
CHAPTER II
Economic Design of np-Control Charts

2.1 In this chapter two expected cost models are developed for 
the optimum economic design of np-control charts. The basis for 
the construction of these models is discussed in section 2.2. The 
cost model developed in section 2.3 treats the case where a 
single assignable cause of known effect occurs randomly. However, 
a single assignable cause model is inappropriate when the 
production process is affected by the several assignable causes. 
In section 2.4 we propose an expected cost model which is 
designed in such a way that it incorporates the occurrences of 
the several assignable causes.

2.2 The Basis for the Construction of the Expected Cost Models 
2.2.1 The Main Features of the Existing Models

Duncan (1956) proposed an economic model for controlling a 
production process where a single assignable cause of known 
effect occurs randomly. His paper was the first to deal with a 
fully economic model of a Shewhart-type control chart and to 
incorporate the optimisation methodology to determine the control 
chart parameters. Duncan's paper was the stimulus for much of the 
subsequent research work done in this area.

Later an two distinctly different economic models have been 
developed for controlling a production process subject to 
multiple assignable causes-one by Duncan (1971) himself and the



other by Knappenberger and Brandage <1969). The Duncan's (1971) 
multiple assignable cause model is a generalisation of his <1956) 
single assignable cause model. The Knappenberger and Brandage's 
<1969) model differs considerably from the Duncan's <1971) model.

The Duncan's <1971) model and the Knappenberger and 
Brandage's <1969) model have different objective functions. The 
Duncan's model minimises the expected cost per unit of time 
during a production cycle. A production cycle is the average 
length of the time spent between two successive in-control states 
after detection and the elimination of the assignable cause. The 
Knappenberger and Brandage's model minimizes the expected cost 
per unit produced between two successive samples. It is more 
realistic to minimize the expected cost of controlling the 
process between two successive in-control states because an entry 
of the process into an in-control state is a regeneration of 
controlling the process. Hence the Duncan's model seems to have 
more realistic cost structure than the Knappenberger and 
Brandage's model from this point of view.

The Duncan's model assumes that once the process shifts to 
an out-of-control state, it remains in that state without further 
quality deterioration, until the shift is detected by the control 
chart. The Knappenberger and Brandage's model allows continuous 
deterioration of quality beyond the initial shift, which is a 
more realistic feature of the behavior of the production process 
than the Duncan's model.

The above description gives the major drawbacks of both the 
models and the good points of one over the other. These and the
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other drawbacks of both the models are listed systematically in 
the next few lines.

The drawbacks and the unrealistic assumptions of the 
Knappenberger and Grandage's (1969) model are as follows s~
< i) The model uses the time independent, steady state 
probabilities .in place of the true process state probabilities,

(2) The model assumes the same cost of producing a nonconforming 
unit whether it is detected during sampling or it goes undetected 
to the customer.
(3) The model assumes the same cost of searching for a false 
alarm and of searching for a true alarm and repairing the 
process.
(4) The cost structure of the model is such that the expected 
cost of controlling the process between two successive samples is 
minimized,

The drawbacks and the unrealistic assumptions involved in 
the Duncan's <1956) model are as follows j~

(5) The model assumes that the production continues during the 
search for an assignable cause.
<6) The model does not include the time and the cost of 
repairing the process if it is found to be out of control.

The Duncan's <1971) multiple assignable cause model involves 
two more unrealistic assumptions in addition to <3> and <6> which 
are listed as <7> and <85 below.
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<7) Once the process is out of control no further quality 

deterioration can occur until the shift in the process is 
detected by the chart.
<8> The assignable causes are assumed to occur independently.

2.2.2 The Main Features of the Models developed by us
The economic models developed in this chapter do not involve 

any of the unrealistic assumptions and drawbacks* as listed <1) 
through <S>. Also they take care of the good points of both the 
models mentioned above. Hence the models under our study are 
likely to be more realistic and hence more applicable. The 
improvements in our models are listed as (1' ) through <S') and 
they have one to one correspondence with the drawbacks as listed 
(1) through <8>.
(1*) The model uses the true process state probabilities and not 
the steady state probabilities.
(2*) A higher cost is attached to a nonconforming unit that goes 
undetected to the customer than to the one which is detected 
during sampling.
(3*) The cost of searching for a false alarm and the cost of 
searching for a true alarm and repairing the process are 
different.
<4') The model computes the expected cost per unit produced 
between two successive in-control states.
<5*) The production may or may not be continued during the search 
for an assignable cause.
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(6') The cost of repairing the process is taken into 
consideration.
(7*) The model allows that once the process is out of control it 
may further deteriorate before the shift in the process is 
detected by the chart.
(8') The model does not assume that the assignable causes occur 
independently.

It may be mentioned that Chiu <1975) developed the economic 
model for the np-control chart using the Duncan's <1956) single 
assignable cause model for x-control chart. He, furthermore, 
developed in <1976) the economic model for np-control chart using 
the Duncan's <1971) multiple assignable cause model for x-control 
chart. Chiu has taken car© of the unrealistic assumptions <5) and 
<6) mentioned above and has improved his models accordingly. 
However, Montgomery, Heikes and Mance <1975), while developing 
the economic model for rip-control chart using the Knappenberger 
and Grandage's (1969) model for x-chart, have not done any 
improvement in the Knappenberger and Grandage's model.

In the rest of the chapter, we develop our models f cr
op-control chart incorporating the improvements <1') through <8') 
listed above. Section 2.3 is devoted to single assignable cause 
whereas in Section 2.4 it is assumed that the production process 
is affected by several assignable causes.

2.3 The Single Assignable Cause Model
2.3.1 The Production Process and the Sampling Scheme

The production process starts in the in-control state in
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which it produces a known acceptable proportion p0 of the 
nonconforming units. There exists a single assignable cause of 
variation which has the effect of increasing the proportion of 
nonconforming units to pj. The assignable cause occurs at a rate 
X per hour of operating time and the operating time until its 
occurrence is assumed to be an exponential random variable. Hence 
the production process remains in the in-control state for an 
exponential duration with mean 1/X hours of operating time. At 
the end of this exponential duration it moves to an 
out-of-control state in which it produces a higher proportion p^ 
of nonconfarming units. Thus, there are only two states pQ and pj 
of the production process.

The sampling scheme is as follows. After every h hours of 
operating time, n units are sampled and examined. Let R be the 
number of units produced per hour of operating time. Hence the 
number of units produced between two successive samples is hR(i®k 
say). Let d be the number of nonconforming units detected in the 
sample. If d < m the process is declared to be in the in-control 
state pQ and the production continues. If d > m the process is 
declared to be in the out-of-control state p^. The production at 
this stage may or may not be stopped and a search for the 
assignable cause is undertaken. If the assignable cause exists, 
the process is repaired and restored to the in-control state p0<

We want to find the optimal values of the design variables 
n, m, k which minimise the expected cost per unit of the product 
during the production cycle.



2.3.2 The Expected Number of Samples taken during the
Production ‘Cycle

A production cycle is defined to be the time period from the 
beginning of the production process to the detection and 
elimination of the assignable cause. We find an expression for 
the expected number of samples taken during the production cycle.

Let 7. be the number of samples required to detect the shift 
in the process. Then Z is a random variable taking the values
1 TJLji & $ •*‘ji »*■*•

The probability of detecting the shift on the basis of 2th 
sample is

zp(z) « 2 Pj. <z>
irai ...(2.3.1)

where p^(z) -- 0i-:l (1-0) (1-qj ) z“iq1, ...(2.3.2)

© ~ exp(™Xk/R)s ...< 2.3.3)

qj - § ( ” ) pj<l-p1)n*d. ...(2.3.4)
d»m °

The expression on the R.H.S. of (2.3.2) is the product of 
the following three probabilities s-
(i) The probability that the shift occurs during the production 
of (i-1)k to ik units 

ik/R
“ X exp(~Xt)dt

(i-1)k/R

■ ei_1(l-d)p
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(ii) The probability that the shift is not detected on the basis 
of ith, <i+i)th, ..., (a-Dth samples

* (i-qj)2”*,
(iii) The probability that the shift is detected on the basis of 
sth sample

“ li
lt can be verified that

S p(z) « 1 
2 = 1

and that
6 1 E< Z) »-- + —

1-0 qj

(2.

a m 6)

Furthermore, it can be shown that the above break-up of the 
expectation is more meaningful by showing that it is the sum of 
expectations of two random variables X and Y where 
X 05 the number of samples taken when the process is in the 

in-control state pQ, and
Y ~ the number of samples required to detect the shift given 

that the shift has occured.
Here Z ™ X + Y and X takes the values 0,1,2, . and Y takes the 
values 1,2,3, ... .We derive the expressions for E<X) and E<Y) 
in the next few lines.
Now, P(X=r) » P<r samples are taken in the in-control state)

* P(the shift occurs between rth sample and r+lth 
sample)

“ P(the shift occurs during the production of rk/R 
units to (r+l)k/R units)

“TO



< r+l> k/R
= X e"-^ dt

rk/R
» ©r<i~e>

where expression for 6 is given by (2*3*3)■

CD
Hence E<X> » E rF'(X-r) - e/(l-©>. 

r«0
Obviously E(Y> « 1/qj, since R(Yer) = <1—q j >r .

Sum of these expectations establishes the fact stated.

2.3.3 The Expected Cost Model
We compute the total expected cost per unit for controlling 

the process during the production cycle. The total cost C 

consists of three components Cj, C2, C3 

where

Cj »» the cost of sampling and inspection,

C2 “ the cost of finding the assignable cause and repairing the 

process when the sampling policy generates an out of control 

signal,

C3 “ the cost of producing nonconforming units.

It may be noted that the cost components C|, C2, C3 are 

similar to those described by Knappenberger and Braridage (1969). 

Furthermore, in order to calculate E<C) we derive in turn the 

expressions for E(Cj), E<C2> and EdXj).

(a) The expected cost of sampling and inspection is
E(Cj) “ (a ^ +a2n)N ...(2.3.7)



where
aj » the fixed cost of sampling,
a2 “ the variable cost per unit of sampling,
n a the sample size,
N » the expected number of samples taken during the production 

cycle.
Here N represents E<Z) whose expression is given by <2.3.6), This 
is also useful in computing the denominator in the total expected 
cost per unit.
<b) The expected number of samples taken during the in-control 
state is denoted by N<0) and as derived in Section 2.3.2, its 
expression is

N<0) ■©/<!-©>. ...<2.3.8)
Hence the expected number of 

production cycle is

BQ » qQ 0/<1—0)

false alarms during the

„ C :.9)

where

%
' £ < H > Pg<l-Po,n‘d
d«m u ..<2.3.10)

Thus the expected cost of finding the assignable cause and 
repairing the process is

E<C9> ■ a** . Br, + a-. 21 ...<2,3.11)Wl W |f til W W IJ M

where
a3,l 83 the cost of searching for a false alarm,
aj 2 'the cost of searching for a true alarm and repairing the
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<c) Let e^ (z) be the event that the shift occurs during the 
production of (i-l)k to ik units,, not detected on the basis of 
ith, (i+l)th, .(2~l)th samples, detected on the basis of zth 
sample (i « 1,2,...z and z = 1,2,3,....). The probability of the 
event e^(z) is given by p^tz). The expression for pi(z) is given 
by (2.3.2).

Under the event e^<z>, first (i-1) samples are taken in the 
in-control state p0 and the remaining z-(i-l> samples are taken 
in the out-of-control state pj.

Hence the number of nonconforming units produced during the 
situation e^ (z) is

D^(z) « ■£ (i-l)k + A k >pQ -i" < (z-i+l)k - A k 3-pj
(i “ 1, 2, ... ,z and z ^ 1, 2, ... )

...(2.3.12)
where A is the average fraction of the time the process remains 
in the in-control state before shifting to the out-of-control 
state, given that the shift occurs between two successive 
samples. Duncan (1956) has shown that,

1 - (1 + Xk/R)© 
(1-©)Xk/R

13)

Multiplying <z) by their respective probabilities p^(z) 
the expected number of nonconforming units produced during the 
production cycle is



.(2.3.15)

r ke , k 1—---— + a k 1 p_ +L (i-©) J - di
- A 1 Pi

Similarly the number of nonconforming units detected during 
sampling under the same event e^<z) is given by

S^<s) = <i-l)np0 + (2-i+l)npj ...<2.3.16)
(i = 1, 2 „ .. . z and 2 = 1, 2, kb)

Multiplying S^(z) by their respective probabilities p^(z), 
the expected number of nonconforming units detected during 
sampling is given by

S ■ 1 j,Sj(2) Pi<s) ...(2-3.17)
H5®! 1 = 1 A *

np0© npj
1 -& q j 0 N IS)

Hence the expected cost of producing nonconforming units 
during the production cycle is

E(Cr> ■ a4,l S + a4,2 (D S) . (2 3.19)

where
a4,l “ '^he cos^ Per nonconforming unit which is detected during 

sampling,
a4,2 ~ fch® cost per nonconforming unit which goes undetected to 

the customer.
In practice, it may be the fact that a^ 2 •> a4,i- 
Combining the expressions (2.3.7), (2.3.11) and (2.3.19) one
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can now calculate the expected total cost incurred during the 
production cycle as

E<C> « E<Ci > + E<C<?> + E<C-7) ... <2.3.20)
and the expected total cost per unit of the product during the 
production cycle as

E<C)
ECPU - ------

Nk ...(2.3.21)
where Nk is the expected number of units produced during the 
production cycle which is k times the expression given in 
<2.3.6).

The optimal design variables n, m9 k of this model are then 
obtained by minimising the expression <2.3.21).

2.3.'4 Direct Search Method
Hooke-Jeeves' <1961) search procedure given in a book by 

Kuester and Mize <1973) is used to find the optimal values of the 
design variables which minimize a given objective function.

The original function minimized by Hooke-Jeeves' procedure 
is a function of continuous variables. The details of the method 
of Hooke-Jeeves' procedure are reproduced at the end of this 
chapter. Howevers in this section we mention the essential 
appropriate changes.

All the three design variables of the objective function 
developed • in this chapter are discrete. Hence Hooke-Jeeves' 
procedure is to be used with appropriate care. Some limitation 
are required on the step size (EPS) and on the factor (13) that 
reduces the initial step size. This is done by giving initially
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some integer values <n0, mQ, kp) and by choosing EPf3=l and
t.'

6=1.Thereby Hooke-Jeeves' procedure calculates the objective 

■function at various discrete values of the design variables and 

ultimately finds the optimal solution in the discrete form. To 

avoid the possibility of the local minimization, one has to apply 

Hooke-Jeeves' method repeatedly giving different initial values, 

and find that solution which is the best among all the optimal 

solutions given by Hooke-Jeeves' method.

2.3.5 A Numerical Example
Let aj = $10, a<2 83 $1, 185 $100, ®3,2 a $100, ®4,l “ $10,

®4,2 83 $ 1 ® *

Let X = 1, R = 1000, pQ = 0.01, pj = 0.10.

For this combination of the cost coefficients and the 

systems parameters, the search technique described in the; 

previous section is used.

We have developed a computer program on FORTRAN to calculate 

the expected cost per unit of the product given by the expression 

<2.3.21) for the given values <nQ, m0, k0>» This program uses a 

subroutine for the calculation of the cumulative binomial 

probabilities. This program is then linked to Hooke-Jeeves' 

procedure to derive the optimal solution and to calculate the 

minimum ECRU.

The listing associated with all the programs developed are 

given at the end of this chapter.

The search technique yielded the following optimal values.

n = 37, m =2, k » 350 with minimum ECRU 0,5457,



The values of some intermediate terms calculated for this 
numerical example at the optimal stage are given below.

N(0) * 3, N » 4.
qQ ■ 0.0528, qj » 0.8964.
D — 33, 8 = 5.
EtC*) ~ $ 187.99, E(C2) ~ $ 112.62, E(C3) - * 463.41,
E(C> « * 764.02

Interpretation From the above numerical output for the stated
configuration of constants of the system, one can have the 
following interpretation for the optimal economic design of the 
np-contral chart.

After the production of every 350 units, take a sample of ; 
first 37 units for inspection and hunt for the assignable cause 
if 2 or more nonconforming units are obsreved. The process may be 
continued or may be discontinued when the search for the 
assignable cause is undertaken. When 0 or 1 nonconforming units 
are observed in the inspection of 37 units the process is be 
continued. The resulting minimum expected total cost per unit 
during the production cycle is H» 0.5457. The probability of 
decting the shift (from 1% nonconforming units to 10%
nonconforming units) is 0,8964 and the probability of the false 
alarm is 0.0528. The expected number of samples taken during the
production cycle is 4. Among these 4 samples 3 samples are
expected to be taken in the in-control state and 1 sample is
expected to be taken during the out--of-control state. The
expected cost of sampling and inspection is $ 187.99 (0.1343 per



unit) and the expected cost of finding the assignable cause and 
repairing the process is $ 112.62 (0.0804 per unit) which 
includes the cost of false alarms $ 12.62. Lastly the cost of 
producing nonconforming units is $ 463.41 (0.3310 per unit).

Some Details of Outcome of Hook-Jeeves Technique for the Present 
Example s-

As explained in the Section 2.3.4 one has to apply Hooke- 
Jeeves procedure repeatedly in order to avoid the possibility of 
local optimization. We have applied Hooke-Jeeves procedure 
repeatedly giving .16 different triplets (no!I m(:j, kQ) of initial 
values. The 16 triplets of the initial values and the resulting 
optimal values with minimum ECPU are given in the following Table 
2.1 as columns (1), (2), (3) respectively. It can be seen from
the Table 2.1 that ECPU decreases as both n and k increase upto a 
certain stage and then it shows an increasing trend as we further 
increase both n and k.

As seen from the column (2) the optimal solution is (40p 2, 
346) with ECPU - $ 0.5476. Again we tried (40, 2, 346) as an 
initial value and the resulting exact optimal solution is (37, 2, 
350) with minimum ECPU » $ 0.5457. This triplet was used as a 
triplet of initial values and it was seen that the resulting 
optimal triplet is again the same as the initial triplet. Hence 
finally we could conclude that the optimal solution is (37,2,350)
with minimum ECPU as it* 0.5457.



Table 2.1

Initial Values
(Hq,, m0, kQ)

The resulting 
optimal values

ECPU for the 
optimal values

< 1) (2) (3)

(10, 2, 30) (13, 2, 57) $ 0.7698
<15, 2, 60) (13, 2, 61) * 0.7448
(IS, 2, 70) (15, 2, 72) * 0.7138
(20, 2, 80) (15, 2, 84) $ 0.6829
(13, 2, 85) <14, 2, 85) * 0.6791
(20, 2, 90) (17, 2, 90) * 0.6522
(23, 2,100) (18, 2,109) $ 0.6363
(30, 2,110) (20, 2,119) * 0.6260
<35, 2,120) <21, 2,134) $ 0.6104
(40, 2,130) (23, 2,153) $ 0.5938
<50, 2,150) (25, 2,178) Hi 0.5790
(30, 2,200) <31, 2,209) $ 0.5689
(40, 2,300) ( 40 p 2^ 34dh) $ 0.5476*

(50, 2,500) (48, 2,522) * 0.5529
(45, 2,400) <48, 2,521) $ 0.5534
(55, 2,600) <63, 2,1097) * 0.6184
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2.4 Multiple Assignable Cause Model
2.4.1 The Production Process and the Sampling Scheme

The production process starts in the in-control state EQ in 
which it produces a known acceptable proportion p0 of the 
nonconforming units. There are assignable causes which have the 
effect of shifting the process from the in-control state E0 to 
any of the s out-of-control states Ej, Eg? » . . » Es» When the 
process is in state Ej (j » 0, 1, ...» s) the proportion of 
nonconforming units produced is pj (j « 0, 1, ...» s). We assume 
that pQ < pj < ... < ps. When the process is in state Ej the 
assignable causes occur according to the Poison process at a rate 
Xj per hour of operating time. This means that the operating time 
until the process remains in the state Ej (j ~ 09 1, . ..., s) is 
an exponential random variable with mean 1/Xj hours of operating 
time. At the end of this exponential duration, it moves

sto a state E^ (k > j) with probability such that '£ ajj, » 1.
k-j + 1

Thus the transition of the process from state Ej to is
possible provided the direction of the movement is towards 
quality deterioration. Once the process reaches to state Es no 
further quality deterioration is possible and the process will 
stay in Eg until the shift is detected.

The sampling and the inspection procedure, is as follows. A 
sample of size n is taken after every production of k units. The
n units so chosen are inspected. Let d be the number of
nonconforming units detected in a sample of size n. If d < m the 
process is declared to be in the in-control state and the



production continues. If d £ m the process is declared to be in
the out-of-control state and a search •for the assignable causes 
is undertaken. The production may or may not be stopped at this 
stage. Incidentally, m is known as the rejection number. Thus the 
sampling and inspection proceudre remains the same as that 
explained when the production process is affected by single 
assignable cause.

We want to find the optimal values of the design variables 
<n, m, k) which minimize the expected cost per unit of 
controlling the production process during the production cycle.

2.4.2 Description of Certain Terms required to' develop the 
Expected Cost Model
n « the number of units examined in a sample,
m « the rejection number.
k - the number of units produced between two successive samples.
R = the number of units produced per hour of operating time.
k/R » the time interval between two successive samples.
1/Xi 38 the average time spent by the process in the state Ej_

<i » 0, 1, ..., s-l) before shifting to state Ej <j > i>.

T± *» the average time spent by the process in the state E^
before shifting to the state Ej (j > i) given that the 
shift occurs between two successive samples.

As shown by Duncan <1956),
1 - < 1 -i- X^k/R) exp(•"“Xj_k/R)
XjlE 1 - exp(-Xjk/R>3

1 “ 0, 1, a».,S
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= the average fraction of time spent by the process in the 
state Ei before shifting to the state Ej <j > i) given 
that the shift occurs between two successive samples 

Ai " r^/k ...<2.4.2)
N(i) ™ the expected number of samples taken in the state 

( 1 “ 0 J 1 0 . H . p S ) .

exp(~X^k/R)W < i ) a -- ------------ i « 0 , 1 ,, « . « , S- 1
l~exp(™X^k/R)

■ 1/I3g i “s s
»..<2.4.3)

We derive the expression for N<i> in the following manner.
Let XA be the number of samples taken in the state E^

(i “ 0, 1, ... j, s-1). Then X^ is a random variable taking the
va 1 ues Oji 1 ^ 2(i .. ... .

P(X;£ ® r) » the probability that r samples are taken in the state
E •'-x

sa the probability that the shift occurs between rth and 
<r-H)th samples

(r+1) k/R
= Xj_ exp<“Xj_t)dt . ..(2.4.4)
rk/R
- expt-Xikr/R)Cl - expC-Xik/R)3 ...<2.4.5)

Furthermore, noting that the expected number of samples taken 
when the process is in state EA being the following summmation

!#-

1 r PCX. « r) 
r~o (2.4.6)
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one gets the expression (2.4.3) for N(i) for i « 0, 1, ... s-1
after substitution of (2.4.5) in (2.4.6) and evaluation of the 
sum. The expression for N(s) is obvious from the expectation of 
the geometric distribution with parameter Bs where the meaning of 
I3S can be had from the definition of SA which follow next.
BA a the probability of concluding (on the basis of a single 

sample) that the process is out of control when it is in 
state Ej_ (i » 0 M 1, ..... s)

.§ ( " > pj(l“pi)n”d 
d=m d 1 x 0, 1p J. j a * 8 j|

(2.4.7)

0(i,N(i)) = the probability of concluding on the basis of N(i> 

samples that the process is out of control when it

B(«,N(s>)

is in state EA
B;l + (1 - + (1 - 8 A) 20 + ... + (1 - 0i)N<i>-lgi
1 - <1 - 0i)N<i>

1 285 Op ip ONHp 3"" i

Bs + <1 ~ 8~) 0- + (1 - B„)2Bs + ...
S9 *5? SZr Kr Sr

(2.4.8)

(2.4.9)
M(i) the expected number of samples required to detect the 

shift given that the shift is detected when the 
process is in state EA
1 Bi + 2 (1 - B A ) B A + 3 (1 - BA)2Bi + ...
... + N(i> (1 ~ Bi)N(i)-1Bi

i » 0, 1,2, ... , s-1
...(2.4.10)
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ii(s) 1 8a + 2 <1 - I3S)BS + 3 Cl - BS)2BS +

1/S
<2,4,11)

2.4.3 The Number of Transitions required to detect the Shift
Let Tj_ be the event that the shift in the process is 

detected after the ith transition in the process <i *» 1 t2t » . «,s).
' The probability of detecting the shift in the process after 

the first transition is

The probability of detecting the shift in the process after 

the second transition is

The present model assumes that P(Tj) j «= 3, 4, ... are

negligible. That is the shift in the process is detected by the 

chart before the third transition occurs in the process. The 

justification in adopting this assumption is given in the next 

few lines.

Chiu <1976) developed the economic design for op-control

chart using the Duncan's <1971) multiple assignable cause model

for x-control chart. Chiu assumes that once the process shifts to

an out-of-control state it is free from further deterioration*

until the shift is detected by the chart. This means that the 

shift in the processes is detected by the chart before the second 

transition occurs. Chiu <1976) himself has mentioned that this

<2.4.12)

B<i,,N< i)) i •£ . 1 *ii B< j jN< j )) >j»r+i ^
<2.4.13)
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assumption is somewhat debatable. But he adopts it for the 
mathematical simplicity and takes the support from Duncan's 
(1971) observation in this respect.

However, for the model under our study it is observed for 
many numerical examples that the probability of detecting the 
shift after only one transition, P(Tj), is not sufficiently 
large. Also it is observed that the sum P(T^H-P(T p) is 
sufficiently large. Therefore the model under this study assumes 
that the shift in the process is detected before the third 
transition occurs in the process. This assumption makes the 
mathematical model complicated but we adopt it because it is more 
realistic. Because of this assumption we use P<Tj)+P<T2> £ 0.90 
as a desirable side condition while finding the optimal design 
variables of the np-control chart.

2.4.4 The Expected Cost Model
We develop an expected cost model to compute the expected 

cast per unit of the product during the production cycle.
The total cost C consists of three components Cj , Cp, C3

where
Cj “ the cost of sampling and inspection,
Cp “ the cost of finding the assignable 'causes and repairing the 

process,
C3 = the cost of producing nonconforming units.

We develop the expected cost model in the following four 
steps.
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Step I
To derive the expressions for E^<01) (i«al,2), Ej(C2> 

<i=l ,2), <C-*,) <i=i,2) under both the situations Tj and T2.

Step 11
To derive the expressions for the expected number of units 

produced under both the situations.

Step III
To find the expected total cost per unit ECPU^ <i = 1,2) 

under both the situations Tj and T2»

Step IV
To find the expected total cost per unit ECPU using P(Tj) 

and P(T2).

Step I
Under the situation Tj, the shift in the process is detected 

after one transition in the process. Hence N(o) sarnpl.es are taken 

in the in-control state and M(i) <i « 1,2, .... s) samples are 

taken in state E^ <i = 1,2, ... s). Hence the expected number of 

samples, taken under the situation Tj is given by

sLt « N(o> + E a-* lvl(i) 4 1=1 H <2.4.14)

Under the situation T2» the shift in the process is detected 

after second transition. Hence the expected number of samples 

taken under the situation T2 is given by

l(o) +*i1a 
i™! 01 N<i) + E aAj M(J) 

j=.i+l
.(2.4.15)
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Hence the expected costs of sampling and inspection under the 
situations Tj and T2 are given by

EjCCj) « <a1+a2n)L1 ...(2.4.16)
- <a1+a2n)L2 ...(2.4.17)

where
aj ™ the -fixed cost o-f sampling,
a2 - the variable cost per unit of sampling.

The expected number of false alarms, B0, remains the same 
under both the situations Tj and I2 and is given as 
BQ - N(o) 0O

Hence the expected cost of finding the assignable causes and 
repairing the process remains the same under Tj and T2. It is 
given by

where
Ej_(C2) « E2(C2) a3,l Bo ■+■ a-r -rtl«.»• H 4 ..(2.4.IB)

a3,l 53 *-*ie c:os'^ 0* searching for a false alarm,
a3,2 53 CDS»t of searching for a true alarm and repairing ths*

process.
The expected number of nonconforming units produced under Tj 

is given by

sDj “ £ N(o)k + Arj k >pQ + C lvl<i>k - Ag k >pj
...(2.4.19)

The expected number of the nonconforming units produced under T2 
is given by
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me expected number of the nonconforming units detected during 
sampling under the situation T2 is given by

s~ 1 sSo « N<o)np0 + S a-i N(i)np,j + Z M<j)npjA fO j-.J Ol *1 jsni + l1-' J

...(2.4.22)
Hence the expected cost of producing the nonconforming units 

under the situations Tj and T2 are given by
£1(03) - a4jl Sj + a4 2 <Dj; - Sj) ...(2.4.23)
E2 (C/T,) 85 ®4 j So a4 o (D2 — ) . . . < 2.4.24)

where
a4,l “ the cost per nonconforming unit which is detected during 

sampling,
a4,2 “ the cost per nonconforming unit which goes undetected to

the customer.

Here a4 2 > ®4 \ is likely to hold in many real life problems.

3— JD2 83 -C N(o)k + aq k >pQ +^S^aD^ •C N(.i)k ~ A0 k + A^ k lp^

+ 1 ajLj { M(j >k - Aa k >pj
j»i+l

...(2.4.20)
The expected number of the nonconforming units detected during 
sampling under T« is given by
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Step II

is given by

U< ■ N < a > k + .JE &ni li < i > ki i®5! <2.4.25)

The expected number of units produced under the situation T2 is 

given by

S***" 1U2 ra N<o)k S
J-I+la,; M< j)k

.<2.4.26)

Step III
The total expected cost under the situation T^ is given by

Ej <C) » EjtCi) + El(C2> +
The total expected cost under the situation T2 is given by 

E2 (C) ““ E2 < C j ) + E2 < C2) "i” E2 < C31 
Hence total expected cost per unit under the situation Tj is 

given by

ECPUj ■ EjtO/U! . . . <2.4.27)

The total expected cost per unit under the situation I2 is given 

by

ECPU9 - E9(C)/U9 . ..<2.4.28)mtm tfak «Cm

Step IV
Multiplying ECPUj and ECF'U2 by their respective 

probabilities P'<Tj > and P'<T2), the expected cost per unit of
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controlling the process during the production cycle is

ECPU - ECPUj P' < T! ) -i- ECPU2 P* <T2>

where
Pd! )

P'dj) - ---------- ----
P(Tj > + P(T2)

arid

...<2.4.29)

P(T2>
2 PCTj^) + P(T2) ...(2.4.30)

2.4.5 A Numerical Example

We define the transition matrix < <«AJ > > in
manner

the following

s •■■■ (j -1)
Sij a -

1+2+ ... + (s--i)
...<2.4.31)

i “ Op 13 nitMji S"*1 ip j 5 "* i{| P B 0 B p m> ■

These transition probabilities satisfy the following condition 
{i) ai,i+l > ai,i+2 > *»* >

* i 525 Op ip a * it £ iS’""*!
...<2.4.32)

(ii) f E S44 » 1
X SK Op ip 0 « It J) mS*"* i

...<2.4.33).
We de-fine Xj <j ~ 0*1, * * * in the following manner to have
increasing trend which is expected to be so in several production
processes



^o 5S 1

Xj a u+i) XQ j i s
We have A0 “ ^ 3 Xj » 2, X2 *“*•■** $
so that Ap \ ^1 s a 2 <

■ an \
Let al s= #1.0 9 &2 ™ #0. 1 9 ,1

a4,1 = a

of-i11 0, a4,2 = $15..00 a

Let R = 1000, s = 6.

3 A<;X,.. - s+i

Let (p0, Pj3 ... 3 ps) “ < .01, .02, .04, .08, .16, .32, .64)
We have developed computer program on FORTRAN to calculate

ECRU given by (2.4.29) Tor the given values <nQ, m0, kQ). This 
program uses many subroutines. The listing associated with all 
the programs developed are given at the end of this chapter.

Hook--3eeves' search technique described in Section 2.3.4 is 
used to find the optimal values of n, m and k which minimise the 
expected cost per unit of the product, ECRU, given by (2.4.29). 
The optimal procedure yielded is n * 12, m ® 2, k «* 31 with the 
minimum ECRU « #0.3773. For the optimal procedure we give the 
values of some intermediate terms required in the calculation of
ECRU.

P(Tj ) - 0.6691, p<t2) tss 0.:
Li « 32, l2 - 41
Ul - 1014, u2 - 1280
*>i ■ 12, °2 * 30
S1 » 3 j, S2 = 13

ECPUj - $0.3398, ecpu2i $0



It is seen from the above numerical example that the 

probability of detecting the shift after one transition, namely 

Pdj), is 0.6691 which is not sufficiently large. However it is 

observed that P<Tj) + PCT^) " 0.9574 which is sufficiently large. 

This justifies the assumption that the shift in the process is 

detected before the third transition occurs. This is in 

accordance with the explanation given in Section 2.4.3 of this 

chapter, while justifying why we go upto two transitions and not 

one as done by Chiu <1976).

The interpretation of the numerical output of the rest of 

the terms given above is not difficult, if one recalls the 

meaning of the various symbols. Instead, we give the behaviour of 

the objective function ECPU being minimized in a tabular form 

in Table 2.2. It may be noted that as mentioned in the Hook- 

Jeeves' procedure it is applied repeatedly to avoid the local 

minimization, and what is given in Table 2.2 is merely an extract 

of several calculations. It is revealed from column (5) of the 

table that the minimum cost (0.3773) occurs at the triplet n5®^, 

m»=2, k=31 satisfying the condition P<Tj J+PCf^) > 0.90,

54



Table 2.2

< n s m, k ) P<T1> p<t2) P<T1)+P<T2) ECPU

< 1) (2) < 3) <4> (5)

(10,2,30) 0.6022 0.3297 0.9319 0.3863

<11,3,30) 0.3442 0.4249 0.7691 0.4103

<11,1,30) 0.9888 0.0111 0.9999 0.6479

<13,2,31) 0.7007 0»2663 0.9670 0.3792

<13,3,31) 0.3913 0.4197 0.8110 0.3880

<13,1,31) 0.9931 0.0068 0.9999 0.6968

<16,2,32) 0.7710 0.2110 0.9828 0.3917

<15,3,32) 0.4388 0.4112 0.8500 0.3873

<15,1,32) 0.9958 0.0042 1.0000 0.7349

<12,2,31) 0.6991 0.2883 0.9874 0,3773*

<12,3,31) 0.3638 0,4221 0.7859 0.3917

<12,1,31) 0.9905 0.0049 0.9954 0.6638

<14,2,32) 0.7203 0.2516 0.9719 0.3899

<15,2,33) 0.7406 0.2366 0.9772 0.3902

<15,2,31) 0.7558 0.2245 0.9803 0.3862



C LISTING OF CHAPTER II
SUBROUTINE 0BJ2(AKE,NSTAGE,SUMN,AI, A2,A3 « A4,A5 «RATE,ALEMDA,

1 PNOT,PONE)
DIMENSION AKE(10)

C PROGRAM FOR FINDING ECPU OF np-CHART FOR SINGLE ASSIGNABLE 
C CAUSE MODEL 
C FILE NAME IS NANDI1

1 FORMAT(1X,5F10.4)
WRITE! *,1)A1,A2,A3,A4,A5 

3 FORMAT(IX,2Fi0.4)
WRITE!*,3)ALEMDA,RATE 
WRITE(*„3)PNOT,PONE 
SNOT=AKE(1)
SRNOT=AKE(2)
REJNOT=AKE(3)
WRITE!*,5)SNOT,SRNOT,REJNOT 

5 FORMAT!IX,3F10.4)
POWER=ALEMDA*SRNDT/RATE 
PPOWER=—POWER 
THEETA=EXP!PPOWER)
WRITE!*,7>THEETA

7 FORMAT!IX,F10.6)
MM=REJNOT
NT=SNOT~REJNOT+1
CALL BIN!PONE,MM,NT,CPR,CPL,PI)
QONE=CPR 
WRITE!*,8)Q0NE8 FORMAT!ix,F10.6>
MM=REJNQT
NT=SNOT—REJNOT+1
CALL BIN!PNOT,MM,NT,CPR,CPL,PI)
ONOT=CPR
WRITE!*,8)QN0T
R=1/QONE+THEETA/(1-THEETA)

C IR IS EXPECTED NO OF SAMPLES REQUIED TO DETECT SHIFT 
IR=R+0»5 
WRITE!*,9)IR

9 FORMAT!IX,13)
C COMPUTATION OF EXPECTED COSTS

EC1=!A1+A2*SN0T)*IR/!IR*SRNOT)
EC2=A3*!QN0T*THEETA/!1-THEETA)-*-1)/!IR*SRNOT)
ADALTA=!I-!1+POWER)fTHEETA)/!POWER*!1-THEETA))
WRITE!*,35)ADALTA 
FORMAT!IX,'ADALTA=', F10.6)
D=THEET A*SRNOT *PNOT/!1—THEETA)+ADALTA*SRNOT*PNOT+SRNOT*PONE/ 
0ONE—ADALTASSRNOT*PONE
DS=THEET A*SNOT*PNOT/!1-THEETA)+SNOT*PONE/QONE 
WRITE!*,15)D,DS 
FORMAT!1X,2F10.4)

GIVES EXPECTED NO OF DEFECTIVES DETECTED IN SAMPLING 
GIVES EXPECTED NO OF DEFECTIVES PRODUCED 
EC3=!A4*DS+A5*!D-DB))/!IR*SRNOT)
TC=EC1+EC2+EC3 
SUMN=TC
WRITE !#,30)TC,ECI,EC2,EC3
FORMAT!IX,*TC=*,F10.6,'EC1=',F10.6,'EC2=',F1G.6„'EC3=',F10.6) 
RETURN 
END

35

15
C DS 
C D

30
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C FILE NAME NSH1.F0R
SUBROUTINE BIN(X, MM, NT, P,PP, PINO)

C PROGRAM FOR CALCU INDIVIDUAL AND CUMULATIVE 
C PROBABILITY OF BINOMIAL DISTRIBUTION 
34 DIMENSION AA(301)

DOUBLE PRECISION AA, RN, AANOT, RK 
NN=NT+MM-1 

RN=NN
AANOT=(1.—X)*SRN
AA(1) = (RN*:X$AANDT) / (1 .-X >

DO 25 K=2,NN 
RK=K

25 AA(K)=(X*(RN—RK+i.> SAA(K—1))/(RK*(i=—X))
P=0
DO 4 I=MM,NN 

4 P=P+AA(I)
PP=1„-P 
M=MM—1
IF (M.EO.O) BO TO 6 
PIND=AA(M>
BO TO 7

6 PIND=AANOT
7 CONTINUE
C P GIVES PROB FROM M+l TO N 

RETURN 
END

SUBROUTINE OBJ1(AKE,NSTABE,SUM,A1,A2,A3,A4,A5,NSTAT,RATE,
1 ALEMDA,PIN)

C NAME OF THE FILE SNN7.FOR
C PROGRAM FOR ECPU OF np-CHART FOR MULTIPLE ASSIGNABLE CAUSE 
C MODEL

DIMENSION ALEMDA(10), PIN(IO), TAW(iO), ADALTA(IO), BEETA 
1 (10), PROS(10), NTOS(10),S(10), R(10), V(10), W(10),
1 X(10), M(10),A(10,10),AKE(5)

1 FORMAT(IX,5F10.4)
FORMAT(IX,I5,Fi0.4)
FORMAT(IX,7F10«4)
FORMAT(IX,3F10«5)
WRITE(*,1) A1,A2,A3,A4,A5 
WRITE(§,2) NSTAT,RATE 
WRITE(S,3) (ALEMDA(I),I=1,NSTAT)WRITE(*,3) (PIN(I),I=i,NSTAT)
SNOT=AKE(1) •
SRNOT=AKE(2)
REJNOT=AKE(3)
WRITE(S,4) SNOT,SRNOT,REJNOT 
NST ATE=N5T AT-1
CALL AVTIME(SRNOT,RATE,ALEMDA,NSTAT,TAW,ADALTA)
WRITE(*,5) (TAW(I),I=1,NSTATE)

5 FORMAT(IX,6F10«5)
WRITE(*,5) (ADALTA(I),I=1,NSTATE)
CALL PROBR(SNOT,REJNOT,PIN,NSTAT«BEETA)
WRITE(*,3) (BEETA(I),1=1,NSTAT)
CALL ENOS(SRNOT,RATE,ALEMDA,NSTAT,NT05)
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WRITE!*,6) !NTQS!I),I=i,NSTATE)
6 FORMAT!1X,717)

CALL PRODS C BEETA,NTOS,NSTAT,PRDS)
WRITE!*,3) !PRDS!I),I=1,NSTAT>
CALL ESDS!NSTAT,BEETA,NTOS,M)
WRITE!t,6) (MCI), 1=1,NSTAT)
TER=0
DO lO 1=1,NSTATE 
DO 15 J=l,NSTAT 
IFCJ.ST.I) 60 TO 12 
60 TO 13

12 A(I,J)=(FLOAT!NSTAT-J+1)*2.O)/FLOAT((NSTAT-I)*(NSTAT-I+1) ) 
60 TO 15

13 A(I,J)=0
15 CONTINUE
10 CONTINUE

WRITE!*,11) (!A!I,J),J=1,NSTAT),1=1,NSTATE)
11 FORMAT(IX,7F10.6)

C COMPUTATION OF PT1,PT2
TERM=0
DO 21 J=2,NSTAT

21 TERM=TERM+A <1,J)*PRDS!J)
PT1=TERM 
DO 25 I=2,NSTATE 
TERM2=0 
11=1+1
DO 26 J=II,NSTAT

26 TERM2=TERH2+A!I,J)*PRDS!J)
25 S!I)=A(1,1)* !1—PRDS<I))*TERM2

TERM3=0
DO 27 I=2,NSTATE

27 TERM3=TERM3+S!I)
PT2=TERM3
WRITE!*,28) PT1,PT2

28 FORMAT(IX,'PT1=',F10.6,'PT2=',F10.6)
C COMPUTATION OF EC1 UNDER T1 T2

TERM4=0
DO 29 I=2,NSTAT

29 TERM4=TERM4+A!1,I)XM(I)
L1=NTOS(1)+TERM4
DO 30 I=2,NSTATE 
TERM5=0 
11=1+1
DO 31 J=I1,NSTAT 

31 TERM5=TERM5+A(I,J)*M(J)
30 R ! I)=A ! 1,1 > * !NTOS(I)+TERM5)

TERM6=0
DO 33 I=2,NSTATE 

33 TERM6=TERM6+R!I)
L2=NT0S(1)+TERM6 
WRITE(*,35) LI,L2

35 FORMAT(1X,'L1=',I5,'L2=',15)
E1C1=!A1+A2*SN0T)*L1 
E2C1=(AI+A2*SNQT)*L2 
WRITE!*,80) E1C1,E2C1

80 FORMAT!IX,*E1C1=*,F10.3,'E2C1=',F10.3)
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C COMPUTATION OF EC2 UNDER T1 T2
ElC2=A3S(NTOS C1)*BEETA(1>+1)
E2C2=E1C2
WRITEC*,81) E1C2,E2C2

81 FORMAT(IX, 'E1C2='„F10.3,'E2C2=',F10.3)
C COMPUTATION OF EC3 UNDER T1 T2 

TERM7=0
DO 37 I=2,NSTAT

37 TERM7=TERM7+AC1, I ) S < M < I)SSRNOT-ADALTA(I)SSRNOT)SPIN(I)
ND1 = CNTOS(1)$SRNOT+ADALTA(1)SSRNOT)SPIN(1)+TERM7 
TERM9=0
DO 40 I=2,NSTATE 
11=1+1 
TERM8=0
DO 45 J=I1,NSTAT

45 TERMB=TERMB+A(I, J)*(M(J)&SRNOT-ADALTA(I)SSRNOT)SPIN(3)
V(I)=TERM8

40 TERM9=TERM9+A( 1, I ) t C (NTOS(I)*SRNOT-ADALTA(1)SSRNOT+
1 ADALTACI)*SRNQT)SPIN(I)+V(I))

ND2={NTOS(1> SSRNOT+ADALTA <1)SSRNOT)SPIN(1)+TERM9 
WRITEC S,38)ND1,ND2

3B FORMAT (IX , 'ND1=*, 19, 'ND2=',19)
TERM10=0
DO 50 1=2,NSTAT

50 TERM10=TERM10+A(1,I)$M(X)SPINCI)SSNOT
NS1=NTOS(1)SSNQTSPIN C1)+TERM1O 
TERM12=0
DO 55 I=2,NSTATE 
11=1+1 
TERM11=0 
DO 56 J=II,NSTAT

56 TERM 11=TERM11+A(I,J)SM(J)SSNOTSPIN{J)
W(I)=TERM11

55 TERM12=TERM12+A(1,1)S(NTQS(I> SSNQTSPINCI )+W(I))
NS2=NT0SC1)SSNOTSPINC1J+TERM12 
WRITEC S,57) NS1,NS2

57 FORMAT(IX,'NS1=',I7,'NS2=',17)
E1C3=A4SNS1+A5S CND1—NS1)
E2C3=A4*NS2+A5*(ND2-NS2)
WRITEC S,85) E1C3,E2C3

85 FORMAT(IX,*E1C3=',F10.3,'E2C3=',F10„3)
C COMPUTATION OF EXPECTED NO OF UNITS UNDER TI T2 

TERM 13=0 
DO 60 I=2,NSTAT

60 TERM I3=TERM13+AC1,I)SMCI)SSRN0T
NU1=NT0S(1)SSRNOT+TERM13 
TERM15=0
DO 65 I=2,NSTATE 
TERM14=0 
11=1+1
DO 66 J=I1,NSTAT

66 TERM14=TERM14+A(I,J)SM{J)SSRNOT
X(I)=TERM14

65 TERM15=TERM15+AC1,1) S CNTOSCI)SSRNOT+XCI)>
NU2=NT0S<1)S SRNOT+TERM15 
WRITECS,68) NU1,NU2 

68 FORMAT(IX,'NU1=',18,'NU2=',18)
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C COMPUTATION OF EC UNDER T1 T2 
ElC=CElCl+ElC2+ElC3)/NUi 
E2C=(E2C1+E2C2+E2C3)/NU2 
WRITE(St,87) E1C,E2C

87 FORMAT(IX,'E1C=',F10.6,'E2C=',F10.6)
C COMPUTATION OF EC

TRPT1=PT1/(PT1+PT2)
TRPT2=PT2/(PT1+PT2)
EC=E1CfTRPT1+E2C*TRPT2 
WRITE(*,72) EC

72 FORMAT(IX,'EC=',F10.6)
SUM=EC
RETURN
END

SUBROUTINE ENOS(SRNOT,RATE,ALEMDA,NSTAT,NTOS)
C SUBROUTINE FOR TOTAL NO OF SAMPLES IN STATE I N(I)
C FILE NAME IS SNN2

DIMENSION ALEMDA(10),POWER(lO),PPOWER(10),NTOS(10)
NST ATE=NST AT—1
DO 1 1=1,NSTATE
POWER(I)=ALEMDA(I)*SRNOT/RATE
PPOWER<I)=—POWER(I)
NTOS(I)=EXPC PPOWER(I))/(1-EXP(PPOWER(I))) 

i CONTINUE
RETURN 
END

SUBROUTINE AVTIME(SRNOT,RATE,ALEMDA,NSTAT,TAW,ADALTA)
C SUBROUTINE FOR TAW(I) AND ADALTA(I)
C FILE NAME IS SNN3

DIMENSION ALEMDA(10),POWER(10),PPOWER(10),TAW(10),ADALTA(10)
NST ATE=NST AT-1
DO 1 1=1,NSTATE
POWER(I)=ALEMDA(I)*SRNOT/RATE
PPOWER(I)=—POWER(I)
TAW(I)= (1-(1+POWER(I))*EXP(PPOWER(I)))/(ALEMDA(I)-

1 ALEMDA(I)*EXP(PPOWER <I)))
ADALTA(I)=TAW(I)*RATE/SRNOT 

1 CONTINUE
RETURN 
END

SUBROUTINE PROBR(SNOT,REJNOT,PIN,NSTAT,BEETA)
C SUBROUTINE FOR PROB OF DETECTING SHIFT ON THE BASIS OF ITH SAMPLE 
C FILE NAME IS SNN4

DIMENSION PIN(10),BEETA<10)
DO 1 1=1,NSTAT 
PROB=PIN(I)
MM=REJNOT
NN=SNOT
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' HOOKE AND JEEVES (HOOKE ALGORITHM)*

(, L-e-s --%e^^todu c-e-d - Q-C-iq 73^-
A. Purpose

This program finds the minimum of a multivariable, unconstrained, 
nonlinear function:

Minimize p<x1, 2’ • V
B. Method

The procedure is based on the direct search method proposed,by 
Hooke'and Jeeves (30). No derivatives are required. The procedure 
assumes a unimodal function; therefore, if more than one minimum exists 
or the shape of the surface*is unknown, several' sets of starting values 
are recommended. The algorithm proceeds as follows: 1
1) A base point is picked and the objective function evaluated.
2) Local searches are made in each direction by stepping a distance

to each side and evaluating the objective function to see if a 
lower function value is obtained.

3) If there is no function decrease, the step size is reduced and 
searches are made from the previous best point.

4) If the value of the objective function has decreased, a "temporary 
head", xfk+:l^, is located using the two previous base points x[k+1^

a - ‘ 1
and X. :1

x(k.D-= x<k.n 4 ^(k.o
1,0 1 1

x.(k))
1

where i is the variable index = 1, 2, 3, N
o denotes the temporary head
k is stage index (.a stage is the end of N searches) 
a is an acceleration factor, <3. a 1.

5) If the temporary head results in a lower function value, a new 
local search is performed - about the temporary head, a new head 
is located and the value.of F checked. This expansion continues 
as long as F decreases.

*Computer code developed by A. I. Johnson, University of Western 
Ontario, Canada. Used by permission.
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6) If the temporary head does not result in a lower function value, 
a search is made from the previous best point.

7) The procedure terminates when the convergence criterion is satisfied 
(see Description of Parameters).

A flow sheet illustrating the above procedure is given in Figure 9»H.

Program Description
1) Usage;

The program consists of a short main program, the main subroutine 
. HOOKE and the user supplied functional evaluation subroutine 

'' OBJECT. Initial values of the independent variables, step sizes,
, and solution (parameters are supplied through the main program.

* Subroutine HOOKE performs all searches and provides all printout.
2) Subroutine Required; 1

SUBR6UTINE HOOKE (RKJ, EPS,'NSTAGE, MAXK, NKAT, EPSY, ALPHA, BETA,
' ' G!D, Q,' QQ, W, IPRINT) called from main program, performs all 

■ 1 searches. 1

SUBROUTINE OBJECT ( SUMN, AKE, NSTAGE) function evaluation subroutine
11 \. (user supplied).

3) Description of Parameters;
NSTAGE Number of decision variables to be used
RK Vector of initial guesses for decision variables
EPS " -Vect.or of initial step size to be used for each of thei 

variables
ITMAX Maximum number of times the objective function is called 

(=MAXK) '
NKAT Maximum number of times the initial‘step size is to be 

reduced . ,
EPSY Error in objective function to be reached before program 

terminates (difference between current value and previous 
stage value)

ALPHA Factor for extending the size of the initial steps, 
greater than or equal to 1.0

BETA Factor for reducing the initial step size, 0.0 <BETA < i.D
QD Optimum value of the function resulting from the search
AKE Vector of independent variables in subroutine OBJECT
SUMN - Objective function to be minimized - define in OBJECT
IPRINT Print control. IPRINT = 0 results in no intermediate

output. IPRINT = 1 results in output on each iteration
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NI Card reader unit number
NO Printer unit number

4) DIMENSION Requirements;
The DIMENSION statement in main program should be modified accord 
to the requirements of the particular problem. The parameters 
included in the following DIMENSION statement conform to the 
Input Parameter definitions above;

DIMENSION EPS (NSTAGE), RK(NSTAGE), Q(NSTAGE), QQ(NSTAGE), W(NST
5) Input Formats:

CARD 
TYPE

1
2

*

3

4
6) , Output:

All output is from subroutine HOOKE. Initial parameter, value.
* - J

printed. Intermediate results are printed, if the user speci \ 
IPRINT = 1 on Card Type 1. Final results are printed upon 
termination.

7) Summary of User Requirements;
a) Determine values for NSTAGE, IPRINT, UMAX, NKAT, NI, ar
b) Determine initial estimates of independent variables; er 

as (RK(II), II = 1, NSTAGE).
c) Specify initial step sizes; enter as (EPS(JJ), JJ = f,N
d) Determine values for ALPHA, BETA, AND EPSY observing th 

rules stated in Description of Parameters section.
e) Adjust DIMENSION in main program.
f) Specify objective function by writing SUBROUTINE OBJEC
g) Adjust FORMAT statements as necessary.

D. Test Problem
1 ' n ' ' r"'"'r 'T ”■ \

The following test program was taken from the literature 
Calculations were performed on a CDC 6400 computer.

FORMAT CONTENTS
(8110) NSTAGE, IPRINT, UMAX, NKAT

(8E10.4) (RK(II), II = 1,NSTAGE)
(If N >8, additional CARD TYPE 2's will be requirec 
(8E10.4) (EPS(^J), JJ = 1,NSTAGE)
(If N > 8, additional CARD TYPE'3's will be require 
(8E10.4) ALPHA, BETA, EPSY
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Function: F.= - 3803.84 - 138.08X - 232.92X + 123.08X^

+ 203.64X^ + 182.25X1X2

Starting Point: X = 1.0, X = 0.5
1 2

Parameters: N = 2, ITMAX = 500, NKAT = 20,

, EPSY = 0.00001, ALPHA = 1.0,; BETA = 0.5

Initial Step Sizes: EPS(l) = 6.10, EPS(2) = 0.10

Algorithm Answers: F =' - 3873.9

X = 0.20576 
X2 « 0.47979

Number of Function Evaluations: 110

Central Processor Time: 3 seconds

The listing and output for this problem are contained in the 

following section.
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E. Program Listings and Example Output

MAIN LINE PROGRAM FOR SUBROUTINE HOOKE.

DIMENSION EPS(2)> RK<2), QC2>* QQ<2), W<2> 
COMMON NI * N0 

C
NI s S>0 .

, NO ~ 66 '
C

READ (NltOOl) NSTA3E. IPRINT. UMAX, NKAT
001 FORMAT (8110)

READ < f. I *002) (RK(II), IU1,NSTAGE)
002 FORMAT (8E10.4)

RE-AD (NI » 0 02 ) (EPS(JJ), JJ = 1,NSTAGE)
C

READ (NI» 003) ALPHA, BETA, EPSY
003 FORMAT (BE10.4)

QD = 0.0

CALL HOOKE (RK.EPS,NSTAGE, ITMAX,NKAT,EPSY,ALPHA,BETA.QD,0,00.U, 
1 IPRINT)

C
END

SUBROUTINE HOOKE.(RK,EPS,NSTAGE,MAXK,NKAT,EPSY,ALPHA,BETA,QD, 
1 .Q,QQ#W, IPRINT)

DIMENSION RK(NSTAGE), EPS(NSTAGE) > QCNSTAGE), QQ(NSTAGE)#
1 W(NSTAGE)
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COMMON NI#NQ

WRITE (NO.001)
001 FORMAT (lHl»10X»37MHOOKE AND JEEVES OPTIMIZATION ROUTINE)

WRITE (NO# 002 ) ALPHA, SETA. MAXK, NKAT
002 FORMAT (//.2X,IOHPARAmETErS,/,2X»8HALPHA a .F5.2.4X,

1 7HBETA = #F5.2,4x#8hlTMAx = # 14,4X#7HNKAT' = ,13)
WRITE (NO # 003 ) NSTAGE

003 FORMAT </,2X>22HNUMBER OF VARIABLES = #13)
WRITE {NO# 004 }

004 format </#2x#i8HInitial step sizes)
DO 6 1=1,NSTAGE
WRITE (NO, 005) I, EPS f I)

005 FORMAT <t.2%,4HEPS<#12,4h) a #El6,8)
6 CONTINUE

WRITE (NO# 0Q7} Epsy
ftQ7 FORMAT (/ # 2X # 43HERR0R IN FUNCTION VALUES FOR CONVERGENCE a #E16.8 

KFLAG = 0 
DO 601 1=1.NSTAGE 
Q( I ) *RKU)
W(I) = 0.0 

fcoi continue 
kat =0.0
KKl =0

70 KCOUNT -0
WBEST = W(NSTAGE)
CALL OBJECT (SUM.RK.NSTAGE)
KK1= KK1+ 1 
BO =SUM
IF (KK1.EQ. 1) QD = SUM 
IF (KK1.EO. 1) GO TO 20l 
IF(BO.GT.QD) KFLAG = 1 
IF (BQ,LT.QD) QD * Bq

ESTABLISHING THE SEARCH PATTERN

si DO 55 I = 1,NSTAGE 
QQ(I> = RK( I)
TSRK = RK( I )
RKCl) = RKC I) + EPSC I ) 
call object (sum.rk,nstage)
KK1= KKl-*- 1 
W(I> * SUM
IF <WU) .LT.QD) GO TO 58 
RK(I) = RK(I) - 2,0*6PS(I)
CALl OBJECT (SUM,R<.NSTAGE)
KK1= KKl+ 1 
W<I) = SUM
&F (W(I) .LT.QD) GO TO 58 
^KCI) a TSRK
ar (i.eq. i) go to 513
|m =w< i-i)
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Go TO 613 
513 W(I> =00 
613 CONTINUE

KCQUNT =1+ KCQUNT 
GO TO 55 

58 QD= W(I)
QQ(I) =RK<I>

55 CONTINUE
IF (IPRINT) 60, 65, 60 

60 WRITE (NO,100) KKl ■

RECORD RESPONSES AND LOCATION

WRITEIN0.102)
WR I TE(NO»20 7 ) (RK(I), I=i,NSTAGE), GD

' TEST TO DETERMINE TERMINATION 0F PROGRAM

65 IF (KK1.GT.MAXK) GO TO 94
IF (KAT ,GE, NKAT) GO TO 94
IF (ABS{W(NSTAGE>-WBEST).LE.EPSY) GO TO 94

IF ALL AXES FAIL REDUCE' STEP SIZE

IF (KCOUNT ,GE. NSTAGE ) GO TO 28
DO 26 I = 1,NSTAGE
RK ( I) =RK ( I ) ♦ ALPHA*(RKU> - G ( I) )

26 continue
DO 25 I = 1,NSTAGE
q(n =qq(i)

25 CONTINUE 
GO TO 70

REDUCE STEP SIZE

28 KAT s KAT ♦ 1
, IF (KFLAG .EQ. 1) GO TO 202 

GO TO 2q4
202 KFLAG = 0

DO 203 I = 1,NSTAGE , 
pKU ) = QU )

203 CONTINUE
204 DO 80 ' 1=1,NSTAGE

. EPS (I) =EPS,(,I) *BETA 
- so continue

IF (IPRINT) 85, 70, 85 
85 WRITE CN0,101) KAT 

GO TO 70
94 WRITE (NO.460) (EPS(I). 1=1,NSTAGE)

WRITE (NO,461.) t R K f I ) , 1 = 1,NSTAGE)
WRITE (NO,462)' qD 
DO 104 I = 1,NSTAg_E 

104 WRITE (NO,103) I l RK< I )
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WRITE (NO,100) KK1
100 FORMAT (//»2X,33HNJMBER OF FUNCTION EVALUATIONS = .18)
101 FORMAT (/> 2X,18HSTEP SIZE REDUCED , I2,6H TIMES)
102 FORMAT(lX»26HEND OF EACH PATTERN SEARCH/)
103 FORMAT <//,2X,8HFlNAl X(,l2»4H) * ,1PE16,8)
207 F0RMAT(1Xi18HvAR1A8LES ANq SUMN,3x,9E12.4//)
465 FORMAT <1QX,3HS'JM,3X»E14.5)
460 FORMAT(IX, 18H THE FINAL EPS ARE, 4F20.8/)
461 FORMAT (IX, 18H THE FINAL RK ARE , 5F20.8/)
462‘FORMAT (IX, 24H THe MINIMUM RESPONSE IS> , F20.8/J

return

END

SUBROUTINE OBJECT (SUMN,AKE,NSTAGE>

DIMENSION AKE(NSTAGE)

XI = AKE(l)
X2 s AKE(2 )
X12 s (Xl**2>
X22 = (X2**2)
SUMN * 3803,84 ♦ l38,08«Xl ♦ 232,92*x2 - 123,08«X1«#2 - 203^64 

1 *X2**2 - 182.25«X1»X2 
SUMN * - SUMN

RETURN
END



HOOKE AND JEEVES OPTIMIZATION ROUTINE

PARAMETERS
ALPHA * 1,0 0 BETA = 3,53 IT,TAX = 5CD NKA7 - 2a

NUMBER OF VARIABLES = 2

INITIAL STEP,SIZES

EPS* 3) = 3.10000000E*00

EPS{ 2} r 'D.10DO0ODOE*OD

ERROR IN FUNCTION VALUES FOR CONVERGENCE * 3.100300OOE-04

■ NUMBER OF FUNCTION EVALUATIONS = 5
END OF EACH PATTERN SEARCH

VARIABLES AND SUMN G,9QC0E+Q0 D.4000E+00 -.3823E+Q4

(9 intervening printouts are omitted.)

NUMBER DF FUNCTION EVALUATIONS = 50
END OF EACH PATTERN SEARCH

VARIABLES AND SUMN 0.225QE+00 0.4750E+DD

STEP SIZE REDUCED 4 TIMES

,3S74E*34



(ll intervening printouts are omitted.)

NUMBER OF FUNCTION EVALUATIONS * - 106
END OF EACH PATTERN SEARCH

VARIABLES AND SUMN 0.2059E+00 0.4797E+00

STEP SIZE REDUCED 10 TIMES

NUMBER OF FUNCTION EVALUATIONS = , .110
END OF EACH PATTERN SEARCH
VARIABLES AND SUMN G.2058E+00 0.4798E+00
THE FINAL EPS ARE . 0,00009766
■THE FINAL RK ARE ' 0.20576l72
THE MINIMUM RESPONSE IS -3973.92354660

FINAL X( 1) * 2.0576172F-01
t

FINAL X< 2) = 4.7978516E-01

NUMBER OF FUNCTION EVALUATIONS = 110

-.3874E+04

- . 3874E + 0 4> 
0.00009766 
0 ;479785l6


