CHAPTER IV
Use of Curtailed Single Sampling and Double Sampling Plans in the

Economic Design of np—-Control Chart

4.1 In Chapter I1 the economic model of np-control chart is
constructed using more realistic assumptions a&s compared to the
assumptions of Duncan (19856, 1971 as well as knappenberger and
Grandage (1969) models. The aim of the construction of our model
is to make Lt more realistic anmd bhence more applicable. The
improvement of the model under study over the earlier models is
in terms of increasing the applicability of the model.

fnother way of improving the economic model is to make 1t
cheaper from cost point of view. In this chapter the economic
model is improved frgﬁ the cost point of view by using curtailed
single sampling and double sampling policies in place of the
traditional complete gingle sampling policy. The cost models used
for comparing the performance of various sampling policies are
(1) the EKnappenberger and Grandage’'s (1969) model (1i) the model
developed in chapter I1.

In section 4.2 fully-curtailed single sampling 18 used in
place of complete single sampling in  the Knappenberger and
Brandage’'s (1969) model. Theoretical as  well as numerical
comparisons are made between the performance of the complete, the
semi~curtailed and the fully-curtailed single sampling policies.
The results indicate that the semi-curtailed sampling is no more

@xpensive than the uncurtailed sampling and the fully-curtalled
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sampling is no more expensive than the semi-curtailed sampling.

In section 4.3 the double sampling policy is used in place
of the single sampling policy in the Knappenberger and Brandage’'s
model. It is observed that the double sampling policy  is more
appropriate than the complete as well as curtailed single
sampling policies from the cost point of view.

In section 4.4 the curtailed single sampling policies are
used in place of the complete single sampling policy in  the
single assignable cause model developed by us in chapter 1I. The
conclusions derived are the same as those found for the

Enappenberger and Grandage’'s model.

4.2, Use of Fully-Curtailed Sampling Plan in the Economic
Design of np—Control Charts.

4.2.1 Montgomery Heikes and Mance (19785) developed the
economic design of np~control chart using the Knappenberger and
Grandage’'s (1969) model for %-chart. Montgomery et al. developed
the expected cost model using the complete sampling plan as a
gsampling policy. Williams, Looney and Feters (1985) developed the
expected cost model using the semi-curtailed sampling plan as a
sampling policy. The expected cost model developed by Williams et
ale (1985) is analogous in all other respects teo the complete
sampling model developed by Montgomsry et al. (1978, The type of
sampling used by Williaﬁa et al. corresponds to the sampl ing
plan—2 of Pbhatak and Bhatt (1967) in which sampling ls stopped if
either m nonconforming wunits are  observed or n Ltems are

inspected. The process is declared to be in control if n items
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are inspected. The process is declared to be out of control if m
nonconforming units are observed.

We develop an expected cost model using the fully—-curtailed
sa@pling plan as a sampling policy. The expected cost model
developed by us is analogous in all other respescts to the
complete sampling model developed by Montgomery et al.{(1975). The
type of cﬁrtailed sampling used by us corresponds to the sampling
plan—-3 of Phatak and Bhatt (1967) in which sampling is stopped if
either m nonconforming units are observed or g conforming units
are observed. The processe 1s declared to be in the in-control
state if g conforming wunits are observed. The process is declared

to be out of control if m nonconforming units are observed.

4.2.2 The Production Process and the Sampling Policy
The production process to be cdntrulled starts in the

in~control state in  which it prodoces a  known acceptable
proportion, pey. of nmnamnfﬁrming units. The process as tise
passes %ay deteriorats and astart producing one of e
nonacceptable proportions p; (1 = 1, &y .. 48). Thus there are s
out of control states pg(i = 1, 2, ... %) where p; > pgj.q (1 =
1o 2y vue a8)e Transition +to the out-of-control states is
governed by a Folisson Process with assignable causes occurring at
a rate » per unit time. This means that the time wntil the
process  remains in  the in-comtrol state before shifting to an
put-of-control state is an exponential random variable.

Transition from an out-of-control state Pi to anaither

out~of-control state P is possible provided the direction of
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movement is towards further quality deterioration i.e. transition
from p; to p; is posaible if Pj = Py- The process is not self
correcting. Once a shift to out-of-control state has occurred,

pternal intervention is required to restore the process to the
in-contrel state.

The sampling and inspection procedure of fully-curtalled
sampling plan is as follows.

After the production of every k units, units are inspscted
one by one until g conforming wnits  are observed or om
nonconforming wiits are observed. ¥ g conforming wunits are
observed, the process is declared to be in Sontrol and the
production continues. I+ m nonconforming wnits are observed, the
process is declared to be out of control, the production is
halted and a search for the assignable maus&'iﬁ undertaken.

We want te find the optimal values of the design variables
gs m and k which minimize the total expected cost per unit of

controlling the process between two successive samples.

4.2.3 The Expected Cost Model
The total expected cost per wunit of the product associated
with controlling the process betweesn two sucoessive samples can

be expressed as

i

(C) = E(Cy) + E(Cm) + E(Cs) veo (421D
where E(Cy) is the expected cost per unit associated with
sampling and inspection, E(C,) is the expected cost per unit

associated with investigating and correcting the process, and



E(Cz} is the expected cost per unit of producing a nonconforming
unit.
Computation of E(Cy)

=} —
E(Ci) = (&g + an L aing)/k
“A=0 - cen(4.2.2)

aq = the fixed cost of sampling,

the variable cost per unit of sampling,

&
N
{5

®; = the steady state probability that the process is in state Py
at the time the sample is takemn (1 = O, 1, .., 84
My = the average sample number when the process is in state Py

(i = 0, 1, auuy 8.

Computation of E(Cs)

Let the cost of investigating and correcting the process
plus the cost of lost production while searching for and possibly
correcting the assignable cause be a random variable VYV  with
E(V) = aw. It is assumed that the distribution of V does not
depend upon the true process fraction of nonconforming units.

Hemce the cost of investigating real and false alarms is the sams.

E(Cn) £ /k

2 (Cm) ™ A R

20 7R iEt N e (4.2,
where

8z = the average cost of investigating the process including the

cost of lost production,
qy = the probability of concluding that the process is out of

control when it is in state p; (i = 0, 1, ..., 8.
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Computation of E(Cg3)

&

E(ng) w <'.'~.\4 iz.gol"iﬂi .
vun (B2 4)

where

ag = the penalty cost of producing a nmnxnﬁfurmimg uwrdt,

ri = the steady state probability that the process is in state pj

at any point of time (4 = 0, 1, ...y ).

Thus the total expected cost per wnit is given by the

expression
a; + am B aing Y - U=
1 2 j=p il 3 i%0 ifi
9
E{C) == —-M—-nnw-um—-m-:n-mum-mun—unmwnn PR X dl]- i_:féc)ripi
k: k
L) (‘(l‘u:v?::?&;)
aytans’ D ax a’'q
B o e s s s o R et S~ WA L =)
k k 4 = L

LI (4‘»3:&)

where ¢. o, s, R are column vectors.

The cost coefficients a;(i=1,2,3,4) and the vector of
fraction of nonconforming units p are known and are independent
of design variables (g, m, k)., The probability vectors q, <. rand
the veotor i are functionally related to the design varliables
(g, my; k). In the next two sections we develop the expressions

for the vectors «, r, o and f.

4.2.4 The Probability Vectors 4 and r
Wy (1= 0, 1, ..u, ®) is the steady state probabllity that

the process is in state p; at the time the sample is taken. To

)
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abtain these steady state probabilities, the transition
probability matrix B is reguired. The elements of B, say bij!‘
represent the transition probabilities from p; to P guring the
production of k uwunits between two successive samples. Define pij
as the probability that the process shifts directly from the
state p; to state Pj during the production of k units between two
successive samples. Suppose R oumite are produced per o wunit time.
Thern the probablility that the process remalns in the iln-control

wtate during the production of b unites is

k/R

| s
=1 = | % e At dt = exp (-ak/R)
J
o

Poo

won(BaRBa7)
The production of &k units takes kK/R hours.
The probablility that the process shifts from an in-control
state p, to any of the s out of control states Py, Poe veo sPg
during the production of k unite is

"y

LS p(:)o g o EE:‘HF)(‘“":M%/I‘?\') nnu(‘qﬂa:uui‘:g)

We shall smploy the method of Knappenbarger and Grandage
(196%) for distributing this probability. Using Enappsnberger and

Brandage’ s method we define

o N e
¢ :;’ y wd(y ~ my®d
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The probability distribution {Pmig Prms eeny Fagd r@pﬁgﬁmnt%
the probability of shift from state Py to any other state P

directly during the production of k units.

Wee further define,

Poj /7 (3~ Pgy? if J o» i o 0

- & - e s ke

Pij = 4o Pax /(1" Pgg) if =0
- Q if j ~ i » 0

sveald.2.10)

We now define the elements of mabtrix B. When 0 2 j « i, bij
is the probability that the process is in state p; at the time of
mth sample and has shifted to & better sitate Pj at the timg of
(m+i)st sample., This is the probability of detecting an out-of-
sontrol state on mth sample timgs the probability that the

process shifts from p, to state Pj during the production of k

units. That is

bij = 93Ppj ‘ if 0 %4 <4

wra(4.2.11)
By similar argument we write
bij = AiPg; * (1 - qy?} Pjj if § » 1
‘ e (4.2.12)
This is the probability that the state p; is detected at the
time of mth sample and the process has shifted from state p, to

state Pj at (m+ll)st sample plus the probability that the state



p; is not detected at mth sample and the process further

deteriorates from Py to Pj at (m+l)st sample.

Big = @iPoy * (1 = A3)Pyy if iy 0
s (L. LE)
Finally
':"’CJ_)' a p(’.’)_‘j if J = Ly 2e0auy B

eon(4a2a14)

t

The matrix B is the transition probability matrix of an
irreducible, aperiodic, positive recurrent Markov Chain. Hence
there exists a vector g such that

a B o og ne (4,2,15)
whears ith element =1 of vactor 4 is the steady shate
unconditional probability that the process is in state p; at the

time the eample is taken, regardless of the initial state.

We can find g by solving any 8 of the (s+l) sgoguations

8
(4.2.13) along with the restriction 2 a; = 1.
pRE

o

We now define the alements of vector p where ry (1 = 0, 1,

sang B) is the steady state probability that the process is in
state p; at any point of time. First consider r,. The probability
rro depends on the probability’that the process ﬁﬁartﬁ in state p,
at the time of mth sample and remains in the same state until
(mti)at sample, and the probability that the process starts in
state p, at the time of moth sample and shifts to an oubt-of-
control state until (m+llst sample. Thus,

r + Bl = Pog) e (4.2.16)

o ® 94Poop
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where A is the average fraction of the time that elapses before
the shift occurs, given that the shift occurs betwsen mth and
(m+l)st sample.

Duncan (1934) has shown that

1~ (1 + Wk/R) exp(~nk/R}

(Wk/RILL ~ exp(~-Ak/R)] ’ aea {42,172

We assume that the average fraction of time the process
spends in the lower state when a transition to a higher state is
made is the same as A.

The probabilities r; (4 = 1, 2, ..., ®) d@ﬁ@ndﬁ on  the
probability that the process is in state p; at the time of mth
sample and stays there wuntil (m+l)st sample, the process is in
some better state p, (kK = 0, 1, 2, ..y d=1) at the time of mth
sample and shifts to state Py before (mtl)est sample, and the
probability that the process is in state p; at the time of mth
sample and shifts to some higher state P (3 = dA4+ly waews B
before (m+llst sample. Thus,

y
-

&
Fy = agpig (1 - A |,\.;'f";¢,"‘k""h':i. + Ajm%uf-laibij
(i = 1, 2, wauy ) ven(4.2.,18)

4.2.5 The Vectors q and n

et Y denote the number of wnits sampled when mth
nonconforming unit is observed.

l,et Z denote the number of units sampled when gth conforming

unit is observed.
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Then Y has a negative binomial distribution wlth

probability function

-..1 -
Qi (y) = ¢ ;_1 ) PP (4epg )Y e (4,2.19)
vy = my, Mmtl, weay N
. i .
) o qi ==yg‘“q1<y) unn(‘l‘u-u‘ﬁ‘ugo)

i 0919 nungﬁ

FEN
3
§

where oq; represents the probability of concluding that the
process is out of control when it is in state pg; (1 = 0,1,...,8).

Z has a negative binomial distribution with the probability
function

z—1 —
sy(2) = ( ) (4 - p¥ piTd can (4.2.21)

g—-1
ooy Orlyeaagn
Taking m+tg = n+l the average sample number, ﬁiywhﬁn the
process is in state p; is

- n v=i.  n - n z—1 v
Ay = 2 yC pMil-p )™ 4 & o2 Y (1-py ¥ piTe
1 y“my -1 pi F 1 pAlul g—.i pl p,l
.i- = Qg 15 unug‘.‘ﬁ» uuu(q'ufzu.’afz)

The simplified form of ﬁi as given by Shah and Phatak (1972)

is
_ Py ntl)-m m - " T
Nj = (1=gy) e g - - M pT (L=-pHn™M J
1 in
pi(i-p;) py b
I = Oy 1y weny® ena 4. 2.23)
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Fatil (1960) showed that the expression for o; remains the sane
under  wuncurtailed, semi-curtailed and fully-curtailed sampling
policies and is

A n ol - - - o
qi wdgm { d ) pi (4 pi) ano (A2 24

d o= 0.l wuny®

This equivalence is due to tgéprela%iQNﬁhip betwaen the
gistribution functions of the binomial distribution and the
negative binomial distribution. This relationship was also
established by Morris (1963) independently.

Thus for all the sampling policies ith element o; of vector
q is given by a common expression (4.2.24).
4.2.6 Solution Method and Sample Example

We have used Hooke-~deeves’' search procedure explained in
Bection 2.3.4 to find the optimal values of the design variables
(gy my k) which minimize the expected cost per unit of  the
product given by expression (4.2.6). The search technique gives
the optimal values of ny, m and k. One gets the optimal value of ¢
using the relation g = n - m + 1. The detalls of this procedure
are well sxplained in chapter I1.

We consider an example presented in Table 2 of Williams et

al. (1985).

Let ay = %1, an = $0.1, am = $100, ag = %10
L@‘t )\ = 15 R = 1‘:“:’0;1 H = 0-1:‘5(:?'7!' & = b .
Let

(pc)p pis ng p:s; pq'g pag pb) s (nC’iy ni:)gg uO‘Q‘p n(:’ag uié’; 53:25 ué’(’,‘)
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For this combination of cost coefficients and systems

parameters, the search technigque vielded the Jfollowing optimal
procedure
g = 7, m o= 2, kom 19 with minimuwm  EBE(C) = $0.4069.
1.2, after svery production of 19 units, one inspects the units
one by one wuntil 7 confarming uWunits are observed orF 2
ronconforming units are observed. In the first case the process
i declared to be in control and in the second case the procoess
is declared to be out of contrel.

For this example the optimal control procedure yielded under
semi-curtailed sampling is n = 8, m = 2, k = 20 with minlmum
E(C) = #$0.4118. The optimal control procedure vyielded under
complete sampling is n = B, m = 2, k = 20 with minimum
E(C) = $0Q.41186.

This indicates that the wuse of semi-curtalled sampling in
place of complete sampling provides an improvement of 0.0003
whereas the use of fully-curtailed sampling in place of complete
sampling provides an improvement of 0.0049,

4.2.7 Comparision of Complete, Semi-Curtailed and Fully-

Curtailed Sampling Scheme.

(A) Theoretical Comparision

We have seen earlier that the probability vector q ig the
same for all the three sampling policies. The vector 4 depends
upon the vector E and the tramnsition probability matrisx (ﬂij)
which dis the same regardless of which sampling policy is used.

Tharefors the vector ¢ is the same for all the three sampling

policies. Hence E(Cy) is the same for all the three sampling
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policies. The probability vector r depends wupon the vector 5., 4
and the transition probability matriux (pij)" The vector ¢ is the
same for all the three sampling policies, The matrix
(Pij) and A are external to the type of sampling policy. Hence
vector r remains the same for all the three sampling policies.
The vector P is assumed to be known. Hence E(C.) ié the same for
all the three sampling policies.

It now remains only to compare E(Cy) under the three sampling

policies.

For complete single sampling
E(Ci) B (&\1 o azn)/k uup(anguzﬁ}
For both the types of curtalled single sampling

&5

B(Cy) = (ay + ap E ag fg)/k e (4.2.26)

The expression for ﬁi under fully-curtailled sampling is
given by (4.2.22) and (4.2.2%). The expression for ﬁi under semi-

curtalled sampling is glven by

=1
M: = n & (
L =0

- n d n-d n y-=1 m Y=
o Ypgti-py) + yzmy (mwi) py (I-py)

which FPhatak and Bhatt (1967) have shown Lo be equal to

m—=1 n cl m nt+l .
o o & DT o Lol B , - s PIPRNSRS y B R
ndgﬁ( d Ypy¢l-py?d 3 (m/pl){l dﬁﬂ( o >y picl-py)
(i = 0, 1, wcena8) ena {AL2.27)

Fhatak and Bhatt (1967) have also shown that

ﬁi(fullywmurt) £ Ny (gemi-curt) & D cwn (4.2.28)

(i = Oy 1o wuoy®)
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This result and the fact that & @y = 1 implies that
i=mQ

E(Ci)fu11y~curt i E(Ci)ﬁemi—aurt & ECCy ) hncurt
aaa{4.2.29)
if these expected costs are calculated for the same values of n,
mg ke

This leads to a conclusion that

E<C)fu11ywcurt R geni—curt * B Gneurt

wnx (42 E0)
if these total expected costs are calocwlated for the same values
of ny, my, k.

This shows that the fully-curtailed sampling is no more
@gp@nﬁive thamn semi-curtalled sampling and the senl-curtalled
sampling is no more expensive than uncurtailed sampling for those
cases whers the optimal procedures yielded wnder the three
policies are the same.

We row show that the same result holds for those cases also
where the optimal procedures yielded under the fthree sampling
policies are different.

s and (ng, mg, Kg) represent

Lat’(nu, Mys Kyde (Ngy Mgy k
the optimal procedures under the wuncurtailed, the ﬁemiwcuftailmd
and the fully-curtailed sampling policies respeutiveiy.

Let E (ny, my k), Eg(ny my k) and Eg(ng m, k) represent the
gxpected cost per unit of the product under uncurtailed, semi-~

curtailed and Ffully-—curtailed sampling policies respectively. It

is Clear from the concept of optimality that



Egny my k) for all n, m, k.

| 28

E,F(n{;, m,;, P‘F)

aeas {A.2.31)

Eglngs mge kg) 2 Egln, my k) for all ny, my k.
won (A 2.32)
Eqings mye k) 2 E (ny my k) for all n, my, k.

van {4, 2,33
We therefore have,

Egtngs mea kgl 2 Eplngs mga kg) by (4.2.351)

i

EgiNgs Mgs kg) by (4.2.30)

E.{n

& (Nys ) by (4,2.32)

fr-

EE(ngs mya k) by (4.2.30)
Thus,

Eglngs mga kg) & E (0, my. k)

i

Ef(nfg mey kg
cuo (4,2.34)
Williams et al. (198%5) theoretically established the second
part of the ineguality (4.2.30) while comparing the semi-
curtailed sampling scheme with the uncurtailed sampling scheme.
Using this inequality they arrived at a conclusion that the semi-
curtailed gampling s hemne is no o more expensive than the
wnourtalled sampling scheme if  the optimal design variables
vielded uwunder these two schemes are the same. ﬁut they could not
establish theoretically that the same result holds even if the
optimal design varliables vielded under the two policies are
differant.
Furthermore, in their recent paper (1990) appearsed in the
dJournal of Quality and Technology where they have introduced the

wse of Ffully-curtailed sampling scheme, they do not make any

:
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mention 6% the theoretical comparision of the fully-curtalled
sampling scheme with the other two sampling schemes.

We would like to mention JFrom the priority point of view
that we have introduced the use of the fully-curtailed sampling
scheme in the paper read at 1st Assian Congress on Quality and
Reliablilty (1989) held at New Delhi. In that paper we have
established the result (4.2.%4) given in this section. The
importance of this result is that the fully—curtailed sampling is
no  more expensive than semi-curtailed sampling and the semi-
curtailed sampling is no more expensive than the uncurtailéd
sampling even if the optimal design variables under the three

sampling policies are different.

(B) Numerical Comparision
The optimal design variables amd the minimum expected costs

are obtained for complete sampling policy and for semi-curtailled
sampling policy by Williams et. al. (1288), for wvarious cost
cosfficients and systems parameters. We bave studied all 81
combinations considered by them and have obviously found that for
each combination the minimum cost vielded by the optimal fully-
curtailed sampling plan is less than or equal to the minimum cost
vielded by the optimal semi-curtailed sampling plan. Equality
holds if m = 1 since in this case the fully-curtailled sampling
plan is equivalent to the semi-curtailed sampling plan. We have
presented the optimal uncurtailed, semi~curtalled and fully-
curtailed sampling plams with the minimam expected costs for a

few combinations in Table 4.1.
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Let E(C),» E(C)g and E(C), denote the minimum costs of the
optimal control procedures of the uncuwrtailed, semi-curtailed and
fully-curtailed sampling policies respectively. Then the
percentage improvement in the cost of the fully-curtailed and the
semi-curtailed sampling plans over the uncurtailed sampling plan

arg given by

E(C), - ECC) g |

Tg, = 100 I
E(C), |
_ l E(C), - E(C)g "
]jgau = OO0 e e e o 1 it e 0 b e u
E(C),
san {42,358

respectively. The percentage improvement in the cost of the
fully—-curtailed and the semi-curtailed ﬁampliﬁg plans over the
uncurtailed sampling plan are given in columns (15) and (1&) of
Table 4.1. It may be noted that all the numerical results given
in Table 4.1 tally with the numerical results given by Williams

et. al. (19%90). The priority of these results 18 already

established in part (A) of this section.

4.2.8 Conclusion

It is concluded that the improvement in cost due to fully-
curtailed sampling over the traditional complete sampling is
considerably large as compared to the improvement in cost due to
gsamni~curtailed sampling over complete sampling. Hence if the goal

of sampling is only to decide whether the process should be left
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alone or whether the process should be halted to find the
assignable cause then fully-curtailed sampling is the mo%ﬁ
appropriate among all the three sampling policies from cost point

of view.

4.3 Use of Double Sampling FPlan in the Economic Design of
np~Cuntrni Chart

4.3.1 It is bkrnown that the double sampling plan involves less
total inspection on average tham the single sampling plan for any
given qguality protection (Grant (194643, The plan also has
certain psychological advantages based on the idea of giving a
 second  chance to doubtful lots, since the plam may defer the
decision of acceptance or rejection ‘until a second sample has
been inspected. Hence it is decided to give due consideration to
the double sampling plan in  the development of the economic
design of np-control chart.

In this section we develop the expected cost model wusing
double sampling plam as a sampling policy. The model is analogous
in all other respects to the single sampling model developed by
Montgomery et. al., (1975) which is well explained in the earlier
part of this chapter. We compare the psrformance of double
sampling plan with that of single 'ﬁampling plan uncurtailed as
wall as curtailed for a variety of cost cosfficients and systems
parameters. The results indicate that the use ©of double sampling
plan leads to smaller expected costs than the single sampling

plan uncurtailed as well as curtailed.



4.3.2 The Production Process and the Sampling Policy

The production process is the same as the one described in
Section 4.2.2.

The inspection procedure is as follows.

After every production of k units a sample of n uwunits is
examined. Let dy be the number of nonconforming units found in
the sample.

I dy £ Ay the process is declared to be in control.

If dy » Ay the process is declared to be out of control.

I Ay < dy 3 Ay a second sample of n units is examined.

Lmt'dz be the number of Ponconforming wnits found in the
secontd sample.

I dy + dm & An the process is declared to be in control.

- -

If dy + do > An  the process is declared to be out of
control .
This is a procedurg of usual double sampling plan with

Ny = N =N (8ay).

4.3.3 The Expected Cost Model

The cost model is the same as the one described in Section
4.2.3.

The expression for total expected cost per wnit of the
product under double sampling policy ig the same as the one
derived Ffor the single sampling policy and ig reproduced from

{(4.2.6) as follows.

. Ll + a? a'n a:.:-,;g_'q
E(C) = - e Fe 8 D en (4.5.1)
k k -
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The procedures for the calculation of ¢ and r remain the
same as those described in Section 4.2.4. The expressions for o
and r are given by (4.2.15) and (4.2.18) respectively. However we
would like to mention clearly that the vecotor « regquired in the
calculation of g and p is different From (4.2.24) when double
sampling policy is used. The expression for ﬁi (i=Qul,..,8) is
also different from (4.2.22) when double sampling policy is used.
The expressions for g and O required in computation of (4.3.1)

are derived in the next section.

4.3.4 The Vectors q and n under Double Sampling Plan

L.et F,. 10(i) denote the probability, based on the evidence of
firet sample, of concluding that the process is out of control
when the Process g in state Pili=0yly.awys). Lot Lhe
corresponding probability based on the svidence of the second
sample be denoted by F. (i), Lastly, let F, (i) denote the
probability, based on the evidence of the first saople, of

concluding that the process is in control when it is in state py.

I dy o ndy L
F‘anl(l) - o ( Cj } pi (1 - |.‘)i) nnn( "u-n:‘uz)
dy=0 91
y ) _ D, oy d1 l‘l""dl . -
l"‘r.“l(.l) == £ ( ) pi (1 o pi) nun(‘qamﬁ'nmﬁ’)
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A " - N o n—cy
Frooti) = § 5 L( Y py (1 = pyd
dy=Ay+l  do=Agri-dy L 91
n dz2 n—dz
K g, ) Pt TR )
e (8.3.4)
Then,
Q; = P g (i) + P o(i) con (43,5)

im0 Ly weuy 8

where «q; represents the probability of concluding that the
process is out of control when it is in state pg (A=0,1,...,8).

The expression for ﬁi (L 0= Oy 1y sway B) i
Ry =n 0Py i) + P (1) 3+ 2n 0 1~ Py (1) ~ P (i) ]

o= Oy 1y aven® aus (430060

4.3.5 Solution Method and Sample Example

We bhave wsed Hooke-deeves' search technigue explained in
Section 2.3.4 to obtain  the optimal values of the design
variables ny, Ay, Az, k which minimize the expected cost per unit
of the product given by the expression (4.3%.1).

We consider the same example given in Section 4.2.6.

Let a; = $1, Am = B0, 1, an = B100, agq = H$10.
Lat 5 = 1, R = 1000, n o= Q,B597, s = b,
et

{Pos Pis P2: Pxy Pgs Pz Pg) = (.01, .02, .04, .08, .16, .32, .64)
For this combination of cost cw&@fici@ntg and systems
parameters the search technigue vyielded the following optimal

procedure when double sampling scheme is used.

n =350, Ay = 0, Az = 1, ¢ o= 19 with minimum E(C) = $0.35961. i.e.

e
R



after every production of 19 units, one examines 5 units from the
process. If no nonconforming wnit is Ffeound in this sample the
process is declared +to be in  control and the production
continues. I+ the sample contains 2 or more nonconforming units
the process is declared +to be out of control. IFf the sample
contains only one nonconforming unit, one examines next 5 units
from the process and determines the number of nonconforming units
in the combined sample of 9 + 8 = 10 units. I+ the number of
nonconforming wnits in the combined sample is greater than or
squal to 2, the process is declared to be out of control,
otherwise it is considered to be in control.

For this sample example the optimal control procedure under

i

complete single sampling is n = B8, m 2y ko= 20 with minimum
E(C)Y = 40.4118 where n is the sample size, m is the rejection

number, k is the inter sample range. The optimal control

procedure under semi-curtailed single sampling is n = 8, m = 2, k
= 20 with minimum E(C) = $0,.4115. The optimal control procedure
under fully-curtailed single sampling is n = 8, m = 2, k = 19

with minimum E(C) = $0.4069.

This indicates that the use of semi-curtailed single
sampling and fully—-curtailed single sampling in place of compleate
single sampling provides an improvement of 0.0003% and 0.004%9
respectively; wheresas the use of double sampling in place of
complete single sampling provides an improvement of 00157 per
unit. This means that double sampling is better than the single
sampling uncurtailed as well as curtailed from the cost point of

view.

(4]
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4.3.46 Numerical Comparision

The optimal control procedures and the minimum costs are
obtained for complete single sampling policy by Willliams wé ala
(1983) For various cost coefficients and operating conditlons. We
have studied all the combinations considered by them and have
observed that whenever there is a wssc:mpta for double sampling
scheme (i.e. when the size of the sample for single sampling
scheme is not too small and when the rejection rnumber is greater
than 1) the minimum cost yielded under double sampling is less
thern that yielded under single sampling uncurtailed as well as
curtailed. We have observed that in 28 combinations among 61
combinations considered by Williams et al. (1985 the sample size
nor 3 oand the rejection number m * 1 for optimal single sampling
plans. For each of thess cmmbinmtimnﬁ the minimum cost yielded
under double sampling is smaller tham that yielded under single
sampl ing.

The percentage improvemant in the cost of the double
sampling plan over the complete single sampling plan is given by

EC)y — EW, } .

Idu Py 1(_”) P g - A
EXC),,

We have also observed that the percent improvement in the
cost due to double sampling over complete single sampling is
considerably large as compared to the percent improvement in cost
due to fully—-curtailed single sampling over complete single

sampling.



We present a few optimal double sampling plans along with
their mindmum costs in Table 4.2. The percent improvement in cost
of semi-curtailed, fully-curtailed and double sampling policies
over complete sampling are givmé in columns (9, 10}, (11} of

Table 4.2.

4.3.7 Conclusion

The improvement in the cost due to double sampling over
complete sampling i considerably large as compared to  the
improvement in cost duse  to  both  types of cuwrtalled single
sampling over complete single sampling. Hence double sampling is
more apprmpri%ta than complete as well as curtailed single

sampling from cost point of view,
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4.4 Comparision of Complete, Semi-Curtailed and Fully-Curtailed
Sampling policies for the Economic Model developed in Chapter 11

Under +this economic model the expected cost per unit of the

product is ’
ECPU = [ E(Cy) + E(Cnh) + E(Cx) 1 / Nk
esu{fad. 1)

Firstly we show that E(CZ) and E(Cg) remain the same under
all the three sampling policies 1if they are calculated for the
same design variables (n, my k).

E(Cp) = &g g By + az o 1 enu (4.4.2)

The expression for B, is

By = ¢, /(1 ~ @) vau{dad)
whare @ = eup({-)k/R).

As discussed sarlier in Section 4.2.9 of this chapter, due
te the relationship between the binomial distribution and the
negative binomial distribution, the expresions for gy (4 o= O, 1)
remain same for all the three sampling policies if they are
caleculated for the samg valuss of m and m. The expression for @
is external to the sampling policy used. Hence E(C.) remains the

gsame for all the three sampling policies.

Mext,
E(Cz) = ag 4 8 + ag p (D - 8) centb.d.4)
np, © npy
Wher& B o mmm— e L a8 (4:44‘:5)
16 a4
o ke . -k -
D= L ek Ak i Po *+ { = Ak Py weelb.4.8)
18 ! .oy |



We have just stated that gy remains the same for all the three
sampling policies. We bhave also noted that the expression for ©
is external to the sampling policy used. Bame is true for A. The
values po and py are Enown and are independent of the sampling
policy used. Hence E(C) remains the same for all the three
gampling policies.
It now remains to compare E(C) under the three sampling

policies if E(Cy) is calculated for the same triplet (n, m, k).
Firstly under complete sampling the expression for E(Cy) is given

by

E':((:l) = (&1 + 5‘.‘2”) N uun(4u4‘u7)
& 1
where N = o g -
1-6 gy

Secondly under curtalled sampling the expression for BE(C)

is given by

(i.‘-.\l Ry é\zﬁw) ] (c':'\l + é\zﬁl )
E(Q)) = oo e S e e (4.4.8)
1—-& a4

whare ﬁi (1L = 0, 1) is the average sample number when the
process is in state p; (1 = 0, 1).
Phatak and Bhatt (1947) have shown that
ai(fullywcurt) % ﬁi(ﬁ@miwcurt> 2N (uncurt)

(i = 0, 1)
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This result implies that
E(Cl)fully"murt 8 EC D gami~curt * B yneurt
L] (4‘0‘1’u9)
if these expected costs are calculated for the same values

of (n, my k).

We therefore have
E(C)fu11y~curt 2 E(Q)ﬁemifcurt BB yneurt
waw (A.4,10)
if these costs are calculated for the same triplet (n, m, k).

This shows that Ffully-curtailed sampling is no more
expensive than semi-curtailed sampling and semi-curtailled
sampling is no more expensive than complete sampling Ffor fhose
cases where the optimal procedures vyielded under the three
policies are same.

lUsing the same argument as given in section 4.2.7 it can be
shown that the above result holds for those cases also where the
optimal procedures yielded under the three sampling policies are

diffaerent.

Numerical Example
We consider the same example given in Sectiom 2.3%.4 of

chapter II.

Let ay = $10.0, By 8 $1.0, é:\:z;yl = H100, é':\:gy:z = SO0,
a,‘,‘nl = 10,0, 5\452 m $i1H.0

Let 3 = 1, R = 1000, Py = 0.01, py = $0.10



For this combination of cost coefficlents and systems
parameters the optimal procedure vielded under complete sampling
is
no= 37, mo= 2, ko= Z50 with minimum ECPU = @ 0.5457,

The optimal procedure yielded under semi-curtailed sampling
is n o= 46, k = F42, m = 2 with mindimum E) = $0.8I27. The

optimal procedure yvielded under fully-curtailed sampling is

™,

no= 42, ko= 348, m = 2 with minimum ECPU = 4% O,5097.

Hence the percent improvemsnt in the cost of sesmi-curtalled
sampling over complete sampling is 6.0473., Whereas the percent
improvement in ‘the cost dus to fully-curtalled sampling over
conplete sampling is 6.5970. The optimal procedures under the
three sampling policies are obtained by the direct search

technigque given by Hooke-~Jdesves (1961).
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C LISTING OF CHAFTER IV
SUBROUTINE OBJS(AKE,NSTAGE,SUMN,AL,AZ,AS,04,A5,RATE ,ALEMDA,
i PNOT,PONE)
DIMENSION AKE(10)
€ FILE NAME IS NANDI2
C PROBRAM FOR ECPU SEMI CURTAILED SAMPLING MY MODEL
WRITE(%,1} Al.A2,A3,.H04,A5

1 FORMAT(1XBF10.4)
WRITE{Xx,3) ALEFMDA,RATE
3 FORMAT(1X,2F10.4)

WRITE(%,3) PNOT,PONE
SNOT=AKE(1)
SRNOT=AKE(1)
REJINDT=AKE (3}
WRITE(%,5) SNOT,SRNOT,REJNOT
5 FORMAT(1X,.3F10.4)
POWER=ALEMDAXSRNOT/RATE
PPOWER=—POKER
THEETA=EXP ( FPOWER)
WRITE(X,7) THEETA
7 FORMAT(1X F10.6&)
MM=REJNDT
NT=SNOT-REJNOT+1
CALL BIN(PONE,MM,NT,CPR,CPL,.PI)
QONE=CPR
WRITE(%,8)Q0NE
8 FORMAT(1X,F10.4)
MM=REJNOT
NT=SNOT-REJNOT+1
CALL BIN(PNOT,MM,NT,CPR,CPL,PI)}
GNDT=CPR
WRITE(%,2)0N0T
R=1/Q0NE+THEETA/ { 1~-THEETA}?
C IR IS EXPECTED NO OF SAMPLES REQUIED TO DETECT SHIFT
IR=R+0.5
WRITE(%,9) IR
9 FORMAT (1X, I3)
C COMPUTATION OF EXPECTED COSTS
MM=REJNOT
NT=SNOT-REJNDT+1
CALL BIN(PNOT,MM,NT,CPR,CPA,PI}
PAO=CPA
NM=GNOT+1
MM=REJNDT+1
NT=NN-MM+1
CALL BIN(PNOT,MM,NT,CPR ,CPA,PI)
PRO=CPR
ASNO=SNOTXPAC+REJINOT4PRO/PNOT '
MM=REJNOT
NT=SNOT-REJNDOT+1
CALL BIN{(PONE,MM,NT,CPR,CPA,PI)
PA1=CPA
NN=SNOT+1
MM=REJNOT+1
NT=NN-MM+1
CALL BIN(POME,MM,NT,CPR,CPA,PI}
FR1=CFR
ASM1=SNOT%PA1+REINDTEXPR1 /PONE
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40

A
Ui

15

WRITE(%,40) ASNO,ASN1

FORMAT(1X,  ASNO=",F10.4, ASN1=",F10.4)
ECT1={A1+AZXASNO) ¥ THEETA/ ( 1-THEETA) + (A1+AZXASN1) /QONE
EC1=ECT1/{ IR¥SRNOT}

EC2=A3% (ONOTXTHEETA/ ( 1-THEETA)+1) / ( IRKSRNOT
ADALTA=(1—( 1 +POWER) ¥ THEETA) / ( POWERY { 1-THEETA)) .
WRITE(%,35)ADALTA

FORMAT(1X, "ADALTA=", F10.&)
D=THEETAXSRNOT*PNOT/ ( 1~THEETA) +ADAL TAXSRNOTXPNOT+SRNOTXPONE /
QONE-ADAL TAXSRNOTXPONE
DS=THEETAXSNOTXFNOT/ { 1-THEETA ) +SNOTXPONE/QONE
WRITE(%,15)D,DS

FORMAT(1X,2F10.4)

G DS BIVES EXPECTED NO OF DEFECTIVES DETECTED IN  SAMFLING
c D GIVES EXPECTED NO OF DEFECTIVES PRODUCED

30

|

ECE={A4XDS+ASRK(D~DS) } / { IRESRNOT)

TC=EC1+EC2+ELCX

SUMN=TC

WRITE (%,30)TC.EC1,ECZ,ECE

FORMATC(1X, " TC=" ,F10.6&6, "ECl=" ,F10.6, "ECZ=" ,F10.4, EC3=" ;F10.46)
RETURN

EMD

SUBROUTINE DBJ4(AKE,NSTABE,SUMM,A1 ,A42,03 .44 ,A5,.RATE ,ALEMDA,
PNOT FONE)
DIMENMSION AKE{10)

C FILE NAME I35 NAMDIZ
C  PROSRAM FOR ECPU FULLY CURTAILED SAMPLING MY MODEL

1

0

format(1x,5+10.4)
write({®,1)al,a2,a%,a4,a8
FORMAT(1X,2F10.4)

WRITE (¥,3)ALEMDA,RATE
WRITE(%,3)PNOT ,POME
SNOT=AKE(1}

SRNOT=/KE(2)

REJNOT=AKE (3}

WRITE(% ,5)5N0OT  SRNOT ,REIJNGOT
FORMAT{1X,3F10.4)
POWER=ALEMDAXSRNOT/RATE
PPORER=-POWER

THEETA=EXF (FFOWER)
WRITE(%,7)THEETA

FORMAT(I1X F10.6)

MM=REJNDT

NT=8NOT-REJNOT+1

CALL BIN(POME,MM NT,CPR,CPL,PI)
QONE=CPR

WRITE(X . B)YOONE
FORMAT(1X,F10.6)

MM=REJINOT

NT=SNOT-REJNOT+1

CalLl BIN(PNOT,MM,NT,CPR,CPL.PI}
GMNOT=CPR

WRITE(x,B3ENOT
R=1/00NE+THEETA/ {1-THEETA)

La.2



C IR IS EXFECTED NO OF SAMPLES REQUIED TO DETECT SHIFT
IR=R+0.5
WRITE(%,9} IR
5 FORMAT(1X,1I3)
C COMPUTATION OF EXPECTED COSTS
NN=5NOT
MM=REJNOT+1
NT=RNN—F#+1
CALL BIN(PNOT,MM,NT,CPR,CPA,PI)
PIG=PI
ASNO={ 1-QONOT ) % (PNOTX ( SNOT+1)—REJNOT) / {PNOT% ( 1—-PNOT) 3+
i REJNOTX(1-PIO)/PNOT
NN=GNOT
MM=REJNOT+1
NT=RNN-MM+1
CALL BIN(PONE,MM,NT,CPR.CPA,PI)
PI1=PI
ASN1=( 1-RONE} % { PONEZ { SNOT+1)—REJNOT) 7 (PONEX ( 1-PONE) ) +
1 REJNOT®({i-PI1)/PONE
WRITE(%,40) ASNG,ASN1
40  FORMAT(1X, ASNG=',F10.4, ASNi=',F10.4)
ECTi=(A1+AZRASNO) *THEETA/ ( 1-THEETA) + (A1 +AZXASN1 } /GONE
EC1=ECT1/ ( IRXSRNOT)
ECZ=A3% (ANDTXTHEETA/ { 1-THEETA)+1) / { IRESRNOT)
ADALTA={ 1~ ( 1+POWER) *THEETA} / ( POWER#% ( 1—~THEETA})
WRITE(%,35)ADALTA
35 FORMAT(1X, ADALTA=', F10.6)
D=THEETAXSRNOTAPNDT/ ( 1~THEETA) +ADAL TA*SRNOTXPNOT+SRNOTXPONE/
1 GONE-ADAL TAXSRNOTXPONE
DS=THEETAXSNOTXPNOT/ ( 1-THEETA ) +SNOTXPONE / GONE
WRITE(%,15)D,DS
15 FORMAT(1X,2F10.4)
C DS GIVES EXPECTED NO OF DEFECTIVES DETECTED IN SAMPLING
C D BGIVES EXPECTED NO OF DEFECTIVES PRODUCED
EC3=(A4%DS+AS% (D-DS) ) / { IRXSRNDT)
TC=EC1+ECZ+ECS
SUMN=TC
WRITE (%,30)TC,EC1,EC2,EC3
30 FORMAT(1X, TC=',F10.6, 'ECi=’ ,F10.&, EC2=",Fi0.6, 'EC3=' ,F10.6)
RETURN
END

C FILE MAME IS DSP.FOR
C PROGRAM FOR E(C) OF MONTGOMERY MODEL FOR DOUBLE
C SAMPLING POLICY
SUBRDUTINE OBJ7 (AKE,NSTABE,SUMN,AL.AZ,AS,A4,ALEMDA,RATE,
1 PIE,NSTAT,PIN,NA1,NAZ)
DIMENSION PIN(i0),PZ(10),P{10,10),8R(10),ZP(10),BZ(10) ,ZB(10)
1 LB(10,10),B8T(10,10),0Z(10),ZC{10),0(10,10),D{(1G,10},
1 DST(10,i0),ALPHA(10) ,GAMMA(1G) ,A{10,10),BSTZ(10),T{10,10) ,ZBST
1 (101,5{10,103,U(10,10),V(10,10),BB(10,10) ,AKE(5) ,ASN{10)

WRITE(%,5)

5 FORMAT (4X, 'COST COEFFICIENTS)
WRITE(X,1)A1,.A7,.08%,84

1 FORMAT(1X,4F10.4)
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61

WRITE(%,3)ALEMBDA,RATE ,PIE NSTAT
FORMAT(1X,3F12.4,13)
WRITE(%,6) (PIN(I),I=1,NSTAT)
FORMAT(1X,7FB.4)

Ni = AKE(1)

NZ = AKE(2)

SRNOT = AKE(3)

WRITE(X,2) Ni,NZ,NA1,NAZ,SRNOT
FORMAT(1X,413,F6.2)

FOWER = ALEMDAXSRNOT/RATE
FPOWER =—POWER

PZZ=EXP{PFOWER)

WRITE(%,7) PZZ

FORMAT(1X,F10.4)

NSTATE = NSTAT-1

DENDO=1.—(1.~PIE)¥¥NSTATE

MSNOT = SNOT

DD 10 J=1,NSTATE

Mi = J+1

M2 = NSTATE-J

CALL BIN(PIE,M1.MZ,CPR,CPL,FI)

WRITE(%,B) CPR,CPL,PI,J

FORMAT(1X, 'CPR=’ ,F10.6, CPL=",F10.64, 'PI=' ,F10.6, J=",12}

PZ(J) = PI%(1.-PZZ)/DEND

DD 400 I = 1,NSTATE
IP(I1=0,

DO 20 I=1,NSTATE

DO 20 J=1,NSTATE
IF(I-J)30,31,32

P(I.J) = PZ{J)/(1.-PZZ)

60 TO 20

SPZ=0.

DO 40 Kk=1,I

8PZ = SPZ+PZ{KK)

F(1,J) = SPZ/(1.-PZZ}

60 TO 20

PCI,3)=0.

CONMTIMNUE

T(1,1)=PZZ

DO 12 T =2,MSTAT
K=1-1

T(1,1) = PZ(K)
DO 13 J=2,NSTAT
K=J-1
T{I,1)1=ZP(K)

DO 14 I=2,NSTAT

K=I-1
DO 14 J=2,NSTAT
Ki = J-1

T(I,J) = POK.KL) \

CALL PROBR(NI1,NZ,NA1.MAZ,PIN,.NSTAT,OR,ASN)
WRITE(%,301)(BR{I},I = 1.NSTAT)
FORMAT(1X,7F10.4)

DO &0 I=2,NSTAT

DO 60 J=1,NSTAT

IF({I-J)61,62,63

CB(I, N =0R(IIET(L, I+ {(1-OR{IIIKT(I,J)
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78

G0 TO &0
SII . JI=BR{IXET{(1i, I)+(1—QR(I))?T(I I3
=0 Ta 6O
S{I,J»=0R{(IYET(1,J)
CONTINUE
DO 326 J=1,NS8TaT
S{1,J)=T(i,I
WRITEC(X,302)
FORMAT(1X, "HMATRIX S8(I,.J}" )
WRITE(¥,303) ((5(I,J),J=1,NSTAT),I=1,NSTAT)
FORMAT(1X,7F1G.6)
B0 330 I=1,NBTAT
Do 330 JI=1,.NSTAT
IF(I-J): ai.gs .331
I, J3=8(1,0)
GO TO 330
U(I,3)=5(I,J)~1
CONTINUE
WRITE(%,311)
FORMAT(L1X, "MATRIX U(I,J)7)
WRITE(X,Z12)({(U{(I,J),I=1,NSTAT} , I=1,NSTAT)
FORMAT(1X,7F10.46)
DO 321 I1=1,.NSTAT
PO 2231 JI=1,NSTATE
V(I J3=UCI,J+1)
DO 322 I=1,.N5Ta4T
Vi1, 7)=1
HRITE(%,323)
FORMAT(1X, "MATRIX Y{I.JdJ}" )
WRITE(%,324) ((W{(I,J},d=1_ METATY I=1.NETAT)
FORMAT(1X,;7F10.4&)
DO 325 I= i NSTAT
DO 325 J= 1_NSTAT
ACI L J)=V(I . J)
N=NSTAT
CaLl INVRS(A,BB.M)
WRITE(%,97)
FORMAT({1X, IMNMVERBE MATRIX' )}
WRITE(%,78) ({BB{(I.J),J=1,NSTAT?.I=1,NSTAT)
FORMAT({1X,.7F10.6)

i BB(I,J) IS INVERSE 0OF A(I.J}

150

82

DG B1 J=1 .NMNSTAT
ALPHA{J )=BB{(NETAT ,J)
WRITE(%,150)

FORMAT(1X, "VECTOR ALFHA")
WRITE(%,82) (ALPHAGJ) , J=1,NETAT)
FORMAT(1X,7F10.6)

> COMPUTATION OF GAMMA

160

170

ADALTA=(1 .~ (1 .+PONER)EFZZ) 7/ (POWERX {1 .~-FZZ)}
WRITE(%, 160)

FORMAT(LIX, "ADALTA )
WRITE(%,B2} QDQLTQ
BAﬁﬁﬁZ"QLPHﬁ(1}¥PZ7+éLPHQ(ilﬂﬁBQLTéﬁil—PZZ)
WRITE(®,170)

FORFIAT({1X, "BAMMALZ )
WRITE{(%,82) GAMMAZ
DO 90 I=2,NSTAT
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101
100
i02

110
104

EAY

1

13=1-2

TERM3=0

TERMA=0

Ii=1-1

I2=I+1

IF{I1-1) 101,102,101

DD 100 J=1,I3

K=J+1
TERMS=TERM3+ALPHA(K) ¥P(J,11)

IF(I1-4) 102,104,102
DO 110 K=I,NSTATE
TERM4=TERM4+P {11 .K)

GAMMA(I L) =ALPHA( D) ¥P {11, I11)+(1.-ADALTA) XALPHA(1 ) 2PZ(I1)+
{1.-ADALTA) X TERMI+ALPHA( 1) ¥ TERM4AXADALTA
WRITE(%,82)BAMMACIL)

CONTINUE

[ COMPUTATION OF EXPECTATIONS

429

120

130

140

TERM7=0

DO 429 1=1,NSTAT
TERM7=TERM7+ALPHA{ I ) ¥ASN( I}

ECi=(A1+AZ¥TERM7 ) /SRNOT
TERMS=0

PO 120 I=1,NSTAT
TERMS=TERMS+ER ( I} ¥ALPHA(I)

EC2=ASXTERMS/SRNOT

TERM&=0

TERM&=TERM&+PIN( 1 ) ¥BAMMAZ
DD 130 I=2,NSTAT

J=1~1
TERMG=TERM&+PIN( I ) ¥GAMMA(J )
ECI=A4XTERM6

TC=EC1+EC24+ECE

SUMN=TC
WRITE{%,140)TC,EC1,ECZ,ECS
FORMAT(1X,  TOTAL COST=',E18.8, ECi=',E18.8, EC2?=",E18.8,
‘EC3=" ,E18.8)

RETURN

END

£ FILE NMAME IS5 DGPI1
L PROCRAM FOR COMPUTATIOM OF POWER AND ASN FOR DOUBLE SAMPLING

SUBROUTINE PROBR{N1,N2,NA1,NAZ.PIN,NSTAT,OR,ASN)
DIMENSION PIMN(10),BR(10),ASN(i0)
DO 50 I=1,NSTAT

PROB=FIN(I)

Li=NA1+1

L2=MNaZ+1

SUM=0

DO 51 ND=Li,NAZ

Mi=LZ-ND1

NT1=NZ-M1+1 o

CALL BIN(PROE,M1,NT1,PR1,PA1.P)
MZ=ND1+1

NT2=Ni-M2+1

CALL BIN(PROB,M2,NTZ,FR2Z,PAZ,PI)}
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51

50

70

Fal

[

c
[™
c

w

SR=PR1%FI

SUM=8UM+SR

CONT INUE

M5=L2

NTS=N1-M5+1

CALL BIN(PROB,MS,NTS,PRS,PAS,.P3)
OR( I)=PRS5+SUM

CONTINUE

WRITE(%,70) (@(I),I=1,NSTAT)
FORMAT(1X,7F10.4&)

COMPUTATION OF AVERAGE SAMPLE NUMBER |

DO 80 I=1,NSTAT

PROB=PIN{I)

M3=L1

NTE=N1-11+1

CALL BIN(PROB M3, NT3,FR3,PAZ,P1)
Ma=L2

NTA=N1-L2+1

CALL BIN(PROB.M4,NT4.PR4,.PA4,P2)
T=PR3-FPR4

ASNCI)=N1+(N2XT)

CONTINUE

WRITE(%,70) (ASN(I),I=1,NSTAT)
RETURN

END

FILE NAME I8 FCSF
PROGRAM FOR E(C) OF MONTGOMERYS MODEL USING FULLY
CURTAILED SAMFLING POLICY

1

i
1

SUBROUTINE OBJ7 {AKE,NSTABE,SUMN,A1,AZ,AS.A4,ALEMDA.RATE,
FIE,NSTAT.FIN)

DIMEMSION PIM(10),PZ(10},.F(10,10),0R(10),ZP(10),BZ(10),ZB(1i0}
JB(10,10),BST(10,10),CZ(10),2C¢103,0(10,10),D(10,10),
DST(10,10) ,ALPHA(10) ,BAMMA(10) ,A(10,10) ,BSTZ(10),T(10,10) ,ZBST
(10),5(10,10),U(10,10),V{(10,10) ,BE(10,10) ,AKE(S) ,AASN(10)
WRITE(X,5)

FORMAT (4X, ' COST COEFFICIENTS®)

WRITE(%,1)61,A2,A3,04

FORMAT(1X,4F10.4)

WRITE(%,3)ALEMBDA,RATE,,PIE,NSTAT

FORMAT(1X.3F12.4,1I3)

WRITE(%,6) (PINCI),I=1,NSTAT)

FORMAT(1X,7FB.4}

SNOT = AKE(i)

SRNOT = AKE(2)

REJNOT = AKE(3)

WRITE( % ,2)SNOT,SRNOT , REJNGT

FORMAT(1X, 'SAMPLESIZE =°,F10.2,  INT SAM RANBE =°,F10.2, REJ
NUM=" ,F10.2)

POWER = ALEMDAXSRNDT/RATE

PPOWER =-POWER

PZZ=EXP (PPOWER)

WRITE(%,7) PZZ

FORMAT(1X.F10.4)
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K

N
<

o
h
o

NSTATE = NSTAT-1
DENO=1.~(1.-PIE)¥%¥NSTATE
MSNOT = SNOT

DO 10 J=1.NSTATE

M1 = J+1i

M2 = NSTATE-J ,
CALL BIN(PIE,M1.M2.CPR,CPL.FI)
WRITE(%,8) CPR,CPL.PI,J
FORMAT(1X. CPR=",F10.6, CPL=' ,Fi10.6, PI=',F10.4, J=",12}
PZ{J) = PI%{1.-PZZ)/DEND
DO 600 I = 1,NSTATE

ZP({1)=0.

DO 20 I=1,NSTATE

DO 20 J=1,NSTATE
IF(I-J3130,31,32

F(I.J) = PZ(J}/(1.-PZZ)
G0 TO 20

5PZ=0.

DO 40 KK=1,I

SFZ = SPZ+PZ(KK)

F(I,J) = SPZ/(1.-PZZ)}

50 TO 20

F(I,d)=0.
CONT INUE

T(1,1)=PZZ

DO 12 1 =2,NSTAT

K=1-1

T(1,1) = PZ(K)

DO i3 J=2,NSTAT

K=3~1

T(I,11=ZF(K)

DO i4 I=2,NSTAT

K=I-1
po 14 J3=2,N5TAT
Ki = Jd-1

T(I.J) = P(K,K1)

WRITE{%,15)

FORMAT(1X, ' TRANSITION MATRIX')
WRITE(%,11)((T(I,Jd),J = 1,NSTAT},I=1,NSTAT)

FORMAT(1X,7F10.4&)
51 = SNOT
52 = SRMOT

83 = REJNOT

CALL PROBR(S1,52,583,PIM,NSTAT,OR)
WRITE(¥,S01){QR(I),I = 1,NSTAT}
FORMAT(1X,7F10.86)

DO &0 I=2,NSTAT

DO &0 J=1,NSTAT

IF(I-0161,62,6%

S(I . JI=OR(IIXT(L,I+{(1-BR{I)IXTL(I )
G0 TO &0
B(I,J)=0R(IIXT(I, I} +(1-OR(IIIKTC(I,I)
GO TO &0
G¢I,J)=0R(IYXT{i,d)

CONTINUE
DO 326 J=1,NSTAT
S(1,d)=T(1,J)
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i
o
M

A
o)
i

323

97

8

WRITE(%,302)
FORMAT(1X%, "MATRIX S(I,J)")
WRITE(%,303) ({(S(I,J),J=1,NSTAT),I=1,NSTAT)
FORMAT(1X,7F10.6)
DO 330 I=1,NSTAT
DO 330 J=1,NSTAT
IF(I-J}331,332,331
U(I,J)=S(1,J}
60 TO 330
V(I J)=S{I,J)-1
CONT INUE
WRITE(X,311)
FORMAT(1X, 'MATRIX U(I,J))
WRITE(%,312) ((U(I,J),J=1,NSTAT},I=1,NSTAT)
FORMAT(1X%,7F10.4)
DO 321 I=1,NSTAT
DO 321 J=1,NSTATE
VEI,Jr=U(I,J+1}
DO 322 I=1.NSTAT
VeI, 7)=1
WRITE(%,323)
FORMAT(1X, "MATRIX V(I,J)}
WRITE(%,324) ((V(I,J),J=1,NSTAT),I=1,NSTAT}
FORMAT(1X,7F10.6)
DO 325 I=1.NSTAT
DO 325 J=i,NSTAT
ACT,TI=V(1,d)
N=NSTAT
CALL INVRS{A,BE,N)
WRITE(¥,97)
FORMAT (1X, ' INVERSE MATRIX')
WRITE(%,98) ({BR(I,J),J=1,NSTAT),I=1,.NSTAT)
FORMAT(1X,7F10.6)

C BB(I . J} IS INVERSE OF A(I,J)

Bi

150

82

DO 81 J=1.NSTAT
ALPHA(J)=BB(NSTAT,J)
WRITE(%,150)

FORMAT(1X, ' VECTOR ALPHA®)
WRITE(%,82) {(ALPHA(J},J=1,NSTAT)
FORMAT(1X,7Fi0.4)

C COMPUTATION OF GAMMA

1460

i70

101

ADALTA=(1.~(1.+POWER) %PZZ) / (PODWER%(1.~PZZ))
WRITE(%,1&0}
FORMAT(1X, ' ADALTA" )
WRITE(%,82) ADALTA
BAMMAZ=ALPHA (1) ¥PZZ+ALPHA (1) *ADALTA%X (1~PZZ)
WRITE(%,170)
FORMAT(1X, " GAMMAZ )
WRITE(%,82) GAMMAZ
DO 90 I=2,NSTAT
I13=1-2
TERMI=0
TERM4=0
Ii=I-1
I2=1+1
IF(I1-1) 101,102,101
DO 100 J=1,I3
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K=Jd+1

100 TERME=TERMS+ALFHA (KD ¥P{J,I1)
IF(Ii-4) 10G2:104,102
i02 DO 110 K=I ,NSTATE
110 TERMA=TERM4+F (11 ,K)
i04 GAMMA(IL)=ALPHA(IIAF(I1 ,I1)+ (1 . ~ADALTAYXALPHA(LYRPZ (11 +

1 (1.-ADALTA)XTERMI+ALPHA (1) X TERM4XADALTA
WRITE(%,82)BAMMA(IL)
90 CONT INUE ,
CALL NBAR(S1,53,.PIN,NSTAT,0R,AASN)
WRITE(¥,301) (AASN(I),I=1,NSTAT)
C COMPUTATION OF EXPECTATION
TERM7=0
DO 429 I=1,NSTAT
429 TERM7=TERM7+ALFHA( I ) XAASN( 1)
EC1={A1+AZ%TERM7} /SRNOT
TERMS=0
PO 120 I=1,NSTAT
120 TERMS=TERMS+GR (1) XALPHA(I)
EC2=AZXTERMS/SRNOT
TERMA=0
TERM6=TERM&+PIN( 1) £GAMMAZ
DD 130 I=2,NSTAT
J=I—-1
130 TERM&=TERM&+PIN( I } XGAMMA(J)
EC3=A4XTERMS
TC=EC1+ECZ+ECS
SUMN=TC
WRITE(%,140)TC,EC1 ,EC2,EC3
140 FORMAT(1X, TOTAL COST=",E18.8,°'EC1=",E18.8, EC2=',E18.8,
‘EC3=' ,Ei8.8)
RETURN
END

Jode

C FILE NAME IS FCSP1
C PROGRAM FOR ASNM OF FULLY-CURTAILED SAMPLING POLICY
SUBROUTINE NBAR(S1,53,PIN,NSTAT.OR,.AASN)
DIMENSION PIN(10) ,BR{10),AASN(10)
PROB=FIN(I)
MM=53+1
NN=81
NT=NN-MM+1
CALL BIM{FROB,MM,NT,PR,PA,PI)
WRITE(%,3) PI
FORMAT(1X,F10.4}
57=51+1
AASN(I)=(PIN(I}257-S3) ¥ (1-QR(I} )} /(PIN(I) % {1-PINCI) ) +(S3%(1-PI})
1 /PINCI)
WRITE(%,7) (AASN(I),I=1,NSTAT)
7 FORMAT(1X,7F10.6)
50 CONTINUE
RETURN
EMD

it
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C FILE NAME IS FCSP2Z.FOR
© PROBRAM FOR PROBABILITY OF REJECTION FOR np-CHART USING
C FULLT-CURTAILED SAMPLING
SUBROUTINE PROBR(T1,T2,T3,PIN,NST,SR}
DIMENSION PINC10),SR(10),GR(10)
DO 50 I=1i,NST
PROB=PIN(I)
MM=T3
NT=T1-T3+1
CALL BIN(PROB,MM,NT,PC1,PCZ,PIND)
50 SR{I)=PCi
RETURN
END
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