


APPENDIX

A.1 INTRODUTION
The classical approach to experimental planning (one-at-a-time designs) 

involves much effort and time and in some cases, it is inapplicable due to 

simultaneous interaction of so many factors. The most efficient way to 

enhance the value of research and to cut down the time in process 

development is through experimental designs. The statistical experiment 

designs widely used for optimization of experiments are termed "Response 

Surface Designs".

Response Surface Methodology (RSM) was first introduced by Box and 
Wilson in 1951 and later popularised by Montgomery68,The response surface 

methodology can be defined as an empirical statistical technique employed 

for multiple regression analysis by using quantitative data obtained from 

properly designed experiments to solve multivariate equations simultaneously. 

The graphical representations of these equations are called response 

surfaces, which can be used to describe the individual and cumulative effect 

of the test variables on the response and to determine the mutual interactions 

between the test variables and their subsequent effect on the response.

Basically RSM is a combination of statistical experimental design 

fundamentals, regression modeling techniques, and optimisation methods. 

The RSM uses various Design of Experiments(DOE) techniques, such as 

Box-Behnkhen Design (BBD), Central Composite Design (CCD), Full and 

Fractional Factorial Design, as well as regression analysis methods. The DOE 

techniques are employed before, during and after the regression analysis to 

evaluate the accuracy of the model. The main idea of RSM is to replace a 

complicated response function with an approximate function by studying the 

relative significance of the effects of several factors supposed to have 

influence on the response of interest.
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• If the system response is rather well discovered, RSM techniques are 

used to find the best (optimum) value of the response,

• If discovering the best value is beyond the available resources of the 

experiment, then RSM techniques are used to at least gain a better 

response.
• Understanding of the overall response system and can be used to identify 

new operating conditions that produce demonstrated improvement in 

product quality.

• If obtaining the system response is necessary for complicated analysis 

that requires hours of run-time and advanced computational resources. 

The simplified equivalent response surface may be obtained by a few 

numbers of runs to replace the complicated analysis.

The RSM has some inherent advantages over other experimental designs, 

due to which this technique is highly acceptable among the researchers. It 

provides a way of rigorously choosing a few parameters in a design space to 

represent all the points efficiently thereby reducing the number of runs 

required to study the significance of different factors affecting the response of 

interest.

A.2 RESPONSE SURFACE METHODOLOGY : AN OVERVIEW
Assume that the true response, y, of a system depends on k number of 

controllable input variables (or factors) £1, ^2. £k- then their relationship

can be represented as:

y = f G1.S2.S3,....... Sk) + e [1]

The function f is called the true response function, form of which is unknown 

and usually complicated, and s is a term representing sources of variability not 

accounted for in f. The term e is treated as a statistical error, which s includes 

effects such as measurement error on the response, background noise, the 

effect of other variables, and so on, and often assumed to have a normal 

distribution with mean and variance cr. The variables £1, £2, ... £k in equation 

[1] are known as natural variables because they are expressed in the natural
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units of measurement, such as degrees Celsius, pounds per square inch, etc. 

In most of the RSM experiment, the natural variables are transformed into 

dimensionless coded variables with mean zero and the standard deviation 

same as that of the natural variables. Usually coded variables are calculated 

using the equation:

x. = x,-Kmaxx,+minx,i/2 [2]
1 [(maxx^-minxIJ)/2]

where xy.. is the ith natural variable for the jth experimental run.

For two factors, (ie, k = 2), a second-order polynomial approximation of the 

true response function in terms of the coded variables will be written as:

H’= E(y) = Po+ r £ Pp,x,x, [3]

J=1 J=1 K j=1

where, x are called 'coded variables' and p’s are called regression 

coefficients.

The terms x-i, x2 are main effects and the term xi, x2 are called interactions. 

Adding the interaction term introduces curvature into the response function. In 

most cases, the second-order model is adequate for well-behaved responses 

since it can take on a wide variety of functional forms, so it often works well as 

an approximation to the true response surface. Moreover the parameters in a 

second order model can be easily estimated using the least square method.

This empirical model is called a 'response surface model’. The surface 

represented by f (x,, Xj) is called a response surface. The response can be 

represented graphically, either in the three-dimensional space or as contour 

plots that help visualizes the shape of the response surface. Contours are 

curves of constant response drawn in the xyz plane keeping all other variable 

fixed. Each contour corresponds to a particular height of the response 

surface. A contour plot is formed by a series of horizontal and vertical lines. 

The horizontal axis plots are the most important factor in the experiment
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where as the vertical axis plots are the second most important factor in the 

experiment.

Phase 1: The first stage is a generic step for screening factors. The objective 

of factor screening is to reduce the list of candidate variables to a relatively 

few so that subsequent experiments will be more efficient and require fewer 

runs or tests. The screening is based on main effects estimation.

Phase 2: The object of phase 2 is to fit a second-order model for the factors 

identified from the screening experiment. A correct choice of design will 

ensure that the response surface is fit in the most efficient manner. The 

choice of a suitable design depends on the number of factors under consid

eration and the coverage of the chosen design over the region of interest on 

the response surface. The desirable features of a chosen design are 

orthogonality, i.e. main effects and block effects are estimable independently

Surface "Rising Ridge" Surface "Saddle"

Fig. A.1 Contour plots for different system response

Central Composite Design (CCD) and Box-Behnken Design (BBD). The CCD

and rotatability, i.e. constant predictability at all points equidistant from the
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design centre. Based upon the desirable features, most preferred designs are 

is appropriate for evaluating linear or quadratic response surface models and 

is often recommended for sequential experimentation. The BBD on the other 

hand, can be used for performing non-sequential experiments. The CCD 

usually has axial points outside the design periphery.

Although these design points have significant contribution towards design 

accuracy, still they are not desired in many cases when these conditions are 

beyond the safe operating limits. The BBD design ensures that all factors are 

set within the experimental periphery, but has lower accuracy than CCD.

Phase 3: The objective of this phase is to identify the theoretical value of 

factor region that yields the optimal response. Some commonly used 

optimisation techniques are "Best corner", "Steepest ascent descent" and 

"Optimal plot" techniques. Among these techniques, "Control plot" technique 

provides the "best guess" as to where to run the experiment so as to obtain 

the desired optimal response.

Phase 4: Phase 4 begins when the process is near the optimum. The step

wise regression procedure is followed for adding or deleting model terms 

depending on probabilities (pvalues). The final model can be build up from the 

simplest models by adding and testing higher-order terms (the "forward" 

direction), or the final model can be reached starting with the full second-order 

model and eliminating terms until the most parsimonious, adequate model is 

obtained (the "backward" direction). Once an appropriate approximating 

model has been obtained, this model may be analysed to determine the 

optimum conditions for the process. The final model should have minimum 

residuals or error of prediction.

A.2.1 Comparisons of Response Surface Designs

The Box-Behnken design is an independent quadratic design which does not 

contain an embedded factorial or fractional factorial design. In this design the 

treatment combinations are at the midpoints of edges of the process space 

and at the center. These designs are rotatable (or near rotatable) and require
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3 levels of each factor. The designs have limited capability for orthogonal 

blocking compared to the central composite designs. Fig A.2 illustrates a Box- 

Behnken design for three factors. Table A.1 gives comparison of the 

structures of four common quadratic designs that to investigate three factors. 

The table combines Central Composite Circumscribed (CCC) and central 

composite inscribed (CCI) designs because they are structurally identical. For 

three factors, the Box-Behnken design offers some advantage in requiring a 

fewer number of runs. For 4 or more factors, this advantage disappears.

Table A.2. illustrates the factor settings required for a central composite 

circumscribed (CCC) design and for a central composite inscribed (CCI) 

design (standard order), assuming three factors, each with low and high 

settings of 10 and 20, respectively. Because the CCC design generates new 

extremes for all factors, the investigator must inspect any worksheet 

generated for such a design to confirm that the factor settings called for are 

reasonable.

In Table A.2, treatments 1 to 8 in each case are the factorial points in the 

design; treatments 9 to 14 are the star points; and 15 to 20 are the system- 

recommended center points. If can been seen in the CCC design that how the

I

Fig. A.2 Box-Behnken design for three factors
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Table A.1 Structural Comparisons of CCC (CCI), CCF, and BBD

for three factors

CCC (CCI) CCF BBD

Rep X1 X2 X3 Rep X1 X2 X3 Rep X1, X2 X3

1 -1 -1 -1 1 -1 -1 -1 ; 1 -1: -1 0

1 +1 -1 -1 1 +1 -1 -1; 1 +1; -1 0

1 -1 ‘ +1 -1 1 -1 +1 -1 ■ 1 -1 • +1 0

1 +1 +1 -1 1 +1 +1 -1: 1 +1 j +1 0

1 -1 > -1 +1 1 -1 -1 +1; 1 -1; 0 -1

1 +1 -1 +1 1 +1 -1 4-1 1 +1 0 -1

1 -1 ; +1 +1 1 -1 +1 +1 = 1 -1 : 0 +1

1 +1 +1 +1 Li +1 +1 + 1 | 1 4*1 " 0 +1

1 -1 682 • 0 0 1 -1 0 o ! 1 0 ; -1 -1

1 1682 0 ....0..... J. +1 0 0 j 1 0 ! +1 -1
1 0 j -1.682 ' .0 1 0 0 1 _ 0 , -1 +1
1 0 , 1.682 0 1 0 +1 0 1 o i +1 +1
1 0 0 -1.682 1 0 0 -1 ■ 3 0 , 0 0
1 0 ; 0.... . 1.682 r_i 0 ro.. +1 J
6 0 - 0 __ 0 6 0 0 0 . ».. l . •

Total Runs = 20 Total Runs = 20 Total Runs = 15

low and high values of each factor have been extended to create the star 

points. In the CCI design, the specified low and high values become the star 

points, and the system computes appropriate settings for the factorial part of 

the design inside those boundaries.

Table A.3. illustrates the factor settings for the corresponding central 

composite face-centered (CCF) and Box-Behnken designs. Note that each of 

these designs provides three levels for each factor and that the Box-Behnken 

design requires fewer runs in the three-factor case. Table A.4. give 

comparisons of properties of various classical response surface designs.
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Table A.2. Factor for CCC and CCI designs for three factors

Central Composite 

Circumscribed (CCC)

Sr.

No.
X1

-------- -—,
X2 i

I
X3 .

Sr.

No.
X1

i
X2

!

X3

1 10 10 | 10 , 1 12 12 12

2 20 10 ;
i

10 : 2 18 : 12 12

3 10 20
. J

io ’ I 3 12 , 18 12

4 20

oC
M

I I 
—
A
.

i O |

4 18 ^ 18 12

5 10 10 i 20 . 5 12 12 18

6 20 10 : 20 6 18 [ 12 18

7 10 20 I 20 ' 7 12 ! 12 18

8 20

oC
M

oC
M 8 18 ! 18 18

9 6.6 15 i 15 ! * 9 10 ; 15 15

10 23.4 15 j 15 j * 10 20 . 15 15

11 15

s ; O > 05 15 ! * 11 15 ! 10 15

12 15 23.4 | 15 | * 12 15 , 20 15

13 15 15 |

C
O

cd * 13 15 , 15 10

14 15 15 I 23.4 ; * 14 15 : 15 20

15 15 15 !
t

15 ' 15 15 ! 15 15

16 15 15 j
S

15 j 16 15 ! 15 15

17 15 15 ....15. i 17 15 i
i

15 15

18 15 15 i
I

15 i 18 15 ; 15 15

19 15 15 | 15 1 19 15 I 15 15

20 15 15 l 15 ;| 20 15 ; 15 15

Central Composite 

Inscribed (CCI)

* star points
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Table A.3.Factors for CCF and BBD for three factors

Central Composite

Face-centered (CCF) 5
Box-Behnken Design(BBD)

Sr. i 
No. | X1 X2

i

X3 ’
i

1

Sr. ; 
No. ? X1

5X2 I X3

1 •
!i

10 10 10 :
:

1 s 10 i 10 : 10

2 j 20 10 10 : 2 ; 20 10 j 15

3 :
J

10 20 10 ; 3 10 j 20 ; 15

4 20 20 10 ; 4 20 : 20 : 15

5 10 10 20 , 5 i 10 ;
i

15 : 10

6; 20 10 20 ; 6 i 20 j 15 , 10

^ i
t

10 20 20 , 7 10 j 15 ; 20

8 s 20 20 20 ‘ 8 20 i 15 ; 20

9 i 10 15 15 . * 9 ! 15 | 10 10

10 20 15 15 *< 1° ; 15 20 . 10

11 15 10 15 *< 11 ; 15 10 , 20

12 ! 15 20 15 12 ; 15 * 20 : 20

13 ;
l

15 15 10 ; *’ 13 : 15 i 15 15

14 ' 15 15o 20 ; *< 14 15 : 15 ’ 15

15 I 15 15 15 15 , 15 15 ' 15

16 ; 15 15 15 : !

17 ; 15 15 15 ;

18 ; 15 15 15 > 1 j
19

I
15 15 15 *

20 ! 15 15 15 ■

* are star points for the CCC design
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Table A.4. Comparison of Properties of Classical Response Surface Designs

Design'
type ,

Comment

CCC
f

|
f

CCC designs provide high quality predictions over the entire design space,
but require factor settings outside the range of the factors in the factorial
part. Note: When the possibility of running a CCC design is recognized
before starting a factorial experiment, factor spacings can be reduced to
ensure that ± alfa for each coded factor corresponds to feasible
(reasonable) levels. It requires 5 levels for each factor.

f

CCI ,
5

1

CCI designs use only points within the factor ranges originally specified, but
do not provide the same high quality prediction over the entire space
compared to the CCC. It requires 5 levels of each factor.

I
j

CCF
t

1

CCF designs provide relatively high quality predictions over the entire 
design space and do not require using points outside the original factor
range. However, they give poor precision for estimating pure quadratic 
coefficients. It requires 3 levels for each factor

1

BBD

Box-Behnken design requires fewer treatment combinations than a

central composite design in cases involving 3 or 4 factors.This design

is rotatable (or nearly so) but it contains regions of poor prediction

quality like the CCi design. Its "missing corners" may be useful when

the experimenter should avoid combined factor extremes. This

property prevents a potential loss of data in those cases. It requires 3

levels for each factor.

A.2.2 Desirable Features for Response Surface Designs

G. E. P. Box and N. R. Draper in "Empirical Model Building and Response 

Surfaces," John Wiley and Sons, New York, identify desirable properties for a 

response surface design:

• Satisfactory distribution of information across the experimental region 

rotatability

• Fitted values are as close as possible to observed values. Minimize 

residuals or error of prediction

• Good lack of fit detection.
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• Internal estimate of error.

• Constant variance check.

• Transformations can be estimated.

• Suitability for blocking.

• Sequential construction of higher order designs from simpler designs

• Minimum number of treatment combinations.

• Good graphical analysis through simple data patterns.

• Good behaviour when errors in settings of input variables occur.

A.2.3 Applications and limitations of RSM

The application of RSM is aimed at reducing the cost of expensive analysis 

methods and their associated huge investment of resources and volumes of 

numerical data analysis. This particular advantage has paved the way for its 

successful application in different disciplines such as chemical and 

pharmaceutical processes, biological/biochemical processes, food science, 

production engineering, air quality analysis and toxicological research and 

computational and simulation studies.

Researchers from different fields in recent years have published several 

interesting applications of response surface methodology. In one such study, 

C J Stevens of NASA, United States, integrated RSM with computational fluid 

dynamics (CFD) for prediction of combined cycle propulsion components in 

hypersonic jet fighter. Neda and co-workers of Memorial University of 

Newfoundland, Canada, combined Monte Carlo simulation method with the 

RSM to compute permanent displacement of submarine slope under earth

quake loads. The results obtained from the experimental study were reported 

to be almost identical to that obtained from replicating the actual model. In 

another research, Matthew et al explored nonparametric version of RSM to 

estimate the location of the maximum AIDS incidence in California among two 

ethnic groups. The study was reported to be the true reflection of the 

underlying situation in comparison to its parametric counter part.

In spite of such inspiring experimental outcome, RSM suffer from some

serious drawbacks. One is its sequential approach. This sequential approach

of RSM can be considered as a disadvantage when the experimental
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preparation is time-consuming or its duration is long. Cheng and his co

workers suggested to integrate factor screening and response surface 

development on the same experiment and proposed a new approach, which 

can serve as a link between the two.

Another limitation of RSM is sensitivity to system noise. It is assumed in RSM 

that the experimental noise factors controllable during process development 

for purposes of a designed experiment This assumption reduces the robust

ness of the RSM models. Professor Taguchi modified RSM and developed a 

new approach known as robust parameter design methodology (RPD) that will 

make RSM models insensitive (or robust) to changes in a set of uncontrollable 

factors.
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