
CHAPTER IV
Use of Curtailed Single Sampling and Double Sampling Plans in the 
Economic Design of np-Control Chart

4.1 In Chapter II the economic model of np-control chart is
constructed using more realistic assumptions as compared to the
assumptions of Duncan (1956, 1971) as well as knappenberger and
Brandage (1969) models. The aim of the construction of our model
is to make it more realistic and hence more applicable. The

improvement of the model under study over the earlier models is
in terms of increasing the applicability of the model.

Another way of improving the economic model is to make it
cheaper from cost point of view. In this chapter the economic
model is improved from the cost point of view by using curtailed
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single sampling and double sampling policies in place of the 
traditional complete single sampling policy. The cost models used 
for comparing the performance of various sampling policies are 
<i> the Knappenberger and Brandage's (1969) model (ii) the model 
developed in chapter II.

In section 4.2 fully-curtailed single sampling is used in 
place of complete single sampling in the Knappenberger and 
Brandage's (1969) model. Theoretical as well as numerical 
comparisons are made between the performance of the complete, the 
semi-curtailed and the fully-curtailed single sampling policies. 
The results indicate that the semi-curtailed sampling is no more 
expensive than the uncurtailed sampling and the fully-curtailed



sampling is no more expensive than the semi-curtailed sampling.
In section 4.3 the double sampling policy is used in place 

of the single sampling policy in the Knappenberger and Srandage's 
model. It is observed that the double sampling policy is more 
appropriate than the complete as well as curtailed single 
sampling policies -from the cost point of view.

In section 4.4 the curtailed single sampling policies are 
used in place of the complete single sampling policy in the 
single assignable cause model developed by us in chapter II. The 
conclusions derived are the same as those found for the 
Knappenberger and Grandage's model.

4.2. Use of Fully-Curtailed Sampling Plan in the Economic
Design of np-Control Charts.
4.2.1 Montgomery Heikes and Martce (1975) developed the
economic design of np~control chart using the Knappenberger and 
Grandage's (1969) model for x-chart. Montgomery et al. developed 
the expected cost model using the complete sampling plan as a 
sampling policy. Williams,, Looney and Peters (1985) developed the 
expected cost model using the semi-curtailed sampling plan as a 
sampling policy. The expected cost model developed by Williams et 
al. (1985) is analogous in all other respects to the complete 
sampling model developed by Montgomery et al. (1975). The type of 
sampling used by Williams et al. corresponds to the sampling 
plan-2 of Phatak and Bhatt (1967) in which sampling is stopped if 
either m nonconforming units are observed or n items are
inspected. The process is declared to be in control if n items
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are inspected. The process is declared to be out of control if m 
nonconforming units are observed.

We develop an expected cost model using the fully-curtailed 
sampling plan as a sampling policy. The expected cost model 
developed by us is analogous in all other respects to the 
complete sampling model developed by Montgomery et al.<1975), The 
type of curtailed sampling used by us corresponds to the sampling 
plan-3 of Phatak and Bhatt (1967) in which sampling is stopped if 
either m nonconforming units are observed or g conforming units
are observed. The process is declared to be in the in-control 
state if g conforming units are observed. The process is declared 
to be out of control if m nonconforming units are observed.

4.2.2 The Production Process and the Sampling Policy
The production process to be controlled starts in the 

in-control state in which it produces a known acceptable
proportion., p0# of nonconf orming units. The process as time
passes may deteriorate and start producing one of the 
nonacceptable proportions p^ (i -- 2, ... ?s). Thus there are s
out of control states p^<i - 2S ... ?s) where p^ > j (i =
lp 2, ... „s). Transition to the out-of-control states is
governed by a Poisson Process with assignable causes occurring at 
a rate X per unit time. This means that the time until the 
process remains in the in-control state before shifting to an 
out-of-control state is an exponential random variable. 
Transition from an out-of-control state p^ to another
out-of-control state Pj is possible provided the direction of
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movement .is towards -further quality deterioration i.e. transition
-from to pj is possible i-f pj > p^. The process is not self 
correcting. Once a shift to out-of-control state has occurred, 
external intervention is required to restore the process to the 
in-control state.

The sampling and inspection procedure of fully-curtailed 
sampling plan is as follows.

After the production of every k units, units arc* inspected 
one by one until g conforming units are observed or m
noncomfarming units are observed. If g conforming units are
observed, the process is declared to be in control and the 
production continues. If m nonconforming units are observed, the 
process is declared to be out of control, the production is
halted and a search for the assignable cause is undertaken.

We want to find the optimal values of the design variables 
g, m and k which minimise the total expected cost per unit of 
controlling the process between two successive samples.

4.2.3 The Expected Cost Model
The total expected cost per unit of the product- associated 

with controlling the process between two successive samples can 
be expressed as

E(C) «= E(Cj) + E(C2) + E(C3) ...(4.2.1)
where E(Cj) is the expected cost per unit associated with 
sampling and inspection, E(C2> is the expected cost per unit 
associated with investigating and correcting th© process, and



E<C3> is the expected cost per unit of producing a nonconforming
un i t.
Computation of E(Cj)

EtCj ) (a< + a<5.2 «jnj )/kli-0 x"i

where
. . . (4 2)

° the fixed cost of sampling,
&2 ~ the variable cost per unit of sampling,
ctjL ” the steady state probability that the process is in state p^ 

at the time the sample is taken (i « 0, 1, «»., s>, 
n^ “ the average sample number when the process is in state

( i “ 0, 1, . . ., s).

Computation of E<C2>
Let the cost of investigating and correcting the process 

plus the cost of lost production while searching for and possibly 
correcting the assignable cause be a random variable V with 
E(V) = a-?. It is assumed that the distribution of V does not 
depend upon the true process fraction of nonconforming units. 
Hence the cost of investigating real and false alarms is the same.

E<Co) ® a-y S aiQi/k
ssQ * * (4.2.3)

where
ag == the average cost of investigating the process including the 

cost of lost production,
- the probability of concluding that the process is out of 
control when it is in state p^ <.i = 0, 1, s)»



Computation of EICj)

E<C3) - a4 .A.Tjx»o Pi . u (4.2.4)
where
®4 ~ the penalty cost of producing a nonconforming unit, 
r^ - the steady state probability that the process is in state p^ 

at any point of time (i 0, 1, . . „, s).
Thus the total expected cost per unit is given by the 

expression

sa< + ao i. «:nj 1 2 i~0 * 1 a-.T, . S a^q.- •-* i=o 1 1

E<C) - s+ a4 il0ripi

< 4.2.5 >
al","a2-- 5- a3 ' C1 
-----2-~--- + --—-=■--- + a4 r'p

K k ***" ..-(4.2.6)

where g., q, r, p. are column vectors.
The cost coefficients a^(i^l,2,3,4) and the vector of 

fraction of nonconforming units p. are known and are independent 
of design variables <g, m, k). The probability vectors q., q, nand 
the vector n are functionally related to the design variables 
<g, m, k). In the next two sections we develop the expressions 
for the vectors «, r, q and n.

4.2.4 The Probability Vectors a. and XL

a.-L (i =0, 1, s) is the steady state probability that
the process is in state p^ at the time the sample is taken. To



obtain these steady state probabilities, the transition 
probability matrix B is required. The elements of B, say b^j , 
represent the transition probabilities -from Pi to Pj during the 
production of k units between two successive samples. Define Pjy 
as the probability that the process shifts directly from the 
state p^ to state pj during the production of k units between two 
successive samples. Suppose R units are produced per unit time. 
Then the probability that the process remains in the in-control 

state during the production of k units is

Poo

k/R
1 -- X e”"^ dt = exp (-Xk/R)

0
..,<4.2.7)

The production of k units takes k/R hours.
The probability that the process shifts from an in-control 

state pQ to any of the s out of control states pt, p2t »»» »P®

during the production of k units .is

1 ~ p00 1 ~ exp<“Xk/R> .,.(4.2.0)

We shall employ the method of Knappenberger and Srandage 
(1969) for distributing this probability. Using Knappenberger and 

Srandage's method we define

( 13 ) K-* (;l - te)®”"-’ 
j

p , Ea [j "« exp (“Xk/R) 3°J Cl ™ <1 - tc)®3

j “ In 2, m.j ffl , . . (4»2.9>
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The probability distribution CPoi, PQ2? «»«t Fos> represents 
the probability of shift from state pQ to any other state pj 
directly during the production of k units.

We further define,
Poj / * * "" Poo * i f j >

Pij - Xi,pQ» X=>1 0/1 / (1 " Pqq) i f j »

0 if J <

..„(4.2.10)
We now define the elements of matrix B» When 0 < j < i, bjy 

is the probability that the process is in state p^ at the time of 
mth sample and has shifted to a better state pj at the time of 
(m+l)st sample. This is the probability of detecting an out-of- 
control state on mth sample times the probability that the 
process shifts from pQ to state pj during the production of k 
units. That is

bij “ djtPoj if 0 ^ J < i
...(4.2.11)

By similar argument we write

bij " ^iPoj + (1 “ Pi} Pij j 1
...(4.2.12)

This is.the probability that the state Pi is detected at the 
time of mth sample and the process has shifted from state pQ to 
state pj at (m+l)st sample plus the probability that the state



p^ is not detected at mth sample and the process -further 
deteriorates from Pj_ to pj at <m+l)st sample.

^ii " ^iPoi + ^ ” ‘-l.i^ii if i > 0

Finally
i -i '”«r si o W /

'oj 'oj if j - 1 0 s
<4.2.14)

The matrix B is the transition probability matrix of an 
irreducible, aperiodic, positive recurrent Markov Chain. Hence 
there exists a vector q such that

a B - a ...(4.2.15)
where ith element of vector q is the steady state
unconditional probability that the process is in state p^ at the 
time the sample is taken, regardless of the initial state.

We can find q by salving any s of the <s+l) equations

s<4.2.15) along with the restriction 2 cu » 1.x^O x

We now define the elements of vector c. where r^ <i « 0, 1, 
s) is the steady state probability that the process is in 

state p^ at any point of time. First consider r0« The probability 
rD depends on the probability that the process starts in state pQ 
at the time of mth sample and remains in the same state until 
(m-i-l)st sample, and the probability that the process starts in 
state pQ at the time of mth sample and shifts to an out-of- 
control state until (m-i-l)st sample. Thus,

rQ «= ct,3Poc, + Aa0(l — poc)) ...(4.2.16)
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where A is the average fraction of the time that elapses before 
the shift occurs, given that the shift occurs between mth and
<m+l)st sample.

Duncan <1956) has shown that
1 - (1 -i- Xk/R) e;<p<“Xk/R>

(Xk/R) C1 - e;:p(-Xk/R)a ' ...(4.2.17)
We assume that the average fraction of time the process

spends in the lower state when a transition to a higher state is 
made is the same as A.

The probabilities <i » 1, 2, ..., s) depends on the
probability that the process is in state p^ at the time of mth
sample and stays there until <m*l)st sample, the process is in 
some better state (k “ 0, 1, 2, i~i) at the time of mth
sample and shifts to state p^ before (m-i-l)st sample, and the
probability that the process is in state p^ at the time of mth
sample and shifts to some higher state pj <j i+1, ..., s)
before (m-i-i)st sample. Thus,

aipii •i* (1 A) i-1 *«» .. ,& ak “0 kP|,ki + A. S a * p i «si + l i1 1U

(i » :l, 2, ,,.», s) .(4.2.18)

4.2.5 The Vectors q and n
Let Y denote the number of units sampled when mth 

nonconforming unit is observed.
Let Z denote the number of units sampled when gth conforming 

unit is observed.
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Than Y has a negative binomial distribution with 
probability function

q.(y) . < Y~* ) pm <l~pl>y“m
x m-1 (4.2.19)

y - m, m+i ^ n a a t|

ndi S! S di<y) y~m ..(4.2.20)
X 0 3 1 tj aua^S

where qj_ represents the probability of concluding that the 
process is out of control when it is in state p^ (i *» 0^ 1.. . ,3) »

Z has a negative binomial distribution with the probability 
function

s,(z) - ( ) (1 ••• Pi>« pf*g
X Q m.. jl' X X <4.2.21)

z ® g» g+11, . . . i,n
Taking m+g “ n+1 the average sample number „ n^when the 

process is in state P;j is

_ n y-1 m w—m n z~l r.n4 = E y( )pf(l-Pi )V m + £, z ( )(l~Pi)g pT ®y=m m~l x 2=g g-1 A

i « 0, 1, ...,s ...(4.2.22)
The simplified form of n^ as given by Shah and Phatak (1972) 

is

n^ = (l--q^)
Pj_(n+l)-m m j~
Pid“Pi> Pi L

’ i ~ 0 „ 1,

(n) pT (i-p,)n"m 
m x x

,s <4,
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remains the samePatil (I960) showed that the expression for Cjjj 
under uncurtailed, semi-curtailed and fully-curtailed sampling 
policies and is

d»m
n
d

) p jj1 < 1 Pi5 n-d (4,2.24)

0,1'? * | ii • ■ p J

This equivalence is due to the relationship between the 
distribution functions of the binomial distribution and the 
negative binomial distribution. This relationship was also 
established by Morris (1963) independently.

Thus for all the sampling policies ith element q^ of vector 
q is given by a common expression (4.2.24).
4.2.6 Solution Method and Sample Example

We have used Hooke-Jeeves' search procedure explained in 
Section 2.3.4 to find the optimal values of the design variables 
(g, m, k) which minimise the expected cost per unit of the 
product given by expression (4.2.6). The search technique gives 
the optimal values of n, m and k. One gets the optimal value of g 
using the relation g «* n - m + i. The details of this procedure

are well explained in chapter II.
We consider an example presented in Table

a 1. (1985).
Let al " $1 5 ^ $0 a 1 p a-? » $100 ? a4
Let X - ip R ™ 1000 p ti; => 0.597 , s ®
Let
^ Pa * Pi» P2» P3* P4» Pg? P6^ « (.01, .02, . 04, .

h

} tj « 16, a >i£ p ,64)
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For this combination of cost coefficients and systems 
parameters, the search technique yielded the following optimal 
procedure s
g “ 7, m 2, k « 19 with minimum E(C) » $0.4069. 
i.e. after every production of 19 units, one inspects the units 
one by one until 7 conforming units are observed or 2 
nonconforming units are observed. In the first, case the process 
is declared to be in control and in the second case the process 
is declared to be out of control.

For this example the optimal control procedure yielded under 
semi-curtailed sampling is n = 8, m « 2, k «■ 20 with minimum 
E<C) = $0.4115. The optimal control procedure yielded under
complete sampling is n « 8, m « 2, k « 20 with minimum
E<C) ■ $0.4118.

This indicates that the use of semi-curtailed sampling in 
place of complete sampling provides an improvement of 0,0003 
whereas the use of fully-curtailed sampling in place of complete 
sampling provides an improvement of 0.0049.
4.2.7 Comparisian of Complete, Semi-Curtailed and Fully-
Curtailed Sampling Scheme.

(A) Theoretical Comparision
We have seen earlier that the probability vector q is the 

same for all the three sampling policies. The vector g depends
upon the vector q and the transition probability matrix <Pij>
which is the same regardless of which sampling policy is used.
Therefore the vector g, is the same for all the three sampling 
policies. Hence E<C2> is the same for all the three sampling



policies. The probability vector r depends upon the vector a, A 

and the transition probability matrix (p^j ). The vector a is the 

same -for all the three sampling policies. The matrix

(p.y) and A are external to the type of sampling policy. Hence 

vector r remains the same for all the three sampling policies. 

The vector p is assumed to be known. Hence is the same for

all the three sampling policies.

It now remains only to compare E(Cj) under the three sampling 

policies.

For complete single sampling

E(Cj) - (*! a2n)/k ...(4.2.25)

For both the types of curtailed single sampling

b(Cj) ® (a j • f§£j^i i") ) / k (4.2.26)

The expression for n^ under fully-curtailed sampling is 

given by (4.2.22) and (4.2.23). The expression for n^ under semi- 

curtailed sampling is given by

_ m-1 n d n y-i m v-mn* » n(£„( , )pi (l-pj)n d + E y ( ! Pj (l-pi)
x d®0 d x 1 y„m m-1 1 x

which Phatak and Bhatt (1967) have shown to be equal to

m- In dn’E.( ' )pi(l-pi)n 1:1 + (m/pj)
d=0 d 1 1 1 1

m n+1 «d,J ( ) p9<l-Pi)d==o d x
n+l-d

<i = 0, 1, ..»,s)

Phatak and Bhatt (1967) have also shown that

.(4.2.27)

ni(fully-curt) ” ni(semi-curt) ~ "

(i ■*“ Op 1^ ...jjS)
(4.2.28)
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ISThis result and the fact that S = 1 implies thatisaQ

* ful ly-curt ~ * semi-curt ~ ^^l^uncurt
».,<4.2.29)

if these expected costs are calculated for the same values of 

m, k■
This leads to a conclusion that

n,

ful ly-curt ~ semi-curt ~ ^*^uncurt
. <4, ,30)

if these total expected costs are calculated for the same values 
of n., m, k.

This shows that the fully-curtailed sampling is no more 
expensive than semi-curtailed sampling and the semi-curtailed 
sampling is no more expensive than uncurtailed sampling for those 
cases where the optimal procedures yielded under the three 
policies are the same.

We now show that the same result holds for those cases also 
where the optimal procedures yielded under the three sampling 
policies are different.

Let <nu, mu, ku>, (ns, ms!l ks> and <n^, m^, k.f> represent 
the optimal procedures under the uncurtailed, the semi-curtailed 
and the fully-curtailed sampling policies respectively.

Let Eu<n, m, k), E<_<n, m, k) and E^<n, m, k) represent the 
expected cost per unit of the product under uncurtailed, semi- 
curtailed and fully-curtailed sampling policies respectively. It 
is clear from the concept of optimality that



^ n ^ ^ s kf) - (n, m, k) for all n, m. k.

o a .(4.2.31)
Es(nsp ms, *s> < Es (n, m, k) for all n, m, k.

m n .(4.2.32)
Eu<nu» mu, ku> - Eu (n, in, k) for all n, m, k.

• a . (4.2.33)
We therefore have,

Ef(nf, mf 9 kf> - Ef (ns ks) by (4.2.31)
Es<ns» ms5 ks) by (4.2.30)
Es * nu » mu. ku) by (4.2.32)

* EU(nU* mu» ku> by (4.2.30)
Thus,

E.f (n^, » k,j; ) < Ell n. { D nS 1st •' kH) is Eu(nu, «tu, V

.. ( a . 2. y,a)

Williams et al. (1985) theoretically established the second 
part of the inequality (4.2.30) while comparing the semi™
curtailed sampling scheme with the uncurtailed sampling scheme. 
Using this inequality they arrived at a conclusion that the semi-
curtailed sampling scheme is no more expensive than the*
uncurtailed sampling scheme if the optimal design variables
yielded under these two schemes are the same. But they could not 
establish theoretically that the same result holds even if the
optimal design variables yielded under the two policies are 
different.

Furthermorei, in their recent paper (1990) appeared in the 
Journal of Quality and Technology where they have introduced the 
use of fully-curtailed sampling scheme, they do not make any
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mention of the theoretical comparisian of the fully-curtailed 
sampling scheme with the other two sampling schemes.

We would like to mention from the priority point of view 
that we have introduced the use of the fully-curtailed sampling 
scheme in the paper read at 1st Assian Congress on Quality and 
Reliability (1989) held at New Delhi. In that paper we have 
established the result (4.2.34) given in this section. The 
importance of this result is that the fully~curtailed sampling is 
no more expensive than semi-curtailed sampling and the semi- 
curtailed sampling is no more expensive than the uncurtailed 
sampling even if the optimal design variables under the three 
sampling policies are different.

(B) Numerical Comparision
The optima*! design variables and the minimum expected costs 

are obtained for complete sampling policy and for semi-curtailed 
sampling policy by Williams et. al. (1985), for various cost
coefficients and systems parameters. We have studied all 81 
combinations considered by them and have obviously found that for 
each combination the minimum cost yielded by the optimal fully- 
curtailed sampling plan is less than or equal to the minimum cost 
yielded by the optimal semi-curtailed sampling plan. Equality 
holds if m = 1 since in this case the fully-curtailed sampling 
plan is equivalent to the semi-curtailed sampling plan. We have 
presented the optimal uncurtailed, semi-curtailed and fully- 
curtailed sampling plans with the minimum expected costs for a
few combinations in Table 4.1.



Let E(C)U? E(C)S and E(C)| denote the minimum costs of the 
optimal control procedures of the uncurtailed, semi-curtailed and 
fully-curtailed sampling policies respectively. Then the 
percentage improvement in the cost of the fully-curtailed and the 
semi-curtailed sampling plans over the uncurtailed sampling plan 
are given by

*fu 100
E<C>u - E<C)f 

E<C)U 7.

isu - 100
E<C)u - E(C)S

E (C) u
7.

<4.2.35)
respectively. The percentage improvement in the cost of- the 
fully-curtailed and the semi-curtailed sampling plans over the 
uncurtailed sampling plan are given in columns (15) and (16) of 
Table 4.1. It may be noted that all the numerical results given 
in Table 4.1 tally with the numerical results given by Williams 
et. al» (1990). The priority of these results is already
established in part (A) of this section.

4.2.8 Conclusion
It is concluded that the improvement in cost due to fully- 

curtailed sampling over the traditional complete sampling is 
considerably large as compared to the improvement in cost due to 
semi-curtailed sampling over complete sampling. Hence if the goal 
of sampling is only to decide whether the process should be left
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alone or whether the process should be halted to find the
assignable cause then -fully-curtailed sampling is the most 
appropriate among all the three sampling policies from cost point 
of view.

4.3 Use of Double Sampling Plan in the Economic Design of
np-Control Chart
4.3.1 It is known that the double sampling plan involves less
total inspection on average than the single sampling plan for any 
given quality protection (Grant (1964)). The plan also has
certain psychological advantages based on the idea of giving a 
second chance to doubtful lots, since the plan may defer the
decision of acceptance or rejection until a second sample has 
been inspected. Hence it is decided to give due consideration to 
the double sampling plan in the development of the economic 
design of np-control chart.

In this section we develop the expected cost model using 
double sampling plan as a sampling policy. The model is analogous 
in all other respects to the single sampling model developed by 
Montgomery et« al. (1975) which is well explained in the earlier
part of this chapter. We compare the performance of double 
sampling plan with that of single sampling plan uncurtailed as 
well as curtailed for a variety of cost coefficients and systems
parameters. The results indicate that the use of double sampling
plan leads to smaller expected costs than the single sampling
plan uncurtailed as well as curtailed.



4.3.2 The Production Process and the Sampling Policy
The production process is the same as the one described in 

Section 4.2.2.
The inspection procedure is as follows.
After every production of k units a sample of n units is 

examined. Let dj be the number of nonconforming units found in 
the sample.

If dj < Aj the process is declared to be in control.
If d| > A2 the process is declared to be out of control.
If Aj < d! < A2 a second sample of n units is examined.
Let d2 be the number of nonconforming units found in the

second sample.
If dj + d2 i A2 the process is declared to be in control.
If dj + d2 > A2 the process is declared to be out of 

control.
This is a procedure of usual double sampling plan with 

nl 53 n2 “ n (say).

4.3.3 The Expected Cost Model
The cost model is the same as the one described in Section

4 r? ■*T a jZm a w a

The expression for total expected cost per unit of the 
product under double sampling policy is the same as the one 
derived for the single sampling policy and is reproduced from 
(4.2.6) as follows,

a-i + a»5 <3/ n_ QE (C) - — -- -------+ —•”—+ a4f.' P ...(4.3.1)
k k
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The procedures -for the calculation of a arid r remain the 

same as those described in Section 4,2.4. The expressions for a 
and c are given by <4.2.15) and <4,2.18) respectively. However we 

would like to mention clearly that the vector q required in the 

calculation of a and r is different from <4.2.24) when double 

sampling policy is used. The expression for ri^ < i®0, 1. , „s) is 

also different from <4.2,22) when double sampling policy is used. 

The expressions for q and n required in computation of <4.3.1) 

are derived in the next section.

4.3.4 The Vectors q and n under Double Sampling Plan
Let Pr„i<i> denote the probability, based on the evidence of 

first sample, of concluding that the process is out of control 

when the process is in state p^ < i==0,1, . . . ,s). Let the

corresponding probability based on the evidence of the second 

sample be denoted by Pr>2<i). Lastly, let Pa j<i) denote the 

probability, based on the evidence of the first sample, of 

concluding that the process is in control when it is in state p^»

A1 n cJl n"d:l
P

it 1 (i) ; S < 5 Pi <1 - Pi>d4-0 dl
( ^1* N 2)

pr.l(i>
=a2+i

n
di

n-d i
) p j <1 -• p | ) 1 <4.3.3)
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A-
Pr.2<i> n n-d •

/£.> (
~di L di

n d
* (

(in,
) Pi

) Pi (1 - Pi>

n-d 2

Then,

q, + pV.2<i>

(4.3.4)

..(4.3.5)
X "‘2 O, 1, . . b , s

where qA represents the probability of concluding that the 

process is out of control when it is in state pA (i-0,l,,»«,s)»

The expression for n^ (i «* 0, 1, ...,, s) is 
F?± = n C Pa>1(i) + Pr>1(i) 3 + 2n C 1 ~ Paol(i) " pr„l<;L) 3

i — Ug i } t e g g n g (4bh)»6)

4.3.5 Solution Method and Sample Example
We have used Hooke-Jeeves' search technique explained in 

Section 2.3.4 to obtain the optimal values of the design 

variables n, A-jA2, k which minimise the expected cost per unit 

of the product given by the expression (4.3.1).

We consider the same example given in Section 4.2.6.

5 a2 88 ®0g 1 gi a3 “J $100, a 4 as $10.

Let X “ 15 R - 1000, n - 0.597, s « 6.
Let

Let ~ $1

( Pq , p ^ , P2 ? P3P4 * P5 ** P& ^ ^ (“01, . 02, . 04, . OS, u 16 j .64)

For this combination of cost coefficients and systems 

parameters the search technique yielded the following optimal 

procedure when double sampling scheme is used.

n = 5, Aj = 0, A2 “ 1, k « 19 with minimum E(C) = $0.3961. i.e.



after every production of 19 units, one examines 5 units from the 
process. If no nonconf orming unit is found in this sample the
process is declared to be in control and the production
continues. If the sample contains 2 or more nonconforming units 
the process is declared to be out of control. If the sample
contains only one nonconforming unit, one examines next 5 units
from the process and determines the number of nonconforming units
in the combined sample of 5 + 5 •■= 10 units. If the number of 
nonconforming units in the combined sample is greater than or 
equal to 2, the process is declared to be out of control,
otherwise it is considered to be in control.

For this sample example the optimal control procedure under 
complete single sampling is n = 8, m - 2, k « 20 with minimum
E(C> - $0.4118 where n is the sample size, m is the rejection 
number, k is the inter sample range. The optimal control 
procedure under semi-curtailed single sampling is n = 8, m = 2, k 
= 20 with minimum E<C) = $0.4115. The optimal control procedure 
under fully-curtailed single sampling is n = 8, m = 2, k “ 19
with minimum E(C) = $0.4069.

This indicates that the use of semi-curtailed single 
sampling and fully-curtailed single sampling in place of complete 
single sampling provides an improvement of 0.0003 and 0.0049 
respectively 5 whereas the use of double sampling in place of 
complete single sampling provides an improvement of 0.0157 per 
unit. This means that double sampling is better than the single 
sampling uncurtailed as well as curtailed from the cost point of 
view.
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4.3.6 Numerical Comparision
The optimal control procedures and the minimum costs are 

obtained -for complete single sampling policy by Williams at al. 
< 1985) -for various cost coefficients and operating conditions. We 
have studied all the combinations considered by them and have 
observed that whenever there is a scope -for double sampling 
scheme <i.e. when the size of the sample for single sampling 
scheme is not too small and when the rejection number is greater 
than 1) the minimum cost yielded under double sampling is less 
then that yielded under single sampling uncurtailed as well as 
curtailed. We have observed that in 28 combinations among SI 
combinations considered by Williams et al. (1985) the sample size 
n > 3 and the rejection number m > 1 for optimal single sampling 
plans. For each of these combinations the minimum cost yielded 
under double sampling is smaller than that yielded under single 
sampling.

The percentage improvement in the cost of the double 
sampling plan over the complete single sampling plan is given by

Idu ~ 100
E<C>d - E(C)U 

E < C) u
%

We have also observed that the percent improvement in the 
cost due to double sampling over complete single sampling is 
considerably large as compared to the percent improvement in cost 
due to fully-curtailed single sampling over complete single 
sampling.

9a,



We present a -few optimal double sampling plans along with
their minimum costs in Table 4.2. The percent improvement in cost 
of semi-curtailed * fully-curtailed and double sampling policies 
over complete sampling are given in columns <9)„ <10)9 <l:l) of 
Table 4.2.

4.3.7 Conclusion
The improvement in the cost due to double sampling over 

complete sampling is considerably large as compared to the
improvement in cost due to both types of curtailed single
sampling over complete single sampling. Hence double sampling .is 
more appropriate than complete as well as curtailed single
sampling from cost point of view.
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4.4 Comparision of Complete, Semi-Curtailed and Fully-Curtailed 
Sampling policies for the Economic Model developed in Chapter II

Under this economic model the expected cost per unit of the 
product is

ECPU - C E(Ct) + E(C2) + E<C3) 3 / Nk
a B u ( 4a 4 « I )

Firstly we show that E(C2> and E(C3) remain the same under 
all the three sampling policies if they are calculated for the
same design variables (m, m» k)»

E (Co) “ a-? i Bn + o 1 ...(4.4.2)4 t| X w 0^4

The expression for E<0 is
B0 - qe ©/<! - 6) ...(4.4.3)

where 6 =s exp(-Xk/R).
As discussed earlier in Section 4.2.5 of this chapter, due 

to the relationship between the binomial distribution and the
negative binomial distribution, the expressions? for (i - 0, 1)
remain same for all the three sampling policies if they are
calculated for the same values of n and m. The expression for 6 
is external to the sampling policy used. Hence E(C2> remains the 
same for all the three sampling policies.
Next,

E(C3) « a4 j S + a4 2 <D ” B> ...(4.4.4)
np0 6 npj

where S »   + —  , ,..(4.4.5)
1-0 qj

D =
k6 -j
—— + A k | p{-) +1-6 -I

k— - A k | pj
■*1 J

(4.4.6)
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We have just stated that q^ remains the same -for all the three 

sampling policies. We have also noted that the expression tor 6 

is external to the sampling policy used. Same is true tor A. The 

values pQ and p^ are known and are independent o-f the sampling 

policy used. Hence £<03) remains the same tor all the three 

sampling policies.

It now remains to compare E<Cj) under the three sampling 

policies it E(Cj) is calculated tor the same triplet (n, m, k>. 

Firstly under complete sampling the expression tor E(Cj) is given 

by

E (C j ) » (a-L + a2n) N ...(4.4.7)

© 1
where N ® ------- - + ..........

1 ”6 q j

Secondly under curtailed sampling the expression tor E(Cj) 

is given by

<aj + agHp) 0 (aj + ^^l*
1 1-6 qi „ . . (4.4.8)

where n^ (i = 0, 1) is the average sample number when the 

process is in state (i = 0, 1).

Phatak and Bhatt (1967) have shown that

ni(tully-curt) “ ni(semi-curt) “ n(uncurt!

(i » 0, 1)
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This result implies that
^^l * ful ly-curt ~ ^^1 ^semi-curt * ^^l^uncurt

...(4.4.9)
if these expected costs are calculated for the same values 

of (n, m, k) .

We therefore have
f ul ly-curt “ semi-curt ” *"*■ ^*uncurt

» ..(4.4.10)
if these costs are calculated for the same triplet (ns m, k).

This shows that fully-curtailed sampling is no more 
expensive than semi-curtailed sampling and semi-curtailed 
sampling is no more expensive than complete sampling for those 
cases where the optimal procedures yielded under the three 
policies are same.

Using the same argument as given in section 4.2.7 it can be 
shown that the above result holds for those cases also where the 
optimal procedures yielded under the three sampling policies are 
different.

Numerical Example
We consider the same example given in Section 2.3.4 of 

chapter II.

Let 88 $10.0, ap 581 $1.0, a^s* j 88 $100* ®3j,2 *
a4pi “ $10.0, a4,2 ° $15°®

Let X - 1, R 88 1000, p0 « 0.01, pj 155 $0.10
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For this combination of cost coefficients and systems 
parameters the optimal procedure yielded under complete sampling 
is
n = 37, m - 2, k - 350 with minimum ECPU ™ $ 0.5457.

The optimal procedure yielded under semi-curtailed sampling 
is n 46, k “ 342, m = 2 with minimum E(C> 1=3 $0.5127. The
optimal procedure yielded under fully-curtailed sampling is
n 23 42, k « 345, m = 2 with minimum ECPU « $ 0.5097.

Hence the percent improvement in the cost of semi-curtailed 
sampling over complete sampling is 6.0473, Whereas the percent 
improvement in the cost due to fully-curtailed sampling over 
complete sampling is 6.5970. The optimal procedures under the 
three sampling policies are obtained by the direct search 
technique given by Hooke-Jeeves <1961).
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C LISTING OF CHAPTER IV
SUBROUTINE OBJ3(AKE,NSTAGE,SUMN,A1,A2,A3,A4,A5,RATE,ALEMDA, 

1 PNOT,PONE)
DIMENSION AKE(10)

C FILE NAME IS NANDI2
C PROGRAM FOR ECPU SEMI CURTAILED SAMPLING MY MODEL 

WRITE(*,1) A1,A2,A3,A4,A5 1 FORMAT(ix,5FI0„4)
WRITE(*,3) ALEMDA,RATE 

3 FORMAT(IX,2F10-4)
WRITE($,3) PNOT,PONE 
SNOT=AKE(1)
SRNOT=AKE(1)
REJNOT=AKE(3)
WRITE(*,5) SNOT,SRNOT,REJNOT 

5 FORMAT(1X,3F10.4)
POWER=ALEMDA$SRNOT/RATE 
PPOWER=—POWER 
THEETA=EXP(PPOWER)
WRITE(S,7) THEETA

7 FORMAT(IX FI0.6)
MM=REJNOT
NT=SNOT-REJNOT+1
CALL BIN(PONE,MM,NT,CPR,CPL,PI)
QONE=CPR
WRITE(S,S)QONE8 FORMAT(i,X,F10»6)
MM=REJNOT
NT=SNOT—REJNOT+1
CALL BIN(PNOT,MM,NT,CPR,CPL„ PI)
QNOT=CPR
WRITE(#,8)QN0T
R=1/QQNE+THEETA/(1-THEETA)

C IR IS EXPECTED NO OF SAMPLES REQUIED TO DETECT SHIFT 
IR=R+0.5 
WRITEC#,9) IR

9 FORMAT(IX,13)
C COMPUTATION OF EXPECTED COSTS 

MM=REJNOT 
NT=SNOT—REJNOT+1 
CALL BIN(PNOT,MM,NT,CPR,CPA,PI)
PAO=CPA 
NN=SN0T+1 
MM=REJ NOT+1 
NT=NN—MM+1
CALL BIN(PNOT,MM,NT,CPR ,CPA,PI)
PRO=CPR
ASNO=SNOT*PAO+REJNOT*PRO/PNOT
MM=REJNOT
NT=SNOT—REJNOT+1
CALL BIN(PONE,MM,NT,CPR,CPA,PI)
PA1=CPA
NN=SN0T+1
MM-REJNOT+l
NT=NN-MM+1
CALL BIN(PONE,MM,NT,CPR,CPA,PI)
PR1=CPR
ASN1=SNOTSPA1+REJN0T £PR1/PONE
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WRITE(*,40) ASNO,ASNi
40 FORMAT(IX,'ABNO=',F10.4,'ASN1=',F10.4)

EOTI=(A1+A2*ASNO)fTHEETA/(1-THEETA)+(A1+A2*ASN1)/GONE 
ECi=ECT1/(IRtSRNOT)
EC2=A3*(QNOTSTHEETA/(1-THEETA)+i)/<IR*SRNOT)
ADALTA=(1-(1+POWER)*THEETA)/(POWER*(1-THEETA)) .
WRITE(*,35)ADALTA 35 FORMAT( ix, 'ADALTA=', F10.6)
D=THEET A*SRNOT*PNOT/(1-THEETA)+ADALTA*SRNOT *PNOT+SRNOTfPONE/

1 GONE—ADALTA*SRNQT*PONE
DS=THEET A *SNQT f PNOT/(1-THEETA)+SNOT*PONE/GONE 
WRITE(*,15)D,DS 

15 FORMAT(IX, 2F10.4)
C DS GIVES EXPECTED NO OF DEFECTIVES DETECTED IN SAMPLING 
C D GIVES EXPECTED NO OF DEFECTIVES PRODUCED 

EC3=(A4*DS+A5*(D-DS))/(IR*SRNOT)
T C=EC1+EC2+EC3 
SUMN=TC
WRITE (*,30)TC,EC1,EC2,EC3

30 FORMAT <IX,'TC=',F10„6,'EC1=*,F10.6,'EC2=',F10.6,'EC3=',F10.6)
RETURN 
END

SUBROUTINE 0BJ4(AKE,NSTAGE,SUMN,A1,A2,A3,A4,A5,RATE,ALEMDA, 
1 PNOT,PONE)

DIMENSION AKE(10)
C FILE NAME IS NANDI3
C PROGRAM FOR ECPU FULLY CURTAILED SAMPLING MY MODEL 

1 -formatT lx,5f 10.4)
write( *, Dal,a2,a3,a4,a5 

3 FORMAT(IX,2F10.4)
WRITE(*,3)ALEMDA,RATE 
WRITE(*,3)PNOT,PONE 
SNQT=AKE(1)
SRNOT=AKE(2)
REJ NOT=AKE(3)
WRITE(*,5)SNOT,SRNOT,REJNOT 5 FORMAT(ix,3F10.4)
POWER=ALEMDA*SRNQT/RATE 
PPOWER=—POWER 
THEETA=EXP(PPOWER)
WR I TEC*, 7) THEETA

7 FORMAT(1X,F10.6)
MM=REJNOT
NT=SNOT—REJNOT+1
CALL BIN(PONE,MM,NT,CPR,CPL,PI)
GONE=CPR 
WRITE(*,8)GONE

8 FORMAT(IX,F10.6)
MM=REJNOT
NT=SNOT—RE3NOT+1
CALL BIN(PNOT,MM,NT,CPR,CPL,PI)
GNOT=CPR
WRITE(*,8)QNQT
R=1/QONE+THEETA/(1—THEETA)
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C IR IS EXPECTED NO OF SAMPLES REQUIED TO DETECT SHIFT 
XR—R+O . 5 
WRITEt * ,9) IR 

9 FORMAT(1X, 13 )
C COMPUTATION OF EXPECTED COSTS 

NN=SNOT 
MM=REJNOT+l 
NT=NN-MM+1
CALL BINCPNOT^MMsNTjCPRyCPA,PI)
PIG=PI
ASNO=(1-QNOT)*(PNOTS(SNQT+1)-REJNOT)/(PNOT*(1-PNOT))+ 

i REJNOT*(1—PIO)/PNOT 
NN=SNOT 
MM=REJNOT +1 
NT=NN—MM+1
CALL BIN(PONE.MM,NT,CPR.CPA,PI)
PI1=PI
ASN1=(1—QONE)*(PONE*C SNOT+i)-REJNOT)/(PONE*(1-PONE)) +

1 REJNOT *(1-PI1)/PONE 
WRITE(*,40) ASNOjASNI

40 FORMAT <1X 5'ASNO=',F10.4,'ASN1=',F10.4)
ECT1=(A1+A2SASN0)*THEETA/(1—THEETA)+(A1+A2*ASN1)/GONE 
EC1=ECT1/(1R *SRNOT)
EC2=A3*(ONOT*THEETA/(1-THEETA)+l)/(IR*SRNOT)
ADALT A=<1-(1+POWER)STHEETA)/< POWER*(1-THEETA)>
WRITE(S,35)ADALTA 

35 FORMAT( i X , 'ADALTA=', F10.6)
D=THEETA*SRNOT*PNOT/(1-THEETA)+ADALTAfSRNOT*PNOT+SRNOT*PONE/

1 QONE—ADALT A * SRNOT * PONE
DS=THEETA*SNOT*PNOT/(1-THEETA>+SNOT*PQNE/GONE 
WRITE(*,15)D,DS 

15 FORMAT(IX,2F10.4)
C DS GIVES EXPECTED NO OF DEFECTIVES DETECTED IN SAMPLING 
C D GIVES EXPECTED NO OF DEFECTIVES PRODUCED 

EC3=(A4*DS+A5*(D-DS))/(IR#SRNOT)
TC=ECI+EC2+EC3 
SUMN=TC
WRITE ( * ,30)TC,EC1,EC2,ECS

30 FORMAT(IX,'TC=',F10.6,'EC1='.F10.6,'EC2=',F10.6,*EC3=',F10.6)
RETURN 
END

C FILE NAME IS DSP.FOR
C PROGRAM FOR E(C> OF MONTGOMERY MODEL FOR DOUBLE 
C SAMPLING POLICY

SUBROUTINE OBJ 7 (AKE,NSTABE, SUMN„A15 A2,A3,A4,ALEMDA,RATE,
1 PIE,NSTAT,PIN,NA1,NA2)

DIMENSION PIN(10),PZ(10),P(10,10),QR(10),ZP(lO),BZ(lO),ZB(10)
1 ,B(1Q,10) ,BST(10,10),CZ(10),ZC(10),C(10,10),D(1Q,10),
1 DST(10,10),ALPHA(10),GAMMA(10),A(10,10),BSTZ(10),T(lO,10),ZBST 
1 (10) „S(10,10) ,U( lO, 10) ,V( 10,10) ,BB( 10,10) ,AKE(5) ,ASNdO)

WRITEX*,5>
5 FORMAT(4X,'COST COEFFICIENTS')

WRITE(*,1)A1,A2,A3,A4 
1 FORMAT(1X,4F10.4)
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WRITE(S,3 >ALEMBDA ,RATE,PIE,NST AT 
3 FORMAT(1X,3F12,4S13)

WRITE<*,6><PIN(I>,I=i,NSTAT)
6 FORMAT <1X,7FB.4) 

m = AKE(l)M2 = AKE < 2)
BRNOT = AKE < 3)
WRITE(*,2) N1,N2„NA1,NA2,SRNOT 

2 FORMAT(1X,4I3,F6,2>
POWER = ALEMDA#SRMOT/RATE 
PPOWER =—POWER 
PZZ=EXP(PPOWER)
WRITE,7) PZZ7 F0RHAT(ix,F10.4>
NSTATE = NSTAT-1
DEND=1.-(1.-PIE)*INSTATE
MSNOT = SNOT
DO 10 J=1,NSTATE
Ml = J+l
M2 = NSTATE-J
CALL BIN(PIE,M1 ,M2,CPR,CPL,PI)WRITE(*,S> CPR,CPL, PI, j

8 FORMAT(1X,'CPR=',F10.6, *CPL=',F10.6,'PI=',F10.6,'J=',12
10 PZ(J) = Pit(1.—PZZ)/DENO

DO 600 I = i,NSTATE 
600 ZP(I)=0,

DO 20 1=1,NSTATE 
DO 20 J=1,NSTATE 
IF(I—J >30,31,3230 P(I,J) = PZ(j)/(l.-PZZ)
SO TO 20

31 SPZ=0.
DO 40 KK=1,I 

40 SPZ = SPZ+PZ (KK)
P<I,3> = SPZ/Cl.-PZZ)
SO TO 20

32 P(I,J>=0.
20 CONTINUE

T(1,1)=PZZ
DO 12 I =2,NSTAT
K=I-1

12 T (1, I) = PZ(K)
DO 13 J=2,NSTAT 
K=J—1

13 T (J, 1)=ZP(K)
DO 14 1=2,NSTAT 
K=I-1
DO 14 J=2,NSTAT 
K1 = J-l

14 T(I,J > = P(K,K1>
CALL PR0BR(N1,N2,NA1,NA2,PIN,NSTAT,QR,ASN)
WRITE($,301)(QR(I>,I = 1,NSTAT>

301 FORMAT(IX,7F10.6)
DO 60 1=2,NSTAT 
DO 60 J=1,NSTAT 
IF(I—J)61,62,63

61 S(I,J)«QR(I)»T(l,J)+<i-QR(I))*T(I,J)
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BO TO 60
62 SCI,3)=QRCI) ST(1,1) + (1—QR(I))#TC I , I )

60 TO 60
63 SCI,3)=QRCI)STC1,3)
60 CONTINUE

DO 326 3=1,NSTAT 
326 SCl,3)=TCi,3)

WRITE C #, 302 >
302 FORHATCIX,'MATRIX SC 1,3)')

WRITEC#, 303 > CCSCI,3),3=1,NSTAT),I=1,NSTAT)
303 FORMAT CIX,7F10.6)

DO 330 1=1, NSTAT
DO 330 3=1,NSTAT
IF<I—J)331,332s331

331
GO TO 330

332 UCI,3)=SCI,3)-1
330 CONTINUE

WRITEC *,311)
311 FORMAT!IX,'MATRIX UCI,3)')

WRITEC#,312)(CUCI,3),3=1,NSTAT),1=1,NSTAT)
312 FORMAT!1X,7F10.6)

DO 321 1=1,NSTAT 
DO 321 3=1,NSTATE

321 VCI,3)=UCI,3+1)
DO 322 1=1,NSTAT

322 V(I,7)=1 
WRITEC *,323)

323 FORMAT!IX,'MATRIX VC I„3)')
WRITEC # ,324) CCVCI.3),3=1,NSTAT),1=1,NSTAT)

324 FORMAT(1X,7F10.6)
DO 325 1=1,NSTAT 
DO 325 3=1,NSTAT

325 ACI,3)=VCI,3>
N=NST AT
CALL INVRS C A,BB,N)
WRITE!*,97)

97 FORMAT C1X,'INVERSE MATRIX')
WRITE!*,98) <(BB(1,3),3=1,NSTAT),1=1,NSTAT)

98 FORMATC1X,7F10.6)
3 BBC 1,3) IS INVERSE OF AC 1,3)

DO 81 3=1,NSTAT
81 ALPHA C 3)=BB C NSTAT,3)

WRITEC #,150)
150 FORMAT C1X,'VECTOR ALPHA')

WRITEC#,82) CALPHAC3),3=1,NSTAT)
82 FORMATC1X,7F10,6)

3 COMPUTATION OF GAMMA
ADALTA= C1.-C1.+POWER)#PZZ)/C POWER# C1„-PZZ)) 
WRITEC#,160)

160 FORMAT C1X,'ADALTA')
WRITEC*,82) ADALTA
BAMMAZ=ALPHA C1)#PZZ+ALPHAC1)SADALTA# C1-PZZ> 
WRITEC*,170)

170 FORMAT C1X,'BAMMAZ')
WRITEC*,82) GAMMAZ 
DO 90 1=2,NSTAT
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13=1-2
TERM3=0
TERH4=0
11=1-1
12=1+1
IF(Il-l) 101,102,101

101 DO 100 J=1,13 
K=J+1

lOO TERH3=TERM3+ALPHA(K)*P < J,11>
IF(I1—6) 102,104,102

102 DO 110 K=I,NSTATE
110 TERH4=TERM4+P(I1,K)
104 SAHMACI1)=ALPHA<I)*P(I1,I1)+(1.-ADALTA)8ALPHA<1)«PZ(Il)+

1 <1.-ADALTA)8TERM3+ALPHA(I>8TERM48ADALTA 
WRITE ( i ,82) SAMMA (ID 

90 CONTINUE
C COMPUTATION OF EXPECTATIONS 

TERM7=0
DO 429 1=1,NSTAT

429 TERM7=TERM7+ALPHA(I)*ASN(I)
EC1 = < A1+A2STERM7>/SRNOT 
TERM5=0
DO 120 1=1,NSTAT

120 TERM5=TERM5+QR(I)tALPHA(I)
EC2=A38TERM5/SRN0T
TERM6=0
TERM6=TERM6+PIN(1)86AMMAZ
DO 130 I=2,NSTAT
J=I~1

130 TERM6=TERM6+PIN(I)8BAMMA(3)
EC3=A48TERM6

ETT* 1 JiCPOj.pf'T "“Gw JL » > ClLr-w1

SUMN=TC
WRITE(*,140)TC,EC1,EC2,EC3

140 FORMATdX,'TOTAL CQST=',E18.B,'EC1=',E18.8,'EC2=',E18.8,
1 'EC3=',E18.8)

RETURN
END

C FILE NAME IS DSP1
C PROCRAM FOR COMPUTATION OF POWER AND ASN FOR DOUBLE SAMPLIN6 

SUBROUTINE PROBR(N1,N2,NA1,NA2,PIN,NSTAT,OR,ASN) 
DIMENSION PIN(IO),0R(10),ASN(10>
DO 50 1=1,NSTAT 
PROB=PIN(I)
L1=NA1+1
L2=NA2+1
SUM=0
DO 51 ND=L1,NA2 
M1=L2—ND1 
NT1=N2—M1+1
CALL BIN(PROB,Ml,NT1,PR1,PA1,P)
M2=ND1+1 
NT2=N1—M2+1
CALL BIN(PROB,M2,NT25PR2,PA2,PI)
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SR=PR1*PI
SUM=SUM+SR 

51 CONTINUE
M5=L2
NT5=N1-M5+1
CALL BIN(PROB,M5,NTS,PR5,PAS.P3) 
GR(I)=PR5+SUM 

50 CONTINUE
WRITE(*„70) (0(1) ,1=1,NSTAT)

70 FORHAT(IX„7F10.6)
C COMPUTATION OF AVERAGE SAMPLE NUMBER , 

DO 80 1=1,NSTAT 
PROB=PIN(I)
M3=L1
NT3=N1—Ll+1
CALL BIN(PROB,M3 , NT3,PR3,PA3,P1) 
M4=L2
NT4=N1—L2+1
CALL BIN(PROB,M4,NT4,PR4 ,PA4,P2)
T=PR3-PR4
ASN(I)=N1+(N2*T)

80 CONTINUE
WRITE(*,70) (ASN(I) ,1=1,NSTAT)
RETURN
END

C FILE NAME IS FCSP
C PROBRAM FOR E(C) OF MONTBOMERYS MODEL USING FULLY 
C CURTAILED SAMPLING POLICY

SUBROUTINE 0BJ7 (AKE,NSTABE,SUMN,A1,A2,A3.A4,ALEMDA,RATE,
1 PIE,NSTAT,PIN)

DIMENSION PIN(IO),PZ(10)»P(10,10),QR(10),ZP(10),BZ(10),ZB(10)1 ,B(10,10) , BST (10,10) ,CZ( i0),ZC(10) ,C( 10,10) ,D( 10,10) ,
1 DST(10,1G),ALPHA(lO),BAMMA(10),A(10,10),BSTZ(10)„T(10,10),ZBST1 (10),S(10,10),U(10,l6),V(10,10),BB(10,10),AKE(5),AASN(10)

WRITE(*,5)
5 FORMAT(4X,* COST COEFFICIENTS')

WRITE(#, 1) A1 , A2, A3, A4
1 FORMAT(IX,4F10.4)

WRITE(*,3)ALEMBDA,RATE„PIE,NSTAT 
3 FORMAT(IX,3F12,4,13)

WRITE(«„6)(PIN(I),1=1,NSTAT)
6 FORMAT(IX,7F8.4)

SNOT = AKE(l)
SRNQT = AKE(2)
REJNOT = AKE(3)
WRITE(*,2)SNOT,SRNOT,REJNOT

2 FORMAT(IX,'SAMPLESIZE =',F10,2,'INT SAM RANGE =',F10„2,'REJ
1 NUM=',F10.2)

POWER = ALEMDA*SRNQT/RATE 
PPOWER =—POWER 
PZ Z=EXP(PPOWER)
WRITE($,7) PZZ

7 FORMAT(1X,F10.4)
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NSTATE = NSTAT-1
DEr'40= 1. - (1. —PIE) * INSTATE
MSNOT = SNOT
DO 10 3=1,NSTATE
Ml = 3+1
M2 = NSTATE—J
CALL BIN(PIE,M1,M2,CPR,CPL,PI)
WRITE(#,B) CPR,CPL,PI,3

8 FORMAT< 1X ,' CPR=' ,F10.6, ' CPL=' ,F10.6, 'PI = ' ,F10.6,'3=' , 12)
10 PZ<3> = PI*<1„-PZZ)/DENO

DO 600 I = 1,NSTATE 
600 ZP(I)=0.

DO 20 1=1,NSTATE 
DO 20 J=1,NSTATE 
IF(I—J>30,31,32

30 P<I,3) = PZ(j J/(1PZZ)
GO TO 20

31 SPZ=0.
DO 40 KK=1,I 

40 SPZ = SPZ+PZ(KK)
P(I,3> = SPZ/(1=—PZZ)
GO TO 20

32 P(I,3)=0.
20 CONTINUE

T(1,1)=PZZ 
DO 12 I =2,NSTAT 
K=I —1

12 T( 131) = PZ (K)
DO 13 J=2,NSTAT 
K=J—1

13 T(J,1)=ZP(K)
DO 14 I=2,NSTAT 
K=I —1
DO 14 J=2,NSTAT 
K1 = 3-1

14 T(I,3) = P(K,K1)
WRITE(&,15)

15 FORMAT(1XTRANSITION MATRIX)
WRITE(tvll)((T(I,J>,J = 1,NSTAT),1=1,NSTAT)

11 FORMAT(IX,7F10.6)
51 = SNOT
52 = SRNOT
53 = REJNOT
CALL PROBR(SI,S2,S3,PIN,NSTAT,QR)
WRITE(*.301)(QR(I).1 = 1,NSTAT)

301 FORMAT(1X,7F10.6)
DO 60 I=2,NSTAT 
DO 60 3=1,NSTAT 
IF(I—J)61,62,63

61 s(i,j>=QR(i)*T<i,j)+(i—QR(i) >*t<i,j>
SO TO 60

62 S<I,3>=QR{I)*T(1,I>+{1-GR<I> )*T<I,I)
GO TO 60

63 S<I,J)=QR(I)§T(i,J)
60 CONTINUE

DO 326 J=l,NSTAT 
326 S(1,J)=T(1,J)
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WRITE(#,302)
302 FORMATUX, 'MATRIX S!I,J) ' )

WRITE!#,303) ( (S( I ,J) ,.J=1,NSTAT) ,1=1,NSTAT)
303 FORMAT!1X,7F10.6)

DO 330 1=1,NSTAT
DO 330 J=1,NSTAT
IF(I-J)331,332,331331 U!I,J)=S!I,j)
60 TO 330

332 U!I,J)=S!I,J)-1
330 CONTINUE

WRITE!#,311)
311 FORMAT!IX,'MATRIX U!I,J>')

WRITE!#,312)((U(I,J),J=1,NSTAT),I=1,NSTAT>
312 FORMAT(1X,7F10.6)

DO 321 1=1,NBTAT 
DO 321 J=1,NSTATE

321 V!I,3)=U!I,J+I)
DO 322 1=1,NSTAT

322 V!I,7)=1 WRITERS,323)
323 FORMAT!IXMATRIX V!I,J)')

WRITE!#,324) !(V(I,J),J=1,NSTAT),1=1,NSTAT)
324 FORMAT(IX,7F10.6)

DO 325 1=1,NSTAT 
DO 325 J=l,NSTAT

325 A! I, J)=V! I, J)
N=NSTAT
CALL INVRS!A,BB,N)
WRITE!#,97)

97 FORMAT(1X,'INVERSE MATRIX')
WRITE!#,98) !!BB!I,J),J=1,NSTAT),1=1,NSTAT)

98 FORMAT!1X,7F10,6)
C BB!I,J) IS INVERSE OF A!I,J)

DO 81 il=l, NSTAT
81 ALPHA!J)=BB!NSTAT,u)

WRITE!#,150)
150 FORMAT!1X,'VECTOR ALPHA')

WRITE!#,82) !ALPHA!J),J=1,NSTAT)82 FORMAT!ix,7Fl0,6)
C COMPUTATION OF GAMMA

ADALTA=!1.-!1.+POWER)#PZZ)/!POWER#!1.-PZZ)) 
WRITE!#,160)

160 FORMAT!1X,'ADALTA')
WRITE!#,82) ADALTA
GAMMAZ=ALPHA!1)#PZZ+ALPHA!1)#ADALTA#!1-PZZ) 
WRITE!#,170)

170 FORMAT!1X,'BAMMAZ')
WRITE!#,82) BAMMAZ 
DO 90 1=2,NSTAT 
13=1-2 
TERM3=0 
TERM4=G 
11=1-1 
12=1+1
IF!I1—1) 101,102,101 

101 DO 100 il=l, 13
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K=J+1
100 TERM3=T£RM3+ALPHA(K)tP < J,11)

IF(I1—6) 102,104,102 
102 DO 110 K=I,NSTATE
110 TERM4=TERM4+P ( 11, K)
104 GAMMA(11)=ALPHA (I)*P(I1,I1)+ (1,-ADALTA)%ALPHA(1)*PZ(I1>+

1 «1.-ADALTA)STERM3+ALPHACI)*TERM4*ADALTA
WRITE (t, B2) BAMMA(ID 

90 CONTINUE
CALL NEAR< Si,S3,PIN,NSTAT,GR,AASN)
WRITE<*,301) (AASN(I),1=1,NSTAT)

C COMPUTATION OF EXPECTATION 
TERM7=0
DO 429 1=1,NSTAT

429 TERM7=TERM7+ALPHA(I)*AASN(I)
EC1=< A1+A2*TERM7)/SRNOT 
TERM5=0
DO 120 1=1,NSTAT

120 TERH5=TERM5+QR(I)*ALPHA(I>
EC2=A3*TERM5/SRN0T
TERM6=0
TERM6=TERM6+PIN(1)*BAMMAZ
DO 130 I=2,NSTAT
J=I-1

130 TERM6=TERM6+PIN(I)#GAMMA(J )
EC3=A4*TERM6 
TC=EC1+EC2+EC3 
SUMN=TC
WRITE(*,140)TC,EC1,EC2,EC3

140 FORMAT(IX,'TOTAL COST=',E18.B,'EC1=',E18.3,'EC2=',E18.8,
1 'EC3=',E18„8)

RETURN
END

C FILE NAME IS FCSP1
C PROGRAM FOR ASN OF FULLY-CURTAILED SAMPLING POLICY 

SUBROUTINE NEAR < S1,S3,PIN,NSTAT,QR,AASN)
DIMENSION PIN(IO) ,QRC10),AASN(10)
PROB=PIN(I)
MM=S3+1
NN=S1
NT=NN—MM+1
CALL BIN(PROB,MM,NT,PR,PA,PI)
WRITER,3) PI 

3 FORMAT(1X,F10,6)
S7=S1+1
AASN(I)=(PIN(I)*S7—S3)*(1-QR<I>)/(PIN(I)*<1-PIN<I)))+<S3*(1-PI>) 

1 /PIN(I)
WRITE!&,7) (AASN(I),1=1,NSTAT)

7 FORMAT(1X,7F10.6)
50 CONTINUE

RETURN 
END
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C FILE NAME IS FCSP2.F0R
C PROGRAM FOR PROBABILITY OF REJECTION FOR np-CHART USINB 
C FULLT-CURTAILED SAMPLING

SUBROUTINE PROBR(T1,T2.T3,PIN,NST.SR)
DIMENSION PIN(IO),SR(10)?QR(10>
DO 50 1=1?NST 
PROB=PIN(I)
MM=T3
NT=T1-T3+1
CALL BIN(PROB,MM,NT,PCI,PC2,PIND)

50 SR(I)=PC1 
RETURN 
END

L4.ll


