fqtnm) Fayignmx

It may be noted that the above Fy(ky), Fy(Xa) statistics are
calculated after recelving the out of control signal by the TR
control charts. Using this information we draw the following
conclusions.
f (A) occurs, we conclude that x; alone caused the signal.
I+ (B) occurs, we conclude that xo alone caused the signal.

If elther (G or ) ocows, we conclude that both ¥y oand  He

caused the signal.
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SUBROUTINE MULT2(RK,NSTAGE,SUM,A1,A2,AT,ASF,A4,A4F ,ALEMDA,
RATE ,CPN,FNOT , FONE)

FILE NAFE I5 HMCCAH
FROGRAM FOR ECPU OF MULTIVARIATE TSGR CHART

DIMENSION P(100),Q(100),R{100},RE(10),T{100)
WRITE(%,2) Al.AZ.A3,A3P,.A4,A4P

FORMAT(1X, "Al=",F10.4, A2=' ,F10.4, A3=",F10.4°'A3P=",F10.4,
‘A4=" ,F10.4, A4P=",F10.4)

WRITE(%,4) ALEMDA,RATE,CPN

FORMAT{(1X, °ALEMDA=',F10.4, RATE=",F10.4, CPN=",F10.4)
N=RIK(1)

K=RK(2)

TSER=RK (3)

WRITE(%,6) N,K,TSOR

FORMAT(1X, 'N=",I5, K=" ,15, TSOR=",F10.4)
WRITE(%.8) FNOT,FONE
FORMAT(1X,  'FNOT=' ,F10.6, 'FONE=",F10.6&)
CPM1=N¥CPN

POWER=ALEMDAXK /RATE

PPOWER=—POWER

THEETA=EXP ( PPOWER)

WRITE(%,9) THEETA

FORMAT(1X,  THEETA=" ,F10.4}

F= (N—-2)¥TSOR/(2%(N-1)}
PNOT={N-2)/ ( {N-2}+2%F}
ONOT=(PNOT) K& ( {N-2)/2)

WRITE(%,10) PNOT,GNOT

FORMAT(1X, 'PNOT=",F10.6, ONOT=" .F10.56)
DO 12 J=1,90

NN=N-2

MM=J

A=2%F / ( 2%F+(N-2))

'CALL BETA(NN,MM,X,BI)

F{(J)=RI

IF{ P(OIYLT.O0.00001) B0 TO 13
CONT INUE

ISTOR=J-1

WRITE(X,20G) (F{J),Jd=1,1I8T0OF)}
FORMAT{1X 7F10.6)

FOW=CFML/2

PROW=—POYW
R{1}=EXP(PPOW} XFPOWXP (1)
IST=18T0P-1

DO 16 J=1,I87
R(J+1)=POMRP{J+1IXR{JI/(P(IIR(I+1))
WRITE(%,20) (R{J),J=1,I8TOF)
FNOT=EXP{(PPOW} % (1-QNOT)
TEM=RNOT

DO 35 J=1,I5T0F

TEM=TEH+R(J}

CONTINUE

QONE=1~-TEM

wiritel¥ ., 45gona

FORMAT(1X, "QONE=" ,F10.4)
TNOS=THEETA/ (1-THEETAY+1 /G0ME
NOS=TNOS+0.5

WRITE(%,30G)N0OS

Lé&.d
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FORMAT(1X, ‘NOS=",I5) .
EC1=(A1+AZ%N) XNOS
BNOT=GNOTXTHEETA/ ( 1-THEETA)
EC2=ASXBNOT+AZP

TaAW=(1-{ 1+POWER) ¥THEETA) / { 1—THEETA)
WRITE(%,55) TOW
FORMAT(1X,  TAlW=' ,F10.4)

H=K/RATE
D=(RATEXFNOT/ALEMDA) + (H/QONE-TAW) XRATEXFONE
=THEETAXN¥FNOT/ { 1~-THEETA) +N¥FONE/GONE
WRITE(%,60) D,S :

FORMAT(1X, 'D=",F12.4,°S=",F12.4)
EC3=A4%5+A4P% (D-5)

EC=EC1+ECZ+ECS

ECPU=EC/ (NOS%K)
WRITE(%,65)EC1,EC2,ECS,EC,ECPU

FORFIAT(1X, "ECI=" ,Fi1Z2.4, ECZ=" ,F12.4, EC3=" F12.4,EC=",F12.4,

"ECRU=" ,FiZ.4)
SUM=ECPU
RETURN

END

SUBRDUTINE MULTZ2(RK,NSTABE,SUM,A1,A2,A83,A3P,A4,84P ,ALEMDA,
RATE ,CPN,FNOT , FONE)

FILE NAME IS5 WMCCR

1G

PROGRAM FOR ECFU OF MULTIVARIATE TSGR CHART

DIMENSION P(100),3(100) R{100) ,RK(10),X (100}, T(100M
WRITE(%.2) Al,AZ2.A3,A3F,04,04F

FORMAT(1X, Al=",F10.4, A2=",F10.4, A3=",F10.4 'A3P=",F10.4,
‘A4=’ ,F10.4, A4P=" ,F10.4)

WRITE(%,4) ALEMDA,RATE,CFN

FORMAT(1X, °ALEMDA=',F10.4, RATE=",F10.4, CPN=',F10.4)
N=RK {1}

K=RK(2)

TSER=RK({3)

WRITE(%,6) N,.K,TSOR

FORMAT(1X. 'N=",15, kK=',I5, TSOR=",F10.4)

WRITE(%,8) FNOT,FONE
FORMAT(1X, ‘FNOT=" ,F10.6, 'FOMNE=" ,F10.6)

CPMi=N%CPN

POWER=ALEMDAXK /RATE

PPOWER=—POWER

THEETA=EXP ( PPOWER}

WRITE(%,9) THEETA

FORMAT(1X, ' THEETA=" ,F10.&)

F= (N-2)%TSRR/{2%({N-1})

PMOT=(N-2)/{ {(N~2)+2%F )

QNDT=(PNOT Y %% { (N-2) /2)

WRITE(%,10} PNOT,GNOT

FORMAT(1X, "PNOT=" ,F10.6, GNOT=" ,F10.4)

DO 12 J=1,90
MM={N-2)/2

MMN=MF+J

MT=NN—-MM+1 N
PROB=(W-2) 7 { (N-2)+2%F)

Lé.
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CALL BIN(PROB,MM,NT,CPR,CFLFI)
Q{J)=CPR

F(IY=1-G(J)

IFC POIYLLT.O.00001) B0 TO 1=
CONTIMUE

ISTOP=J-1

WRITE(%,20) (P{(J}.J=1,I8TOP)
FORMAT(1X ,7Fi0.6)

POW=CPN1/2

FPOW=—F0W

RO1Y=EXF(FFOW) sPOWXP (1}

IGT=ISTOP-1

DO 16 J=1,1I5T
ROJ+1)=POWEP(J+1IRR(II/A(P(J 2{(d+1})
WRITE(%,20) (R{J},d=1,I5TOF)
RNOT=EXP{(FPPOWI % { 1—-GNOT)

TEM=RNOT

DO 35 J=1,I8TOP

TEM=TEM+R{(J)

CONTINUE

QOME=1-TEM

write(¥,45)qone

FORMAT{1X, "QOME=" ,F10.4)
THNOS=THEETA/ (1-THEETA}+1 /Q0ONE
MOS=THNOS+0.5

HWRITE(® ,50)N0OSB

FORMAT(1X, "NOS=",15)
ECi={Al+AZ2%N) ZNOS

BNOT=GNOT®THEETAS (1-THEETA}
ECE2=AZ%BMOT+ASP
TAW=(i—(1+FOWER) XTHEETA)Y / (1-THEETA)
WRITE(%,55) TAW
FORMAT(LX , " TAW=" ,F10.4)

H=K/RATE
D=(RATEXFNOT/ALEMDA }+ (H/QONE-TAW} 3 RATEXFONE
S=THEETAZMEFNOT/ (1-THEETA} +MN¥FONE/QONE
WRITE(X,&D) D,5

FORMAT(1X, 'D=",F12.4,"8=",Fi12Z.4}
ECET=A425+A4PE (D5

EC=ECI1+ECZ+EC3

ECPU=ELC/ (MOSXE)
WRITE(%,65)ECL ,EC2 ECE ,EC,ECFU
FORMAT{1X, 'ECi=" ,F12.4, EC2=",F12.4,"EC3=" ,F12.4,"EC=" ,F12.4,
ECPU=" F12.4)

SUM=ECPU

RETURN

END

SUBROUTINE BETA(NM,MM,X,BI)

C FILE MAME IS5 EBTI{C1
COMPUTATION OF INMCOMPLETE BETA INTEGRAT

C

DIMENSION TT(100),B{100)
MP1=MM—1

B(1)=2.0/NN

DO &0 J=1,MM1
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B{J+1)=(J/ (J+NMN/2.0)IXB{I)
CONTINUE

BAB=B{MM)

RM=MHM

RM=NN
TT(1)=(25RM+RNI XX/ (2K (RM+1) )
SUM=TT(1)

DO 70 K=1,19

RE=K
COE={2¥RM+RN2XRE) /7 (28 (RM+RK+1))
TT(K+1)=COEXXRTT(K)
SUM=SUM+TT(K+1)

CONT INUE

CURLY=1+8UM

RMNN=NN/2Z .0
TE={XXERM) % (1-X) ¥ ERNN) /RM
TEE=TEXCURLY

BI=TEE/BAB

RETURN

END

¢
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