EXPERIMENTAL

، ر

1

-

•

.

-

×

,

.

EXPERIMENTAL

3.a. Synthesis of New Homologous Series:

Inspired by the existing literature on liquid crystals, the following new homologous series of mesogens have been synthesized. These series can be classified into three distinct categories:

A. Esters of p-n-alkoxycinnamic acids and p-n-alkoxy phenols.

1. p-Ethoxyphenyl-p'-n-alkoxycinnamates

2. p-n-Propoxyphenyl-p'-n-alkoxycinnamates

3. p-n-Butoxyphenyl-p'-n-alkoxycinnamates

4. p-n-Amyloxyphenyl-p'-n-alkoxycinnamates

B. Esters of p-n-alkoxycinnamic acids and p-iso-alkoxyphenols

5. p-iso-Propoxyphenyl-p'-n-alkoxycinnamates

6. p-iso-Butoxyphenyl-p'-n-alkoxycinnamates

7. p-iso-Amyloxyphenyl-p'-n-alkoxycinnamates

C. Esters of p-n-alkoxycinnamic acids and chlorophenols

8. m-Chlorophenyl-p'-n-alkoxycinnamates

9. o-Chlorophenyl-p'-n-alkoxycinnamates

Following are the different steps for the synthesis of the above homologous series of mesogens.

1. p-n-Alkoxybenzaldehydes

Synthesis of p-n-alkoxybenzaldehyde, where alkoxy group varies from $-OCH_3$ to $-OC_{16}H_{33}$ has been described by Hildesheimer (454), §toermer and Wodarg (455), Weygard and Gabler (456) and Gray and Jones (232). In this study, however, the following procedure has been adopted with better results. The first member viz. p-methoxybenzaldehyde also known as p-anisaldehyde has been used of BDH grade and was purified before use.

0.15 mole of anhydrous potassium carbonate and 035 mole of the corresponding n-alkyl bromide or iodide were added to 0.1 mole of p-hydroxybenzaldehyde in dry acetone (60 ml). The mixture was refluxed in water-bath for three to four hours. In the case of higher members the reaction time was extended upto six to eight hours. The whole mass was then added to water, extract with ether and the ether extract was washed with dilute sodium hydroxide to remove any unreacted p-hydroxybenzaldehyde followed by water and dried. Ether was evaporated and the p-n-alkoxybenzaldehydes thus obtained were purified by distillation under reduced pressure. Boiling points almost agreed with those reported in literature (457).

2. Trans-p-n-alkoxycinnamic acids

Trans-p-n-alkoxycinnamic acids were prepared by the method of Gray and Jones (232).

The appropriate p-n-alkoxybenzaldehyde (0.02 mole), malonic acid (0.04 mole), pyridine (8 ml) and piperidine (three drops)

were mixed and heated at 100°C on a steam bath for three to four hours. In the case of higher members the refluxing period was extended to five to six hours. The mass was poured into mixture of ice (25 g) and concentrated hydrochloric acid (25 ml). Stirred it for sometime, allowed to settle, filtered and washed with dilute hydrochloric acid followed by water. Crystallized the compounds from 98% acetic acid. Yield of the colorless products was 85 to 90%. Higher homologues were crystallized twice from benzene and then from acetic acid till constant transition temperatures (232) were obtained, these are listed in Table 3.

3. Trans-p-n-alkoxycinnamoyl chlorides

Trans-p-n-alkoxycinnamoyl chlorides were prepared (458) by treating the corresponding trans-p-n-alkoxycinnamic acids with excess of thionyl chloride and heating on a water-bath till evolution of hydrogen chloride gas ceased. Excess of thionyl chloride was distilled off under reduced pressure using a water pump. The acid chlorides left behind as residue, were used for further reaction.

4. p-Alkoxyphenols

Number of methods are available in literature for the preparation of monoalkoxyphenols (459-463). The following p-alkoxyphenols were prepared.

(i) p-Hydroxyphenetole

Hydroquinone (0.45 M) in 20% sodium hydroxide was stirred with diethylsulfate (0.27 M) for 30 minutes. A solution of 5 gm

n-Alkyl	<u>Transit</u>	ion Temperatur	es °C
group	Smectic	Nematic	Isotropic
Methyl	-	174.0	190.0
Ethyl	-	194.0	200.0
Propyl	-	169.0	184.0
Butyl		156.0	189.0
Pentyl	-	144.0	180.0
Hexyl	-	152.0	180.0
Heptyl	*	148.0	175.0
Octyl	-	145.0	172.0
Decyl	136.0	150.0	169.0
Dodecyl	132.0	157.0	164.0
Tetradecyl	127.0	` -	160.0
Hexadecyl	118.0	-	159.0
Octadecyl	120.0	-	157.5

.

.

Trans-p-n-alkoxycinnamic acids (232)

sodiumhydroxide was added and refluxed for 30 minutes. After cooling, 50 ml 10 % sodiumhydroxide was added and extracted with ether to remove diethoxybenzene. The alkaline solution was acidified and extracted with benzene. Benzene extract was dried and distilled off. Yield is approximately 55-60% (459) M.P. 65°C.

(ii) p-n-Propoxyphenol

To the solution of hydroquinone (0.4 M) in 160 ml ethanol was added γ_1 -propylbromide (0.4M). The mixture was heated till it just starts to reflux and added solution of potassium hydroxide (1.43 M) in 240 ml water drop by drop. After the addition was over, it was refluxed for four hours and allowed to cool, followed by filtration to remove solid p-di-n-propoxybenzene. The filterate was extracted with ether to ensure complete removal of p-di-n-propoxybenzene. The alkaline solutionwas acidified and extracted with benzene. Benzene extract was dried and distilled off. Yield was approximately 40-45 %. M.P. 56-7°C.

(iii) p-n-Butoxyphenol

The method of preparation is as per 4 (ii) of this section. Yield was approximately 40-45 % M.P. 64°C.

(iv) p-n-Amyloxyphenol

A solution of potassiumhydroxide (0.36 M) in 40 ml water was added drop by drop to the boiling mixture of hydroquinone

(0.34 M), 40 ml alcohol and n-amylbromide (0.33 M). After the addition was over, reflux was continued for 6 hours. It was allowed to cool, followed by extraction with ether to remove p-di-n-amyloxybenzene. The alkaline solution was acidified, extracted with benzene, benzene dried and distilled off. The residue, p-n-amyloxyphenol, was distilled under vacuum. Yield was approximately 35-40%(460) M.P.49°C.

(v) p-iso-Propoxyphenol

It was prepared as per 4(ii) of this section. After benzene was distilled off, the residue p-iso-propoxyphenol was distilled under vacuum. Yield was approximately 35-40%. B.P. 117°C (a) 4 mm.

(vi) p-iso-Butoxyphenol

It was prepared as per 4 (iv) of this section and after benzene was distilled off, distilled under vacuum. Yield was approximately 30-35 %, B.P. 230 °C.

(vii) p-iso-Amyloxyphenol

It was prepared as per 4(iv) of this section and after benzene was distilled off, distilled under vacuum. Yield was approximately 30-35 %, M.P. 45°C.

Melting points and/or boiling almost agreed with those reported in literature (460) and are listed in Table 4.

5. p-Alkoxyphenyl-p'-n-alkoxycinnamates

p-Alkoxyphenyl-p'-n-alkoxycinnamates were synthesized by reacting trans-p-n-alkoxycinnamoylchlorides with p-alkoxyphenols.

Tabl	e	4
------	---	---

.

p-Alkoxyphenols	(460)
-----------------	-------

	``````````````````````````````````````	
p-Alkoxyphenol	M.P. °C	B.P. °C
p-Hydroxyphenetole	65 <b>-</b> 66	237-247
p-n-Propoxyphenol	56-57	-
p-n-Butoxyphenol	64 <b>-</b> 65	125 / 4 mm
p-n-Amyloxyphenol	48-49	-
p-iso-Propoxyphenol	-	117/4 mm
p-iso-Butoxyphenol		230
p-iso-Amyloxyphenol	45	155 <b>-</b> 8/20 mm

١

;

~

p-Alkoxyphenols (0.01 mole) were dissolved in dry A.R. pyridine (10.0 ml) and were added slowly to trans-p-n-alkoxycinnamoyl chloride (0.015 mole). The mixture was heated in waterbath with occasional stirring for an hour and poured into cold dulute hydrochloric acid. The precipitates were filtered and washed with water. The precipitates were then washed with cold dilute sodium hydroxide solution followed by water. The crude esters, of dark brown colour, were crystallized using ethanol or ethyl acetate : ethyl alcohol (10:90) mixture for some higher members. The melting points and transition temperatures are compiled in Table 5, 7, 9, 11, 13, 15 and 17. The elemental analysis conforms with the calculated ones. Yield is approximately 65 %.

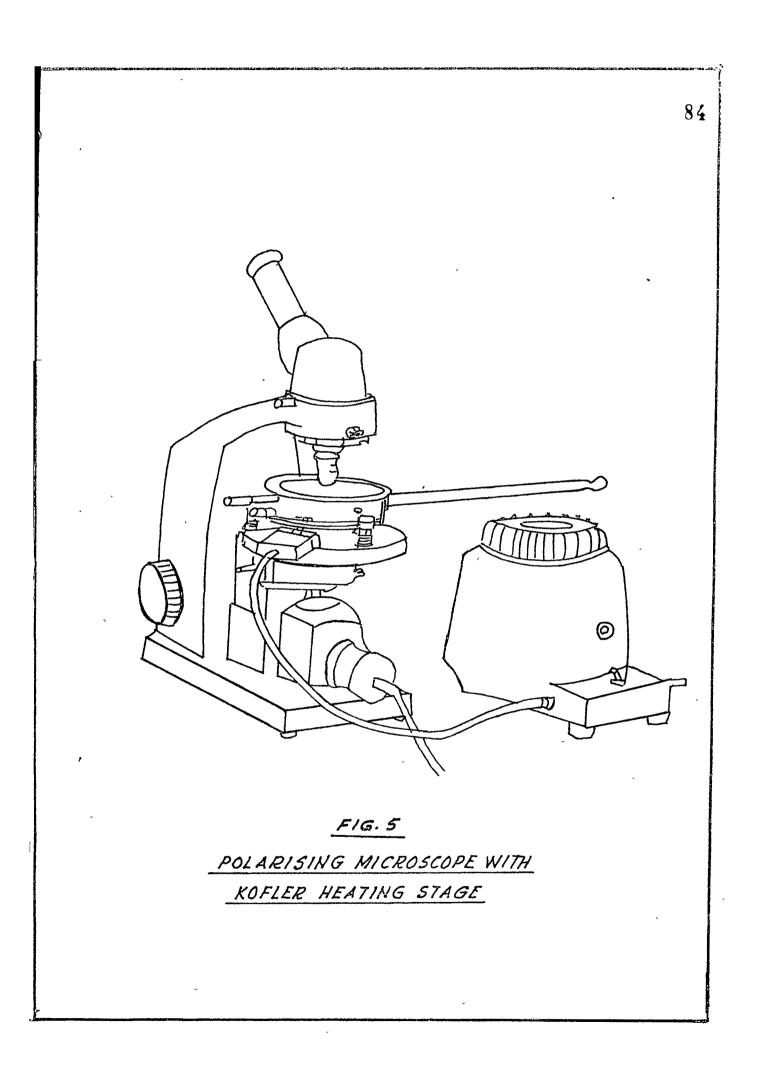
### 6. m-Chlorophenyl-p'-n-alkoxycinnamates

m-Chlorophenyl-p'-n-alkoxycinnamates were synthesized by reacting trans-p-n-alkoxycinnamoyl chlorides with mchlorophenol. m-Chlorophenol (0.01 mole) was dissolved in dry pyridine (10 ml) and was added slowly to trans-p-n-alkoxycinnamoyl chloride (0.015 mole). The mixture was heated in water-bath with occasional stirring for an hour and acidified with cold dilute hydrochloric acid. The precipitates were filtered and washed with water. The precipitates were then washed with cold dilute sodium hydroxide solution followed by water. The esters, of dark brown color, were crystallized from ethanol or ethyl acetate:

ethanol (10:90) mixture. ^The melting points and transition temperatures are compiled in Table 19. The elemental analysis conforms with the calculated ones (Table 20). Yield is approximately 60 %.

7. O-Chlorophenyl-p'-n-alkoxycinnamates

O-Chlorophenyl-p'-n-alkoxycinnamates were synthesized and purified in the same way as m-chlorophenyl-p'-n-alkoxycinnamates' in 6. The melting points and transition temperatures are compiled in Table 21. The elemental analysis conforms with the calculated ones (Table 22). Yield is approximately 60 %.


3.b. Study of the homologous series.

The study of the mesomorphic characteristics was carried out by polarizing microscope method.

Polarizing Microscope

A polarizing microscope equipped with hot stage comes handy for detecting multiple phases of a mesogen. A polarizing microscope with a Kofler heating stage has been used in the present study. Fig.5.

Slides of the compounds were prepared by one of the three different methods, (i) the substance is heated on a slide to a little more than the mesomorphic temperature and a cover slip is placed near the melt and moved towards the melt so that it



T	а	b	1	е	5	
						*

.

1

.

,

n-Alkyl	Transiti	on Temperatu	res •C
group	Smectic	Nematic	Isotropic
Methyl	-	131	150
Ethyl	-	145	161
Propyl	-	126	145
Butyl	-	111	150
Pentyl		97	131
Hexyl	-	88	140
Heptyl	(72)	88	136
Octyl	(92)	99	133.5
Decyl	80	104	126
Dodecyl	86	109	122
Tetradecyl	86	109.5	116.5
Hexadecyl	90	108	113

## A-1 p-Ethoxyphenyl-p'-n-alkoxycinnamates

Value in the parenthesis indicates monotropy

.

.

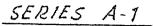
÷

.

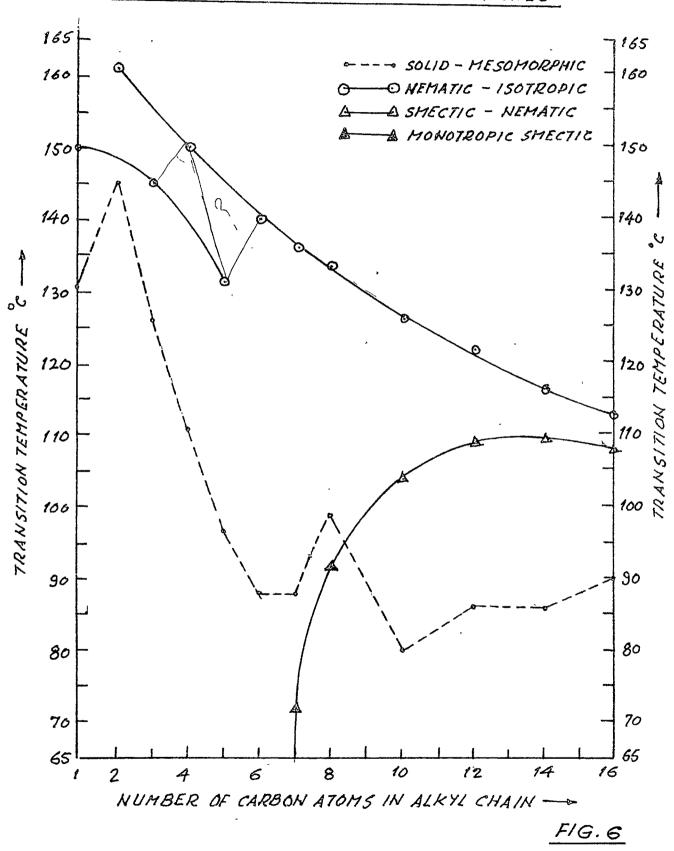
~

*

A-1 p-Ethoxyphenyl-p'-n-alkoxycinnamates


9

Table


7.18 6.66 8.52 9.49 % Found 6.20 6.47 7.22 7.45 7.95 8,48 8.97 9.35 口 75.23 74.78 72.78 72.83 73.98 74.36 76.36 75.16 75.85 77.23 77.32 77.85 υ % Required 8.49 6.04 7.06 7.61 7.61 8.08 9.17 6.41 6.75 9.45 7.85 8.85 日 73.62 74.58 75.76 73.08 75.00 77.50 72.48 74.12 76.99 75.39 76.42 υ Molecular c₂₀H₂₂04 с₂₁H₂404 с₂₂H₂₆04 с₂₃H₂₈04 c₁9^H20⁰4 C24H3004 c25^H32⁰4 c27^H36⁰4 c29H4004 C31H4404 c33^H48⁰4 C₁₈H₁₈04 formula Tetradecyl Hexadecyl Heptyl [~] Dodecyl n-Alkyl Pentyl Methyl Propyl Butyl Ethyl Hexyl Octyl Decyl group

86

t



# p-ETHOXYPHENYL-p'n-ALKOXY CINNAMATES



Table	7
-------	---

.

n-Alkyl	, Transiti	.on Tempera	tures °C
group	Smectic	Nematic	Isotropic
Methyl		(126)	127
E <b>L</b> hyl		125	144
Propyl	, <b>-</b>	(127)	128
Butyl	-	110	137
Pentyl	-	102	124
Hexyl	· -	98	. 130
Heptyl	(92)	94	127
Octyl	. 99	101.5	124
Decyl	78.5	102	116
Dodecyl	85	102	111
Tetradecyl	86	<del>-</del> '	107
Hexadecyl	88	-	104

A-2 p-n-Propoxyphenyl-p'-n-alkoxycinnamates

Value in the parenthesis indicates monotropy

.

,

>

,

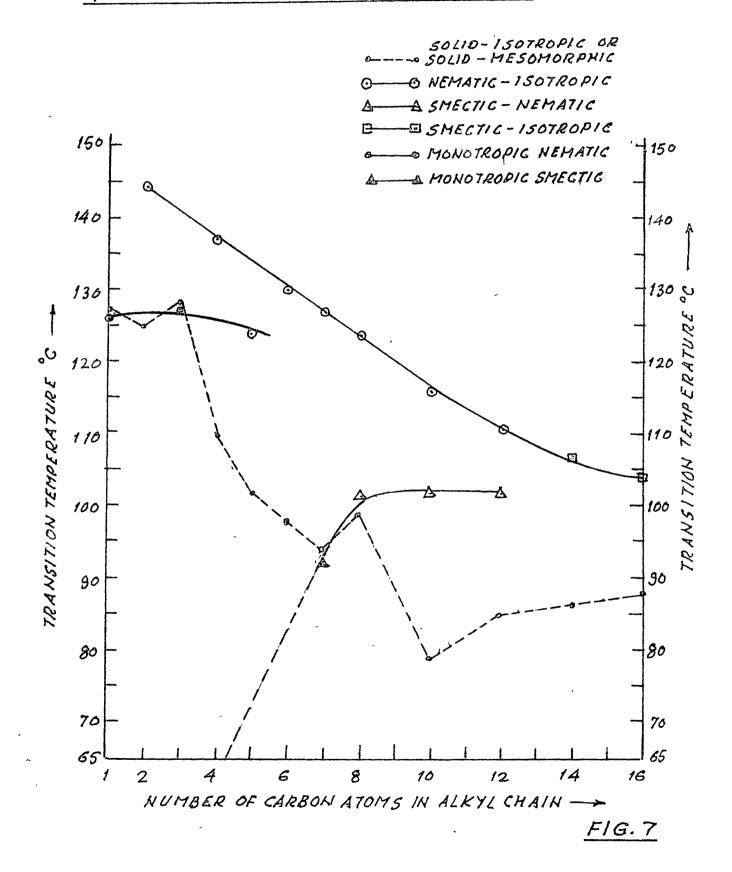
'

.

۱

- `


~


.

-

- 1

# SERIES A-2





n-Alkyl	Transiti	on Tempera	tures °C
group	Smectic	Nematic	Isotropic
Methyl	-	95	132
Ethyl	-	109	146
Propyl	· _	117	137
Butyl	-	117	141
Pentyl	-	111	138
Hexyl	-	105	133
Heptyl	-	103	127
Octyl	(94)	100	123
Decyl	83	107 <b>.5</b>	115
Dodecyl	85	-	113
Tetradecyl	87	-	111
Hexadecyl	90	-	111

## A-3 p-n-Butoxyphenyl-p'-n-alkoxycinnamates

Table 9

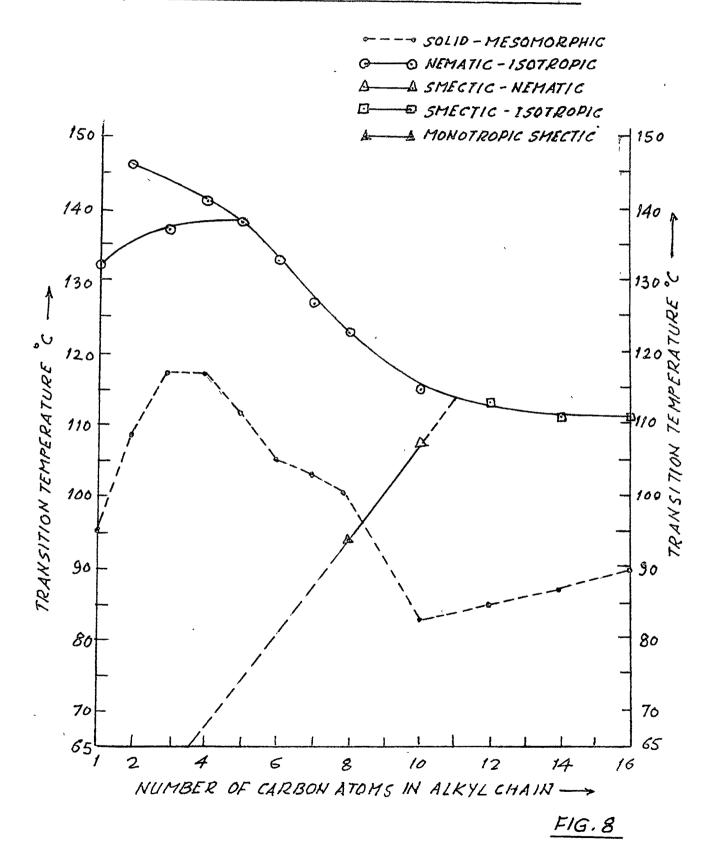
Value in the parenthesis indicates monotropy

.

.'

.

A-3 p-n-Butoxyphenyl-p'-n-alkoxycinnamates


n-Alkyl	Molecular	- % Reguired	luired	% Found	nd
group	formula	U	Н	C	Н
Methyl	c ₂₀ H ₂₂ 04	73.62	6.75	73.78	6.56
Ethyl	C21H2404	74.12	7.06	73.90	6.86
Propyl	C ₂₂ H ₂₆ 04	74.58	7.34	74.92	7.16
Butyl	C23H2804	75.00	7.61	75.36	7.75
Pentyl	C24H3004	75.39	7.85	75.53	7.56
Hexyl	C25H3204	75.76	8,08	75.50	8.31
Heptyl	C26H3404	76.10	8.29	75.90	8.48
Octyl	C27H3604	76.42	8.49	76.60	8.29
Decyl	C29H4004	76.99	8 <b>.</b> 85	76.87	8.39
Dodecyl	c ₃₁ H4404	77.50	9.17	77.87	9.08
Tetradecyl	c ₃₃ H4804	77.95	9.45	78.15	9.68
Hexadecyl	c ₃₅ H ₅₂ 04	78.36	9.70	78.79	, 9 <b>.</b> 94

92

.

# SERIES A-3

# p-n-BUTOXY PHENYL-p-n-ALKOXY CINNAMATES



n-Alkyl	Transiti	.on Temper	atures °C
group	Smectic	Nematic	Isotropic
Methyl	–	82	127
Ethyl	-	91	135
Propyl	-	110	129
Butyl	-	111	135
Pentyl	-	105	127
Hexyl	-	97	131
Heptyl	(91.5)	95	125
Octyl	94	108	125
Decyl	. 82	109	117
Dodecyl	82	-	112
Tetradecyl	84	-	109
Hexadecyl	[′] 88	-	110

A-4 p-n-Amyloxyphenyl-p'-n-alkoxycinnamates

Table 11

~

٠

.

.

Value in the parenthesis indicates monotropy

~

A-4 p-n-Amyloxyphenyl-p'-n-alkoxycinnamates

,

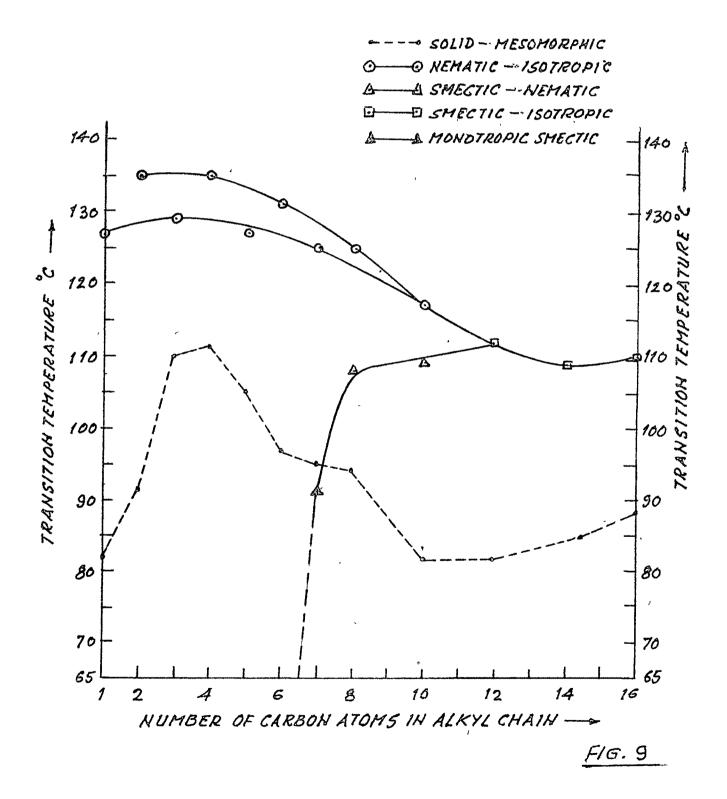
•

n-Alkyl	Molecular	, % Red	% Required	% Found	und
group	formula	U	Н	υ	н
Methyl	c21 ^H 2404	74.12	7 <b>.</b> 06	74.03	7.41
Ethyl	c ₂₂ H ₂₆ 04	74.58	7.34	74.75	7.15
Propyl	c23H2804	75.00	7.61	75.23	7.83
Butyl	c24H3004	75.39	7.85	75.26	7.75
Pentyl	c25H3204	75.76	8.08	75.36	8.26
Hexyl	C26H3404	76.10	8.29	75.93	8,09
Heptyl	C27H3604	76.42	8.49	76.92	8.67
Octyl	с ₂₈ н ₃₈ 04	76.71	8.68	76.58	8.42
Decyl	c30H4204	77.25	9.01	77.19	9.31
Dodecyl	$c_{32}^{H}46^{0}4$	77.73	9.31	77.93	9.47
Tetradecyl	C34H5004	78.16	9.58	77.79	9.42
Hexadecyl	C36H5404	78.55	9.82	78.19	. 9.57

.

,

.


95 -

•

,

# SERIES A-4

p-n-AMYLOXY PHENYL-p-n-ALKOXY CINNAMATES



n-Alkyl	Transitio	on Temperat	ures °C
group	Smectic	Nematic	. Isotropic
Methyl	-	-	99
Ethyl	-	-	145
Propyl	-	(99)	109
Butyl		(109)	110
Pentyl	-	(98 <b>)</b>	103
Hexyl	-	(103)	103
Heptyl		96	98.5
Octyl	82	87	99
Decyl	73	. 90	96 /
Dodecyl	84	-	94
Tetradecyl	83	-	91
Hexadecyl	82	-	89

B-5 p-iso-Propoxyphenyl-p'-n-alkoxycinnamates

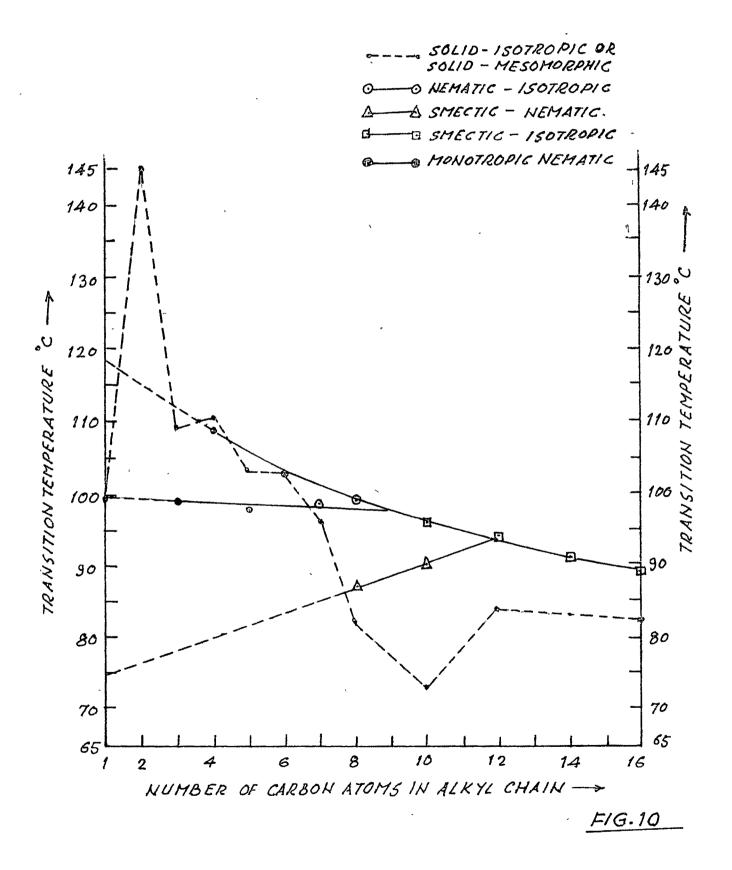
Table 13

Value in the parenthesis indicates monotropy

ŗ

-

,


B-5 p-iso-Propoxyphenyl-p'-n-alkoxycinnamates

`

,

6.49 7.60 8.00 7.29 7.58 9.18 6.67 8.08 8.98 9.25 9.25 7.22 Ц % Found 75.50 76.34 77.68 72.88 74.08 74.79 75.92 78.38 75.25 77.60 73.95 76.51 ບ 9.58 6.41 7.06 7.34 7.61 7.85 8.08 8.29 8.68 6.75 9.01 9.31 % Required н 73.08 74.58 78.16 73.62 74.12 75.00 75.39 75.76 76.10 77.73 76.71 77.25 c Molecular formula C26H3404 C₂₈H₃₈04 C₃₀H₄₂04 c20H2204 c22^H26⁰4 C23H2804 c₃₂H4604  $c_{24}H_{30}O_{4}$ c25H3204 C19H2004 c21H2404 54H5004 Tetradecyl Hexadecyl Dodecyl n-Alkyl Methyl Propyl Pentyl Heptyl Butyl Hexyl Octyl Decyl Ethyl group

-



n-Alkyl	Transi	tion Temperat	ures °C
group	Smectic	Nematic	Isotropic
Methyl	-	-	128
Ethyl	-	-	139
Propyl	-		128
Butyl	-	(112)	115
Penty <u>1</u>		(105)	109
Hexyl	-	. (105)	110
Heptyl	-	108	115
Octyl	(99.5)	100	109
Decyl	92		103
Dodecyl	88	-	102
Tetradecyl	92	<del>-</del> ,	10 <b>1</b>
Hexadecyl	92	-	100

Ta	bl	e	1	5
	~ ~	<u> </u>	۰.	~

.

-

## B-6 p-iso-Butoxyphenyl-p'-n-alkoxycinnamates

.

Value in the parenthesis indicates monotropy

,

۱

,

,

.

,

B-6 p-iso-Butoxyphenyl-p'-n-alkoxycinnamates

.

١

.

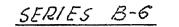
n-Alkyl -	Molecular	% Re	% Required	% Found	q
group	IORMULA	U	Н	U	Н
Methyl	C20H2201	73.62	6.75	73.56	6.97
Ethyl	$C_{2,1H_2LO_L}$	74.12	7.06	74.36	7.12
Fropyl	C22 ^H 26 ⁰ 4	74.58	7.34	74.39	7.20
Butyl	C23 ^H 28 ⁰ 4	75.00	7.61	74.86	7.83
Pentyl	C24H3004	75.39	7.85	75.50	7.65
Hexyl	C25H3204	75.76	8,08	75.66	8.27
Heptyl	c26H3404	76.10	8.29	75.87	8.03
Octyl	c _{27H3604}	76.42	8.49	76.08	8.81
Decyl	C29 ^H 40 ⁰ 4	76.99	8.85	76.93	8,65
' Dodecyl	c _{31H440} 4	77.50	- 9.17	77.01	9 <b>.09</b>
Tetradecyl	c ₃₃ H4804	77.95	9.45	78.23	9.62
Héxadecyl	C35 ^H 52 ^O 4	78.36	9.70	78.83	9.81

.

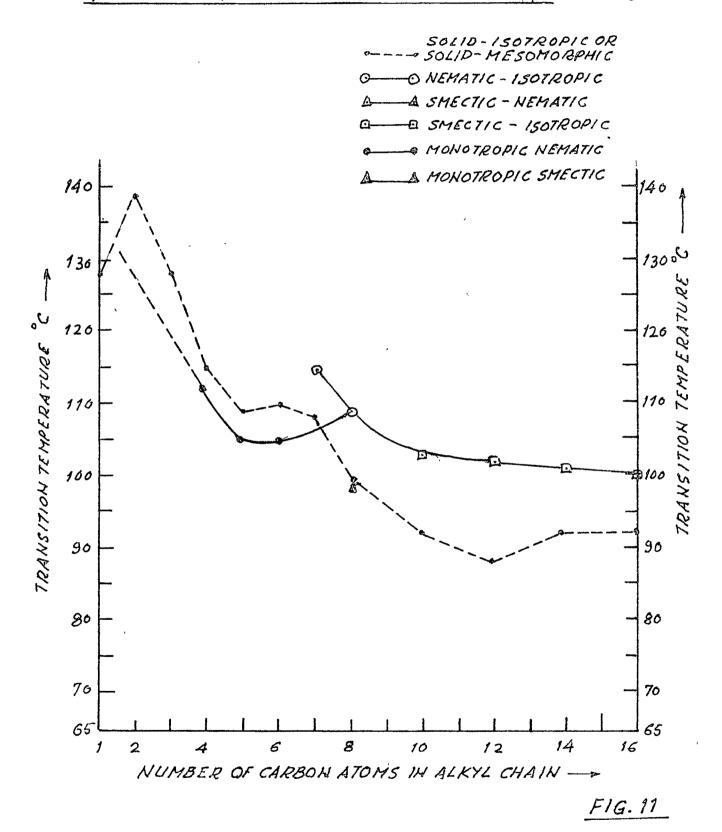
,

•

١


.

101


-

r

.



p-150-BUTOXYPHENYL-p'-n-ALKOXY CINNAMATES



n-Alkyl	Transi	tion Temperat	tures °C
group	Smectic	Nematic	Isotropic
Methyl	_	112	114
Ethyl	-	117	134
Propyl	-	113	117
Butyl	-	109	125
Pentyl	-	101	117
Hexyl	(95)	105	119
Heptyl	92	95	115
Octyl	89	98.5	112
Decyl	76	102	106
Dodecyl	71	-	105
Tetradecyl	70	-	105
Hexadecyl	69	-	106

Table 17

~

B-7 p-iso-Amyloxyphenyl-p'-n-alkoxycinnamates

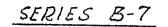
Value in the parenthesis indicates monotropy

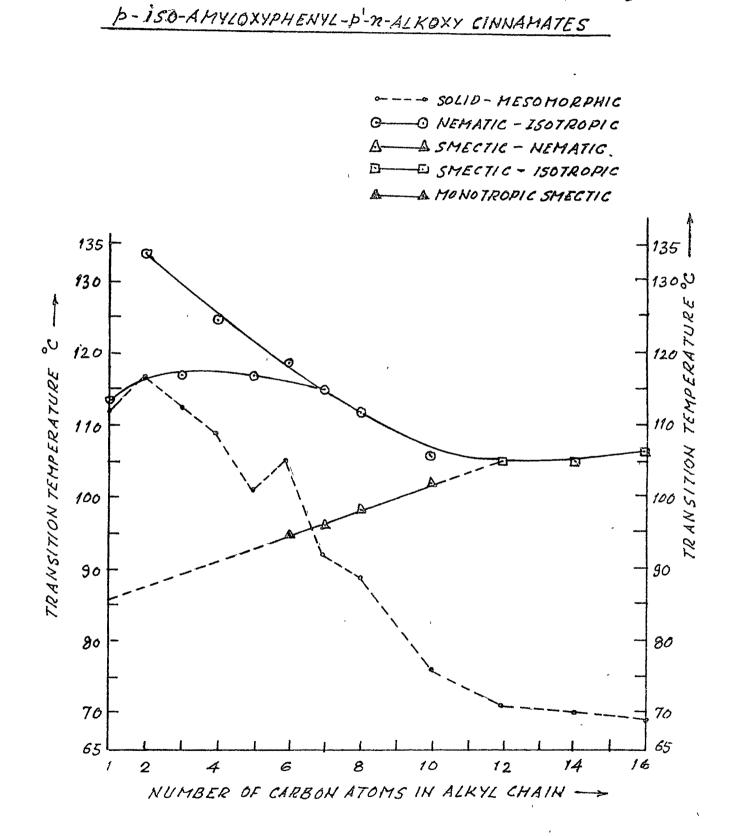
۲

.

•

B-7 p-iso-Amyloxyphenyl-p'-n-alkoxycinnamates


n-Alkyl group	Molecular formula	C % Re	% Required H	<u>% Found</u> C	ц
Methyl '	C21 ^H 24 ⁰ 4	74.12	7.06	73.90	7.23
Ethyl	C22 ^H 26 ⁰ 4	74.58	7.34	74.38	7.14
Propyl	c23H2804	75.00	7.61	74,80	7.87
Butyl	c24H3004	75.39	7.85	75.50	8.02
<b>Fentyl</b>	c ₂₅ H ₃₂ 04	75.76	8,08	75.59	7.92
Hexyl	c26H3404	76.10	8.29	75.97	8.09
Heptyl	C27 ^H 36 ⁰ 4	76.42	8.49	76.68	8.75
Octyl	C28 ^H 38 ⁰ 4	76.71	<b>8.</b> 68	76.32	8.61
Decyl	c ₃₀ H ₄₂ 04	77.25	9.01	77.15	9.32
Dodecyl	c ₃₂ H ₄₆ 04	77.73	9.31	77,43	9.21
Tetradecyl	C34H5004	78.16	9.58	77.98	9.92
Hexadecyl	c _{36H54} 04	78.55	9.82	78.98	9.71


.

١

104

1





105

FIG.12

n-Alkyl	Transit	ion Tempera	tures °C
group	Smectic	Nematic	Isotropic
Methyl	_	-	100
Ethyl	-	、 <b></b>	116
Propyl	-	-	67
Butyl	-	<b>-</b> ´	57
Pentyl	-	-	82
Hexyl	-	-	73
Heptyl	-	-	54
Octyl	-	-	56
Decyl	-	-	55
Dodecyl	\ _	-	63
Tetradecyl	-	-	69
Hexadecyl	-	-	75
-			

•

## C-8 m-Chlorophenyl-p'-n-alkoxycinnamates

Table 19

v

•

.

-

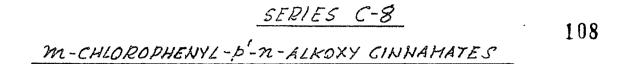
•

,

n-Alkyl	Molecular	% Required	uired	% Found	nd
group	formula .	U	Н	U	Н
			, ,		
Methyl	$c_{16^{H}13^{O_{3}}C^{I}}$	66,55	4.51	66.27	4.25
Ethyl	c12H1503CI	67.44	4.96	67.68	5.01
Propy <b>l</b>	c ₁₈ H ₁₇ 0 ₃ c1	68.25	5.37	68.42	5.09
Butyl	c19H1903CI	68.99	5.75	68.89	5.91
Pentyl	$c_{20^{H}21^{0}3^{C1}}$	69.67	6.10	69.92	6.22
Hexyl	$c_2 n_{H_23} o_3 c_1$	70.29	6.42	70.36	6.50
Heptyl	$c_{22}H_{25}o_{3}c_{1}$	70.87	6.71	70.70	6.91
Octyl	c23H2703CI	14.17	, <b>6</b> • 99	71.78	7.16
Decyl	c25H3103Cl	72.38	7.48	72.59	7.62
. Dodecy <b>l</b>	c ₂₇ H ₃₅ 03c1	73.22	7.91	73.58	8.08
Tetradecyl	c29H3903a	73.96	8.29	74.05	8.63
Hexadecyl	с ₃₁ н ₄₃ 0 ₃ ст	74.62	8.63	74.98	8.42

107

,


.

•

,

/

•



۱

---- SOLID - ISOTROPIC

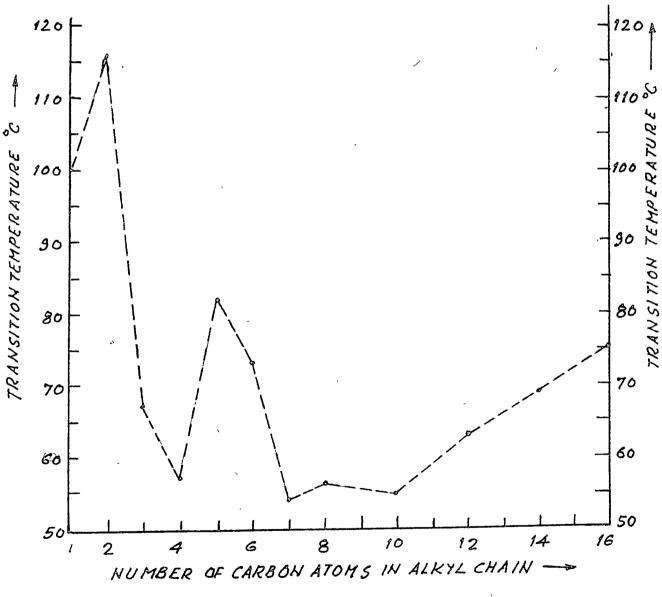



FIG.13

.

C-9 O-Chlorophenyl-p'-n-alkoxycinnamates

n-Alkyl	Molecular	% Required	quired	% Found	pund
group	formula	C	Н	σ	Н
Methyl	c ₁₆ H ₁₃ 0 ₃ c1	66.55	4.51	66.15	4.36
Ethyl	c17H1503CI	67.44	4.96	67.60	4.89
Propyl	c _{18H1703} ct	68.25	5.37	68.42	5.50
Butyl	C ₁₉ H ₁₉₀₃ CI	, <b>68.</b> 99	5.75	69.15	5.69
Pentyl	c20 ^H 21 ⁰ 3CI	69.67	6.10	69.22	5.99
Hexyl	c _{21^H23} 0 ₃ c1	70,29	6.42	70.19	6.56
Heptyl	c _{22^H25⁰3c1}	70.87	6.71	70.99	6.75
Octyl	c ₂₃ H ₂ 70 ₃ c1	71.41	6.99	17.17	7.25
Decyl	c _{25H31} 0 ₃ c1	72.38	7.48	72.00	7.39
Dodecyl	c ₂₇ H ₃₅ 0 ₅ c1	73.22	7.91	73.40	8.01
Tetradecyl	c _{29H39} 0 ₃ c1	73.96	8.29	74.32	8.46
Hexadecyl	c ₃₁ H ₄₃ 0 ₃ c1	74.62	8.63	75.08	8,48

١

110

}

# SERIES C-9

O-CHLOROPHENYL-b'-n-ALKOXY CINNAMATES 111

---- SOLID-ISOTROPIC

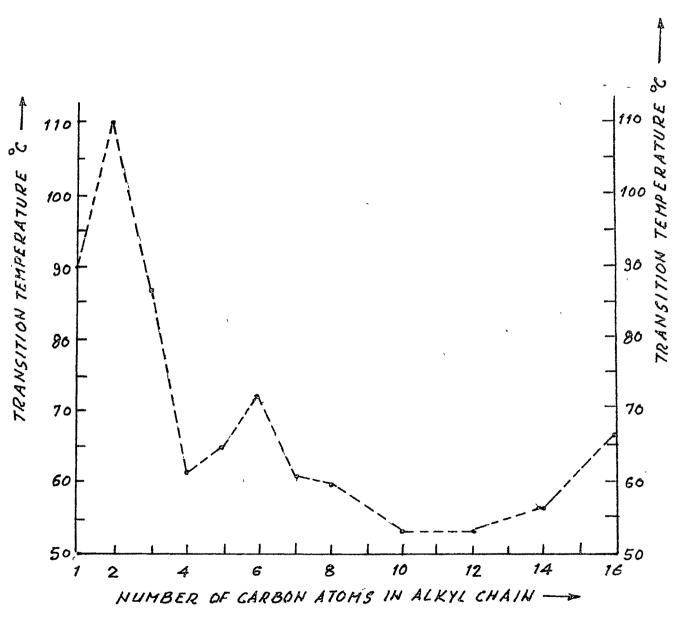



FIG. 14

just touches the melt. The melt slowly forms a thin layer between the slide and the coverslip, when the coverslip is further moved into the melt as required. When a complete thin layer is formed the slide is allowed to cool, (ii) the compound is heated up to the isotropic liquid point, then a coverslip is put in such a way that it just touches the melt. Push the coverslip into the melt slowly so that a complete thin layer is formed and then allowed to cool off,(iii) A few drops of the solution of the substance in a suitable solvent are placed on a slide and a coverslip is placed over it after the solvent is evaporated. By and large the slides are prepared by the second method. Meticulous care is taken while preparing a slide in order to get an almost uniform spread.

The prepared slide is then placed over the heating stage of the microscope. The switch is put on and the sample is heated at a slow rate, say 1°C per minute. The changing textures over the temperature ranges are carefully observed and characteristics of the phases are noted.

Accuracy of the heating device is checked by taking melting points or transition temperatures of very pure but known substances like benzoic acid, & -naphthol, succinic acid, p-azoxyanisoles, p-propionoxybenzal-p-phenetidine, p-anisal, p-phenetidine, p-azoxyphenetole etc.

Approximate transitions are initially determined by heating pretty fast, say about 5°C per minute and allowed

to cool down until stable solid reappears. Once again the slide is heated at a highly regulated rate of say 1°C per minute from about 5°C below the expected transition points in order to measure the transition points accurately. A meticulous observation of the transitions, as the appearance of focal conic, plane, homeotropic and threaded structures of smectic and nematic phases under polarized light, ensured a great deal of accuracy. Formation of isotropic liquid is clearly marked by the field of vision becoming extinct in polarized light.

Appearance of focal conic texture with disappearance of cleavage lines of solid structure on heating is taken as solid---smectic transition. In order to confirm this change the slide was disturbed with the help of a spatula. The disturbed smectic texture can be seen indicating that it is not solid and that the transition has actually taken place. Solid-nematic change is observed on heating with the appearance of threaded texture sharply at a definite temperature. All enantiotropic transitions are clearly detected on cooling the isotropic liquid; the reverse transitions take place sharply at the same temperature or within  $\pm 0.2$  to  $\pm 0.5^{\circ}$ C. Separation of small droplets from the isotropic liquids, which coalesce to give rise to a threaded region - an unfailing characteristic of the nematic phase indicates isotropic - nematic transition. Isotropic--smectic transition is marked by appearance of batonnets which coalesce to form fine mosaic of focal conic pattern. A sharp variation in the texture from focal conic to threated texture while heating and exactly the reversed sequence on cooling clearly marks smectic-nematic change. The homeotropic textures of the smectic and nematic variety can easily be identified by disturbing the coverslip in almost extinct field of vision and observing the spark of light.

Monotropic transitions are determined by carefully observing the isotropic liquid as it cools slowly until batonnets of smectic phase or droplets of nematic phase appear, While observing monotropic phases, it was possible to raise temperature before crystallization occured, which caused disappearance of the mesophase at the same temperature at which it had appeared on supercooling. This type of operation confirmed not only the monotropic change but also the temperature at which it occured. All the compounds under study were observed continuously under polarizing microscope from their solid state to isotropic liquid condition on heating and from isotropic liquid to solid state on cooling ensuring confirmation of all the transitions and making it pretty sure that no transition gets escaped unnoticed.

All observations were repeated several times, in case of any doubt, the compounds were prepared and/or purified again by repeating crystallizations and then subjected to study under microscope afresh.

. 114

3.c: DSC study:

Du Pont 910 Differential Scanning Calorimeter was used for this study. Du Pont DSC cell is a plug-in-module for the Du Pont 990 Thermal Analyser. It is unique in that it makes use of a constantan disc as the primary means of heat transfer to the sample and reference positions and as an element of the temperature measuring thermoelectric junctions.

Thermal analysis (TA) in its broadest sense is the measurement of changes in physical or chemical properties of materials as a function of temperature. Regardless of what temperature dependent variable is under measurement (energy, weight, dimension etc.), the TA instruments have certain elements in common. The sample is placed in an environment, the temperature of which is regulated by some form of a temperature programmer. Changes in sample are monitored by an a**pp**ropriate transducer which produces an electrical output, the analog of the chemical or physical change. The output is amplified electronically and applied to the read out device usually a potentiometric recorder.

DSC is a technique in which the difference in temperature  $(\Delta T)$  between a sample and an inert reference material is recorded as a function of temperature (usually sample temperature). The area under the output curve is directly proportional to the rate of heat transfer ( $\frac{da}{dt}$ ) at any given

time. Two factors essential to the generation of quantitative energy data are (1) a controlled heat path into the sample and reference materials and (2) location of the temperature sensors external to the sample.

A silver heating block, a resistive wound heater and a closely coupled platinel control thermocouple are used to control the cell temperature. The block temperature is monitored by the control thermocouple and the appropriate amount of power is gupplied to the heater as determined by the difference of signal between the control thermocouple and output of the 990 programmer. Heat from the block then rapidly flows through the constantan disc toward the sample and reference platforms. The primary means of heat transfer is through the disc, although some heat is transferred from the lid and walls of the cell through the atmosphere.

Temperature at the raised sample and reference platforms are monitored by chromel constantan thermocouples formed by the junction of the constantan disc with a chromel wire at each platform position. These junctions are centered on each platform. The difference signal between these two thermocouple junctions is fed to the amplifier in the 990 cell base module and then monitored on the Y-axis of the 990 x-y recorder. The sample platform also has an alumel-lead wire forming a chromel-alumel thermocouple junction. The output from this thermocouple is

monitored on the 'T' axis of 990 x-y recorder after suitable cold junction compensation. Thus the  $\Delta q$  signal is determined by chromel-constantan thermocouple and the sample temperature is measured with a chromel-alumel thermocouple. A dummy alumelwire is also welded to the reference platform for thermal balance.

Purge gas (nitrogen) is admitted to the sample chamber through an orifice in one block wall positioned midway between the two faised platforms on the left. The purge gas enters the 990 cell base module at the rear purge connection, passes into the DSC cell and preheated by circulation through the block before entering the sample chamber at block temperature. The best atmosphere exchange can be obtained when open or uncrimped sample pans are used. The vacuum and cool parts on the 990 cell base lead into opening in the DSC cell, although not directly into chamber.

The pan containing sample is placed on the forward raised platform and an empty reference pan (usually no additional inert material is needed) is placed on the rear raised platform. Since the mode of heat transfer is reproducible for a given atmosphere and the temperature transducer is not in the sample, the area under the peak (on a time-base plot) is proportional to the energy involved in the transition and the mass of sample.

The baseline of the DSC cell is very reproducible (empty pan vs empty pan) and can be compensated to obtain a level

baseline over the temperature range of the cell. Adjustment is provided by the base-line slope control of the 990 cell base. Once optimum compensation is obtained, it should hold over the life of the cell.

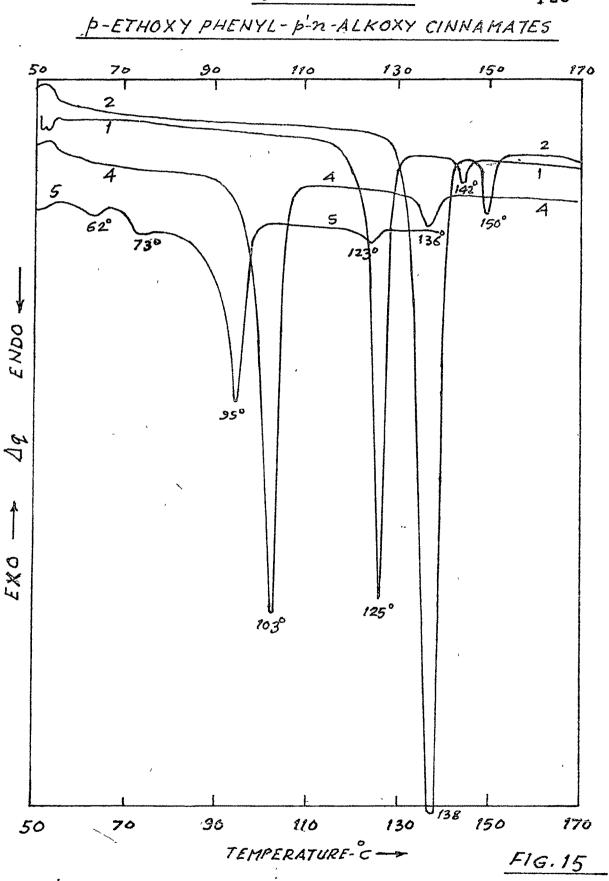
Specifications of the Cell (DSC):

.

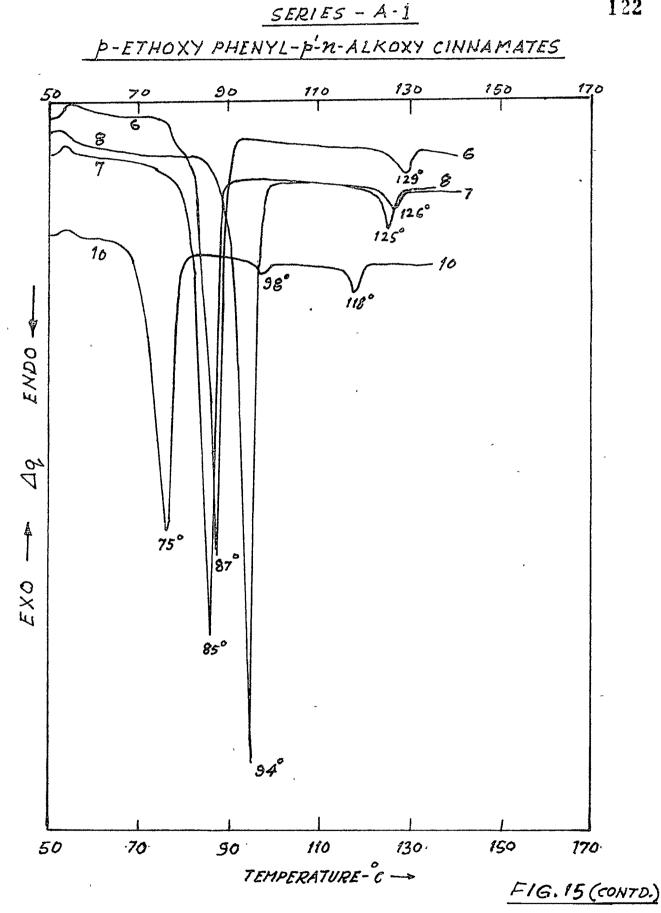
,

Temperature	Room temperature to 600°C.Cooling
Yângen (	: accessory provides quench cooling to -180°C
-	and programmed cooling to -120°C.
Cooling rate	: 10°C/min
Sample Size	: 0.1 mg to 100 mg
Sample pans	: Aluminium open or hermetically sealed to
	three internal atmospheres.
Atmosphere	: Atmospheric to 2 Torr, preheated dynamic
	gas purge (in excess of 100 ml/min.)
Cell volume	: 2 ml
Temperature repeatability	: <u>+</u> 1°C
Differential thermocouple	: Chromel-constantan
Sample thermocouple	: Chromel-alumel
Control	
The rmocouple	: Platinel
Calorimetric	
Sensitivity	: 0.05 to 50 (mcal/sec/in)
Calorimetric	
precision	: $\pm$ 1 % (based on metal samples)

#### Calorimetric Measurement:


Programming was started well below the onset temperature' of the transition to be measured. This allowed the heating rate to stabilize at the set rate and permitted the sample and reference platforms to equilibrate. At a programming rate of 10°C/min, at least 20°C was allowed. For this stabilization other programming rates require proportionate allowances.

To reach the required starting temperature the following was meticulously observed:


- (i) The required temperature on the starting temperature dial was fixed.
- (ii) The program button was then pushed. The DSC cell heated at full voltage and the programmer was step up and held isothermally at the desired starting temperature.
- (iii) When the programmer reached the starting temperature, the programme rate switch was checked. The limit temperature and mode was set as desired.
- (iv) The heat or cool button was then pushed. Sample temperature was displayed on the y-axis.

 $\Delta$  H Calculations using T-axis in Time Base:

The peak area was used to calculate  $\triangle$  H, the heat of fusion, by substitution into the equation:



SERIES - A-1



p=ETHOXYPHENYL-p'-n-ALKOXY CINNAMATES

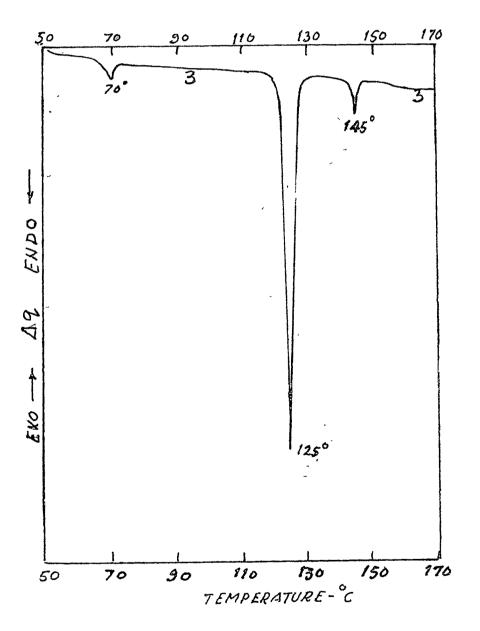



FIG. 15 (CONTD.)

p-n-PROPOXY PHENYL-p-n-ALKOXY CINNA MATES

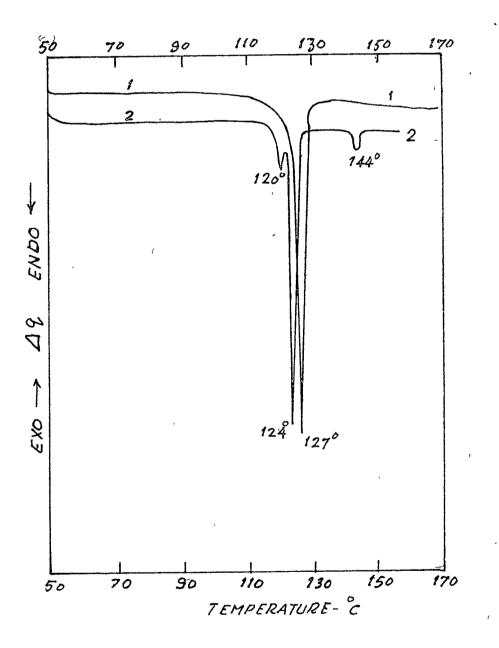



FIG. 16

b-n- PROPOXY PHENYL-p'-n-ALKOXY CINNAMATES

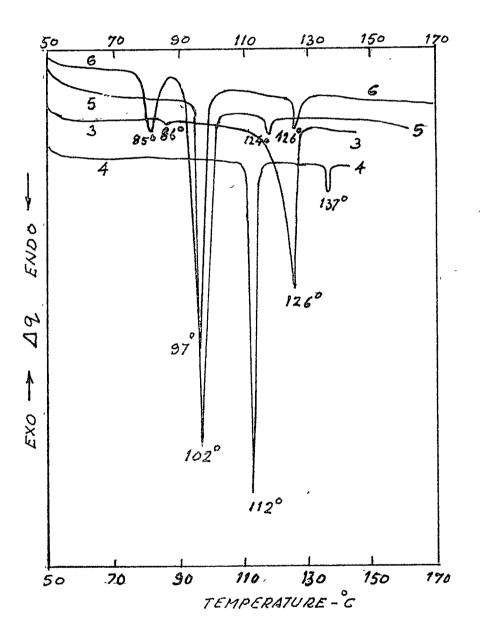
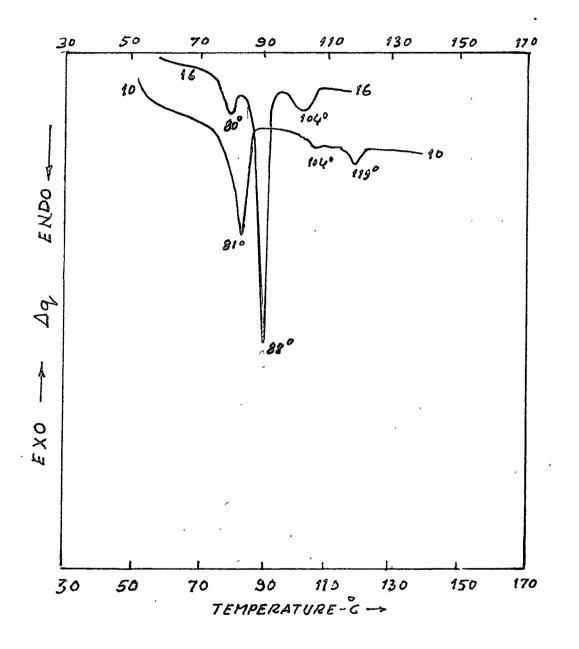
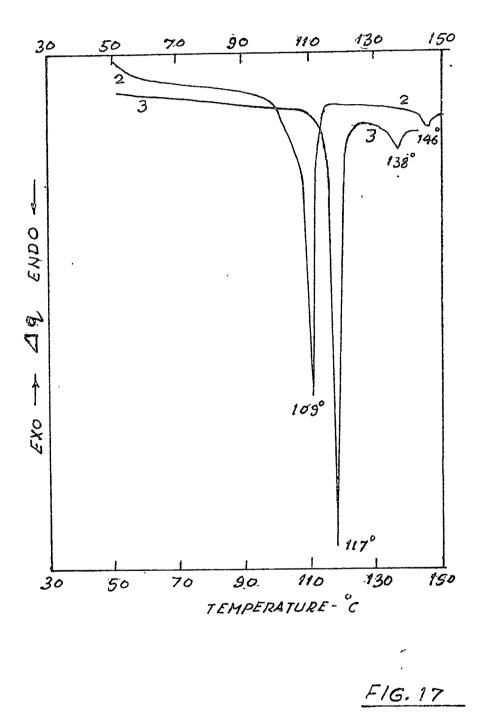
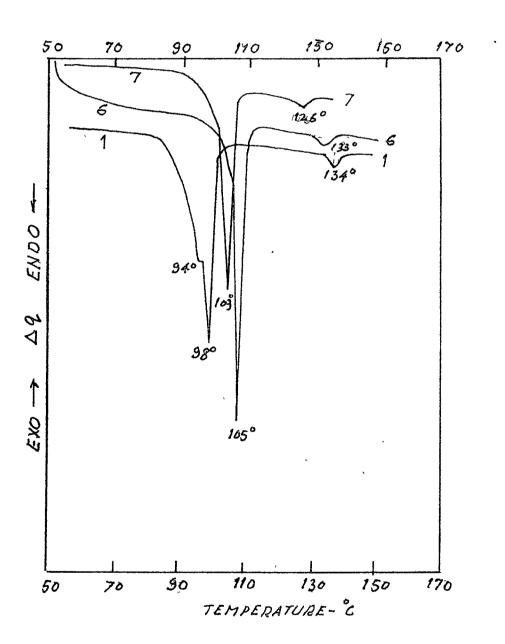




FIG. 16 (CONTD.)


.



>


FIG. 16 (CONTD.)

b-n-BUTOXYPHENYL-p-n-ALKOXY CINNA MATES



p-n-BUTOXYPHENYL-p-n-ALKOXY CINNAMATES

(



ł

FIG. 17 (CONTD.)

,

p-n-BUTOXYPHENYL-p-n-ALKOXY CINNAMATES

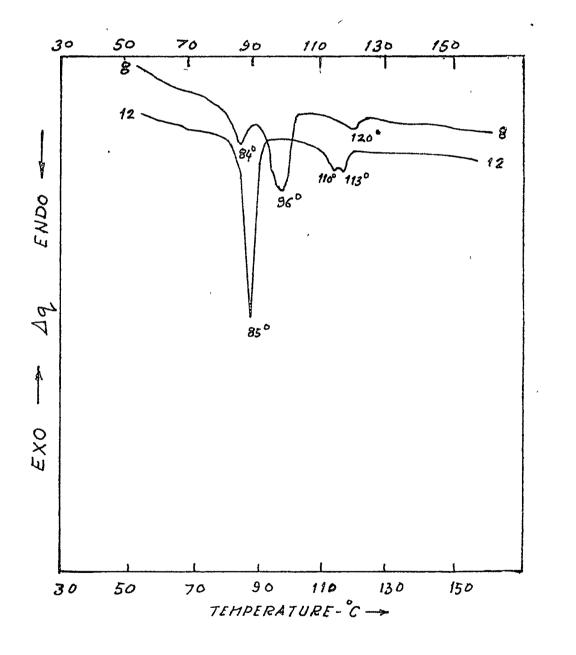



FIG. 17 (CONTO.)

129

۰,

p-n-BUTOXYPHENYL-p'-n-ALKOXY CINNAMATES

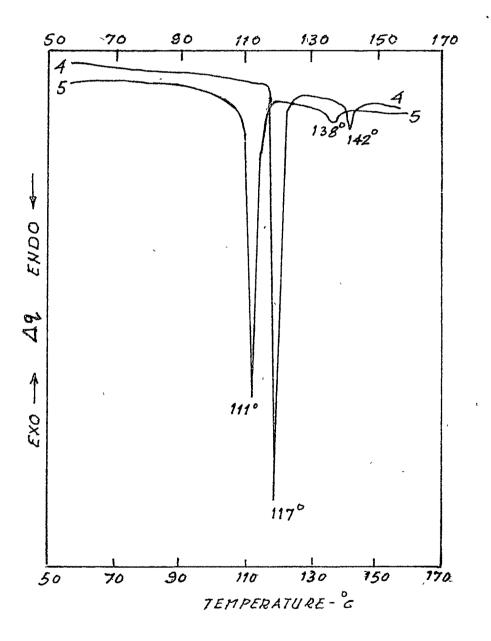



FIG. 17 (CONTO.)

 $\Delta$  qs = y-axis range (mcal/sec./in.)

The quantity (60 x B x E x  $\Delta$  qs) is constant for any given set of instrument settings. This is used to convert area directly into heats of reaction.

#### 3.d. Mixed Mesophases:

Study of mixed liquid crystal formation in binary systems, none, one or both components of which are liquid crystals, is as old as the discovery of liquid crystals. This study leads to revelation of structural characteristics' and temperature and concentration conditions that are taken as conducive to liquid crystal formation besides helping generalizations concerning other factors responsible for exhibition of mesomorphism.

Mixed mesomorphism has also contributed recently to the applications of liquid crystals by way of widening the scope of utility of certain mesogens. For the mixed mesomorphic study some of the homologues which have been synthesized in

ź

this investigation, have been used for preparing the binary mixtures. The following binary systems have been investigated:

•

System 1.	p-Ethoxyphenyl-p'-n-heptyloxycinnamate
,	p-Ethoxyphenyl-p'-n-octyloxycinnamate
System 2	p-Ethoxyphenyl-p'-n-decyloxycinnamate
	p-Ethoxyphenyl-p'-n-dodecyloxycinnamate
System 3	p-n-Propoxyphenyl-p'-n-Heptyloxycinnamate
	p-n-Propoxyphenyl-p'-n-octyloxycinnamate
System 4	p-n-Propoxyphenyl-p'-n-decyloxycinnamate
ı	p-n-Propoxyphenyl-p'-n-dodecyloxycinnamate
System 5	p-iso-Propoxyphenyl-p'-methoxycinnamate
	p-iso-Propoxyphenyl-p'-ethoxycinnamate
System 6	p-iso-Propoxyphenyl-p'-methoxycinnamate
	p-iso-Propoxyphenyl-p'-n-propoxycinnamate
System 7	p-iso-Propoxyphenyl-p'-ethoxycinnamate
	p-iso-Propoxyphenyl-p'-n-propoxycinnamate
System 8	p-iso-Propoxyphenyl-p'-n-butoxycinnamate
	p-iso-Propoxyphenyl-p'-n-amyloxycinnamate
System 9	p-iso-Propoxyphenyl-p!-n-hexyloxycinnamate
	p-iso-Propoxyphenyl-p'-n-heptyloxycinnamate
System 10	p-iso-Propoxyphenyl-p'-n-heptyloxycinnamate
	p-iso-Propoxyphenyl-p'-n=octyloxycinnamate
System 11	p-iso-Propoxyphenyl-p'-n-decyloxycinnamate
	p-iso-Propoxyphenyl-p'-n-dodecyloxycinnamate
System=12	0-Chlorophenyl-p'-n-butoxycinnamate
	m-Chlorophenyl-p'-n-butoxycinnamate

,

132

•

,

.

.

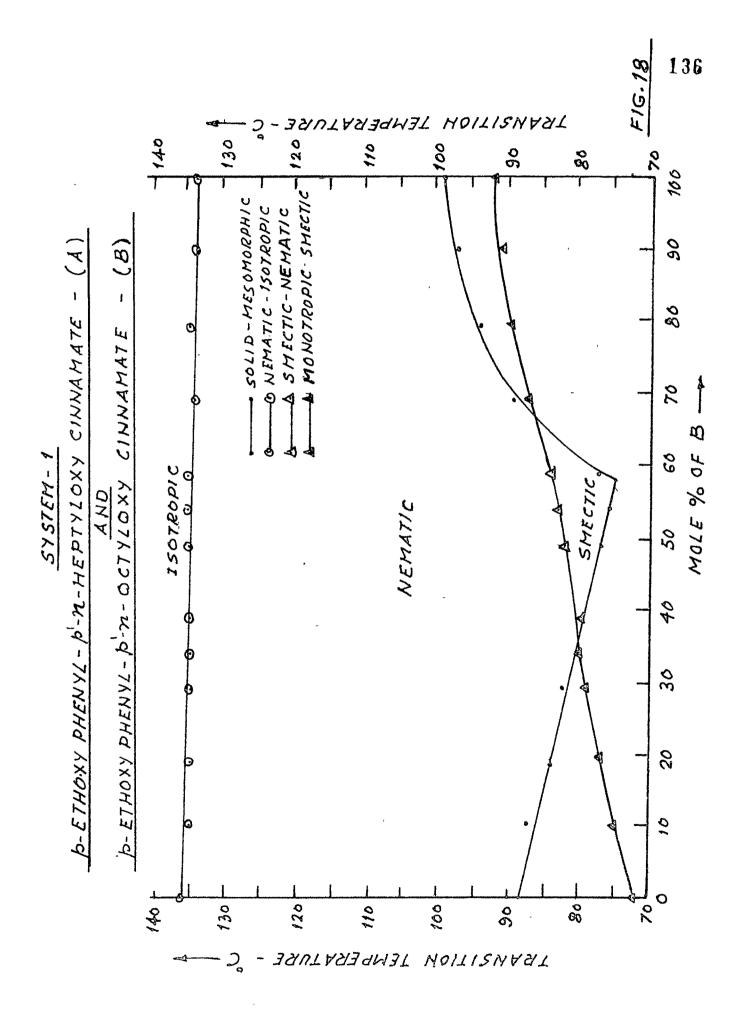
System 13	0-Chlorophenyl-p'-n-amyloxycinnamate
	m-Chlorophenyl-p'-n-amyloxycinnamate
System 14	0-Chlorophenyl-p'-n-hexyloxycinnamate
	m-Chlorophenyl-p'-n-hexyloxycinnamate
System 15	0-Chlorophenyl-p'-n-heptyloxycinnamate
	m-Chlorophenyl-p'-n-heptyloxycinnamate
System 16	0-Chlorophenyl-p'-n-octyloxycinnamate
•	m-Chlorophenyl-p'-n-octyloxycinnamate

#### Preparation of Binary Mixtures:

Both components of the binary mixtures are accurately weighed in known proportions in clean and dry sample tubes. The total weight of the mixture taken is around 0.2 gm. The tube containing the mixture is immersed in an oil bath maintained at a temperature slightly higher than that at which the mixture melts. At the melting condition, the mixture is stirred thoroughly with a glass rod in order to obtain homogeneity. The tube is cooled by quenching it in a beaker containing cold water. The mixture solidifies almost instantly. The mixture is now taken out from the tube and then ground to a fine powder with the help of agate mortar and pastle. Mixtures of varying proportions are prepared and then studied under microscope.

3.e. Study of the mixed mesophases Under Polarizing Microscope

Several binary mixtures with varying compositions have been examined under polarizing microscope with a view to study the


1

## Binary System No.1

- (A) p-Ethoxyphenyl-p'-n-heptyloxycinnamate
- (B) p-Ethoxyphenyl-p'-n-octyloxycinnamate

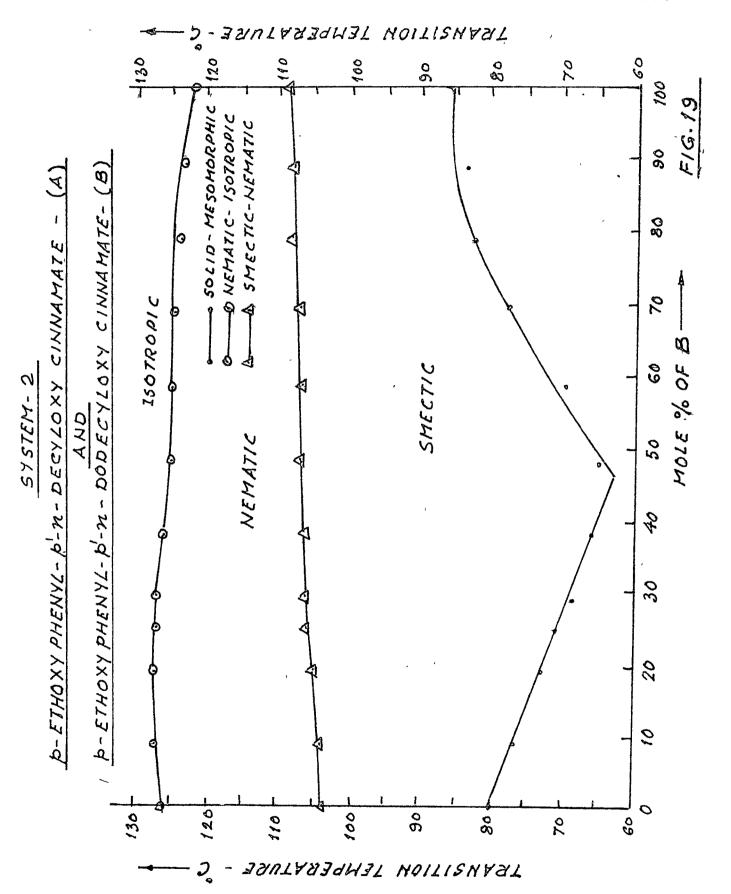
Mole % of B	Transition Temperatures °C		
	Smectic	Nematic	Isotropic
0	(72)	88	136
9.66	(72)	87	135
19.44	(77)	84	135
29.25	(79)	82	135
34.17	(80)	80	135
39.13	(80)	80	135
49.07	77	82	135
54.00	76	83	135
59.12	77	84	135
69.21	(87)	89	134
79.42	(89)	94	135
89.70	(91)	97	134
100	(92)	99	133.5

Value in the parenthesis indicates monotropy



# Binary System No.2

(A) p-Ethoxyphenyl-p'-n-decyloxycinnamate


1

-

1

(B) p-Ethoxyphenyl-p'-n-dodecyloxycinnamate

[™] ole % of B	Transition	Temperat	ures °C
OF6 % OF B	Smectic	Nèmatic	Isotropic
0	80	104	126
9.37	77	104	127
18.92	73	105	127
24.92	71	106	127
28.66	69	106	127
38.44	66	106	126
48.36	65	107	125
58.46	70	107	125
68.70	78	107	124.5
79.00	83 ,	108	124
89.34	84	108	123.5
100	86	109	122



Binary System No.3

(A) p-n-Propoxyphenyl-p'-n-heptyloxycinnamate

(B) p-n-Propoxyphenyl-p'-n-octyloxycinnamate

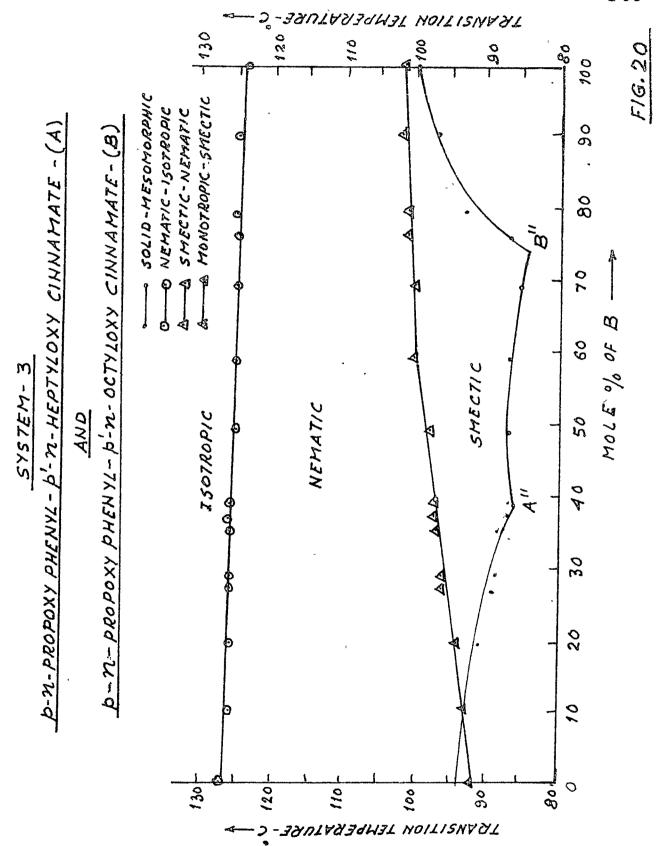
Mole % of B	Transition Temperatures °C		
	Smectic	Nematic	Isotropic
0	(92)	94	127
9.72	(93)	93	126
19.54	91	94	126
27.00	89	96	126
29.17	, 89	96	126
34.59	88	97	126
36.66	87	97	126
39.09	87	97	126
49.16	87	98	125
59.03	87	100	125 [′]
69.30	85	100	125
76.07	87	101	125
79.39	93	10 <b>1</b>	125
89.72	· 97	102	125
100	99	101.5	124

· Value in the parenthesis indicates monotropy

,

,

.


,

,

.

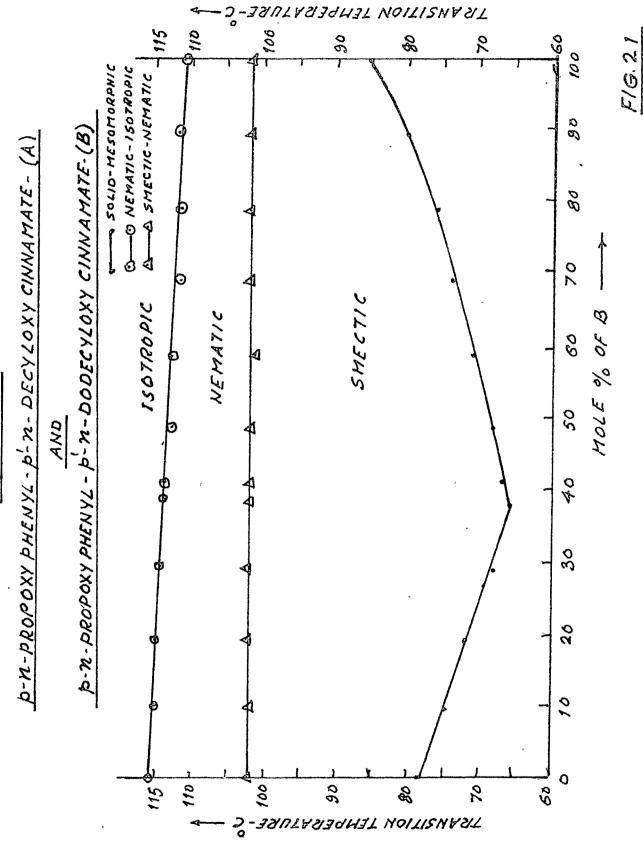
/

-



## Binary System No.4

.


(A) p-n-Propoxyphenyl-p'-n-decyloxycinnamate

(B) p-n-Propoxyphenyl-p'-n-dodecyloxycinnamate

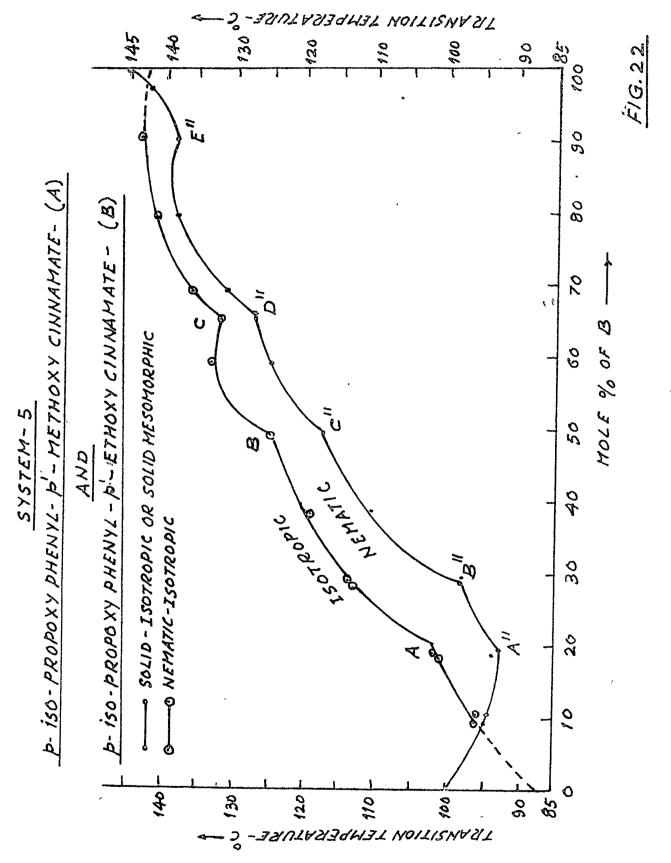
tion Tempe	ratures °C
Nematic	Isotropic
102	116
102	115
102.5	115
102.5	114.5
102	114
102	114
102	113
101.5	113
102	112
102	112
102	112
102	111

,

SYSTEM. 4



## Binary System No.5


- (A) p-iso-Propoxyphenyl-p'-methoxycinnamate
- (B) p-iso-Propoxyphenyl-p'-ethoxycinnamate

Mole % of B	Transition Temperatures ?C		
	Smectic	Nematic	Isotropic
0	-	, <b>—</b>	99
8.77	-	95	96
9.59	-	95	96
18.02	-	94	101
19.26	-	93	102
28.41	-	98	113_
29.09	-	98	114
38.92	-`	112	120
48.88	-	118	125
58.94	-	125	133
65.20	-	127	, 132
69.04	-	131	136
79.25	-	138	141
89.62	-	138	143
97.40	-	-	142
100	· _	-	145

÷

ŧ





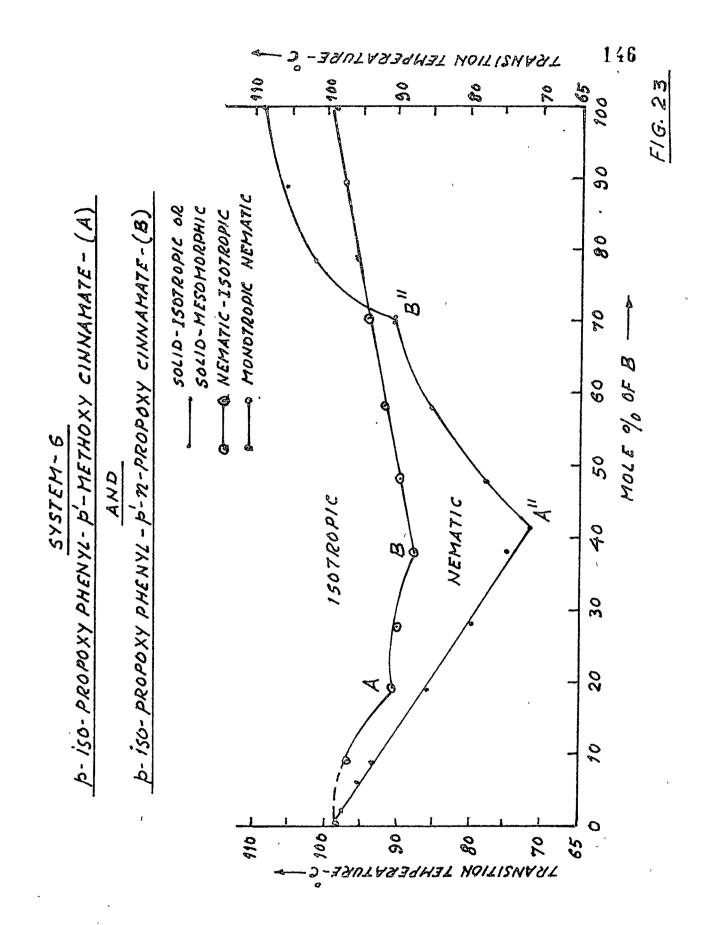
## Binary System No.6

(A) p-iso-Propoxyphenyl-p'-methoxycinnamate

.

-

(B) p-iso-Propoxyphenyl-p'-n-propoxycinnamate


Mole % of B	Transition Temperatures °C		
	Smectic	Nematic	Isotropic
0	-	-	99
2.34	-		97.5
6.21	<u> </u>	-	95.5
9.22	-	93.5	97
18.70	-	[,] 86	91
28.17	· _	80	90
37.96	-	75	88
47.83	-	78	90
57.95	-	85.5	92
68.17	-	94	96
70.15	-	91	94
70.34	-	⁻ 91	94
78.56	-	(96)	102
89.25	-	(97.5)	106
100	-	(99)	109

Value in the parenthesis indicates monotropy

,

2

.

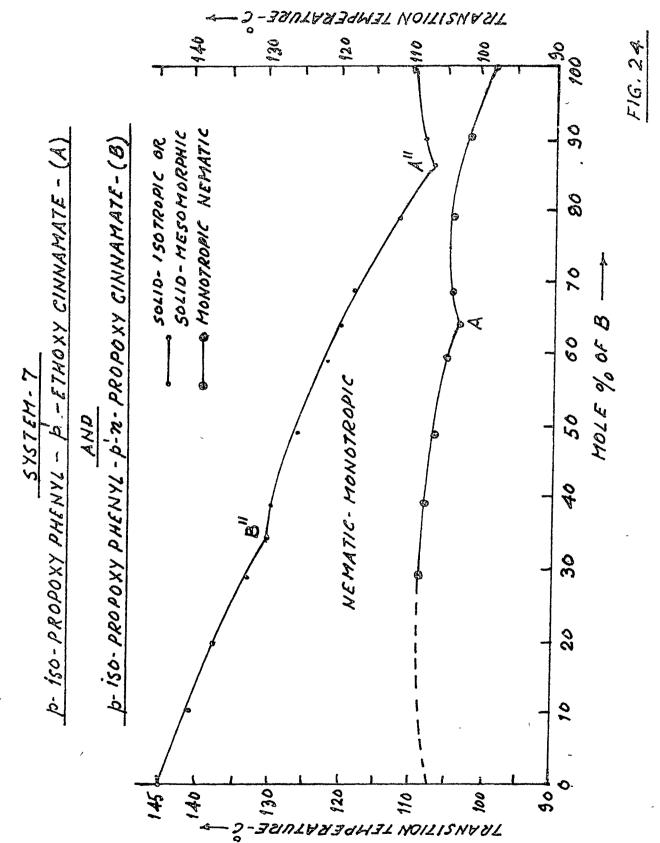


Binary System No. 7

(A) p-iso-Propoxyphenyl-p.'-ethoxycinnamate

ı

7


(B) p-iso-Propoxyphenyl-p'-n-propoxycinnamate

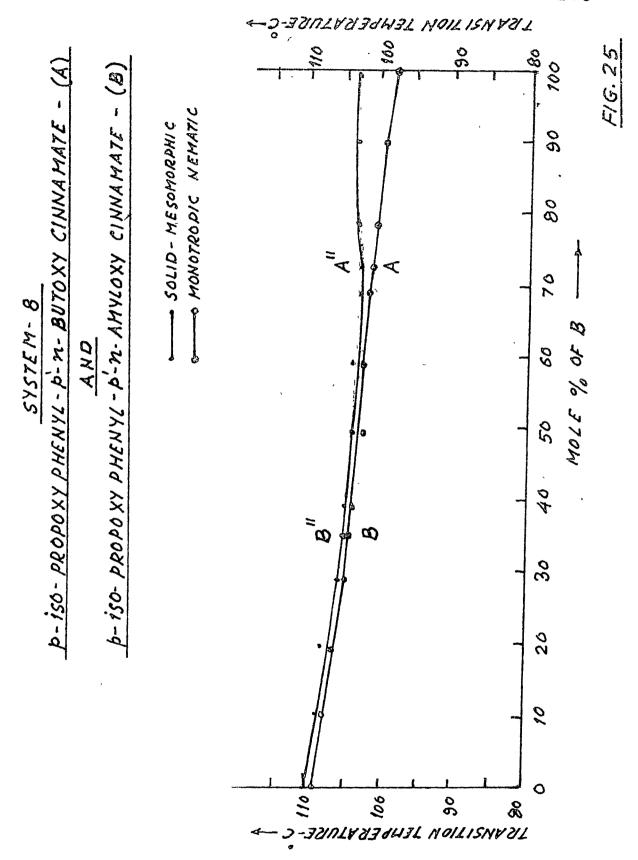
Mole % of B	Transition Temperatures °C		
	Smectic	Nematic	Isotropic
0		u <del>ga</del>	145
9.64	-	-	141
19.29	r ••••	-	138
2 <b>9.</b> 07	-	(109)	133
39.01	-	(108.5)	130
48.91	-	(107)	12 <b>5</b>
59.02	-	(105)	122
63.58	-	(103.5)	120
69.12	-	(104.5)	118
79.38	-	(104) -	112
89.63	-	(102)	108
100	-	(99)	109
			`

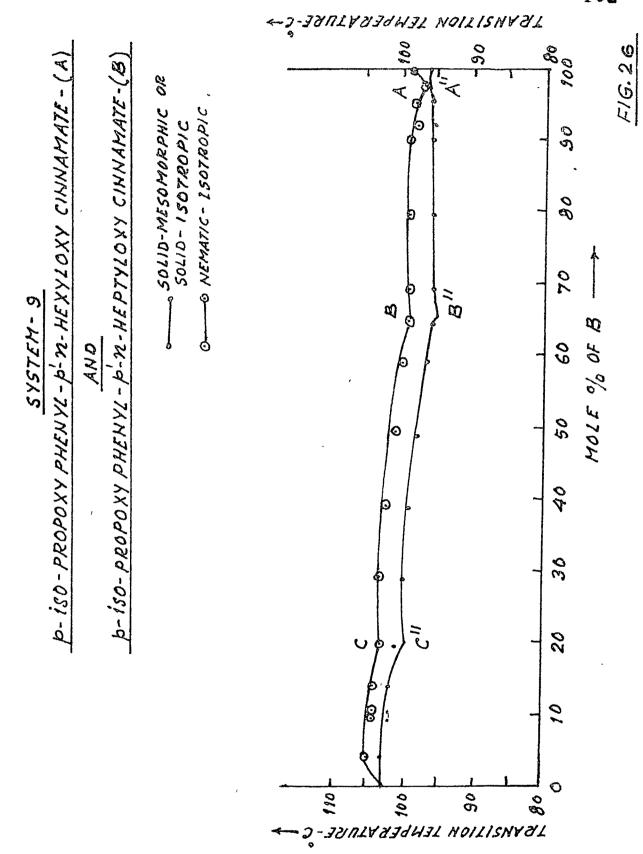
Value in the parenthesis indicates monotropy

1

,




# Binary System No.8


(A) p-iso-Propoxyphenyl-p'-n-butoxycinnamate

(B) p-iso-Propoxyphenyl-p'-n-amyloxycinnamate

Mole % of B	Transit	Transition Temperatures •C		
	Smectic	Nematic	Isotropic	
0		(109)	110	
9.65	-	(108)	109	
19.54	-	(107)	108	
28,95	-	(105)	106	
35.36	-	(105)	105	
39.13	-	(104)	105	
49.17	-	(102.5)	104	
58.95	-	(103)	104	
68.95	-	(102)	103	
79.25	-	(101)	103	
89.85	-	( 99 <b>)</b>	103	
100	-	(98)	103	

Value in the parenthesis indicates monotropy

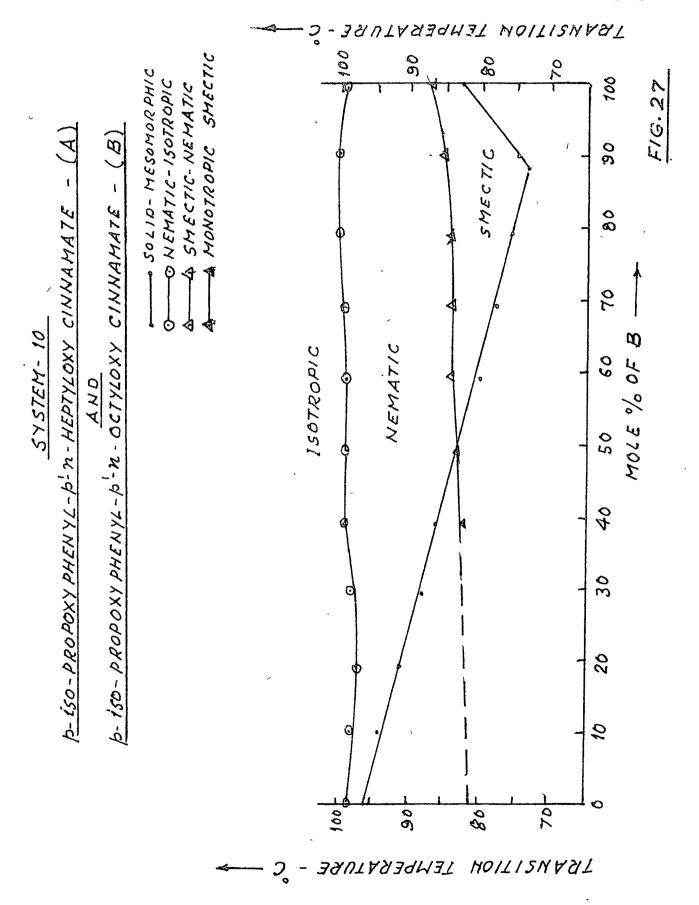




### Binary System No.10

.

.


(A) p-iso-Propoxyphenyl-p'-n-heptyloxycinnamate

(B) p-iso-Propoxyphenyl-p'-n-octyloxycinnamate

Mole % of B	Transition Temperatures •C		
	Smectic	Nematic	Isotropic
0	-	96	98.5
9.63	_	94	98
19.31	-	91	97
29.38	-	88	98
39 <b>.</b> 13	(82)	86	99
49.07	(83)	83	99
58.97	80	84	99
69.35	78	84	99
79.20	76	84	100
90	75	85	100
100	82	87	99

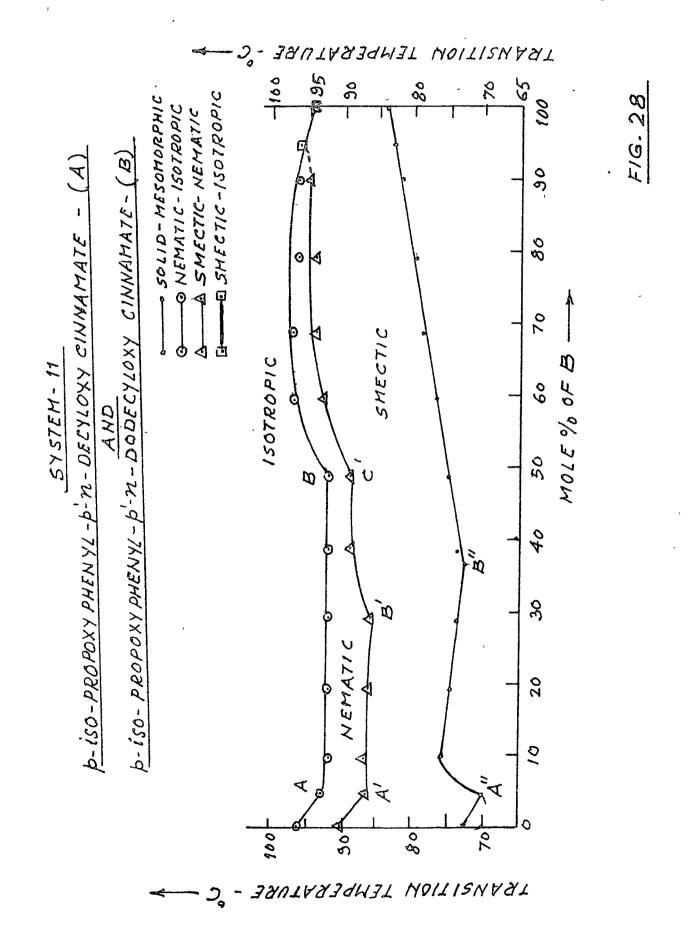
Value in the parenthesis indicates monotropy

s.•



۱,

### Binary System No.11


.

(A) p-iso-Propoxyphenyl-p'-n-decyloxycinnamate

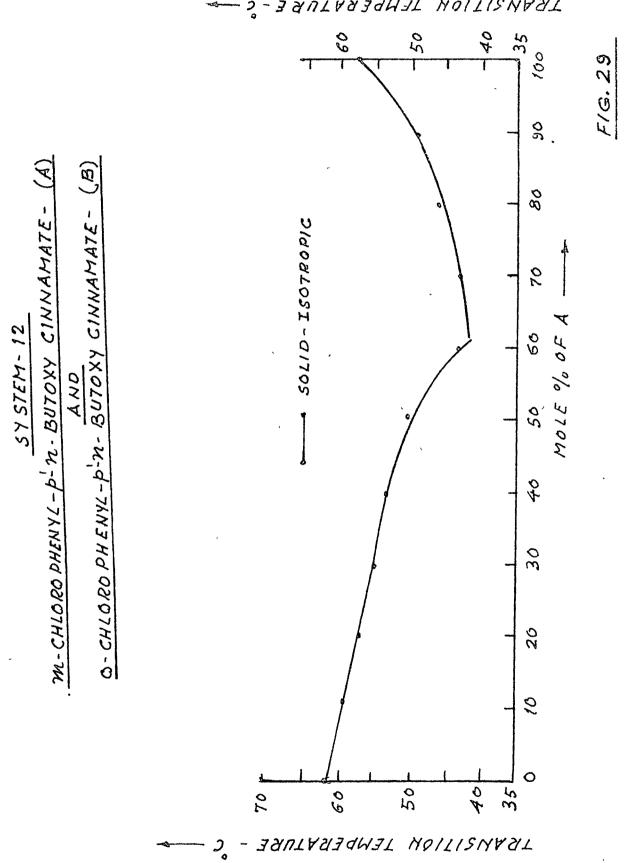
(B) p-iso-Propoxyphenyl-p'-n-dodecyloxycinnamate

	Transition Temperatures °C		
Mole % of B	Smectic	Nematic	Isotropic
0	73	90	96
4.54	70	86.5	93
9.44	76	87	<u> </u>
19.02	75	86	92
28.70	74	86	92
38.51	74	89	92
48.44	75	89	92
58.50	77	93	97
68.69	79	94	97
78.97	80	94	96.5
89.44	82	95	96.5
94.62	83	-	96
100	84	-	94

, **š** 



# Binary System No. 12

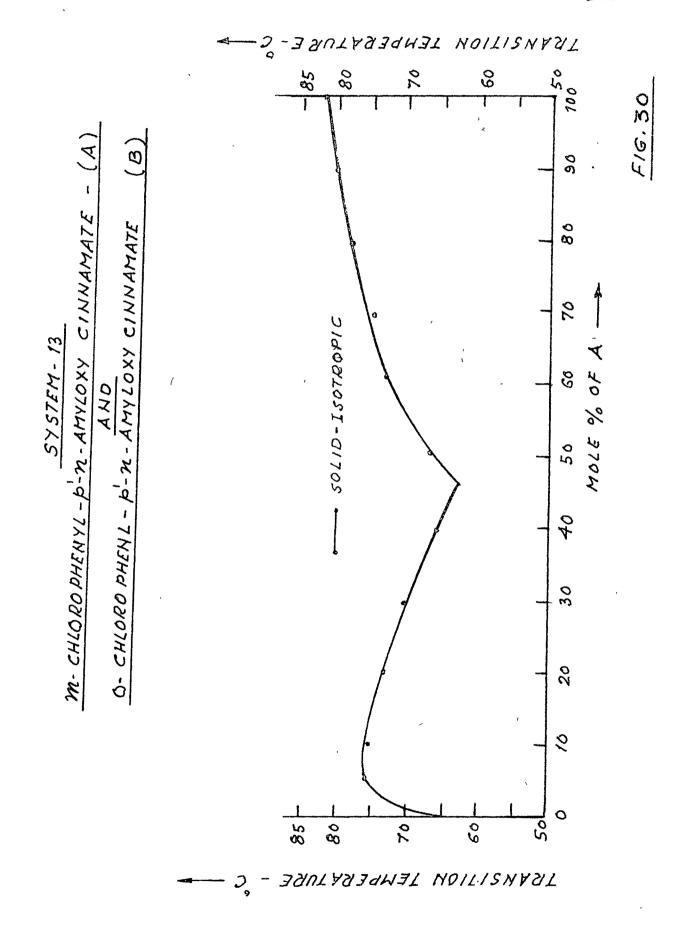

- (A) m-Chlorophenyl-p'-n-butoxycinnamate
- (B) O-Chlorophenyl-p'-n-butoxycinnamate

Transition Temperatures °C			Transi	Mole % of A
tropic	Isotro	Nematic	Smectic	DIE / DI A
61	6			0
59	59	-		0.69
57	5'	-		0.13
55	55	-	, - •	0.12
53	53			9.47
50	50	-	-	0.47
43	43	-	-	0.25
43	43	-	-	0.25
46	46	-	-	0.26
49	49	-	-	9.51
57	57		-	. 00
		-		

157

ļ

,




TRANSITION TEMPERATU

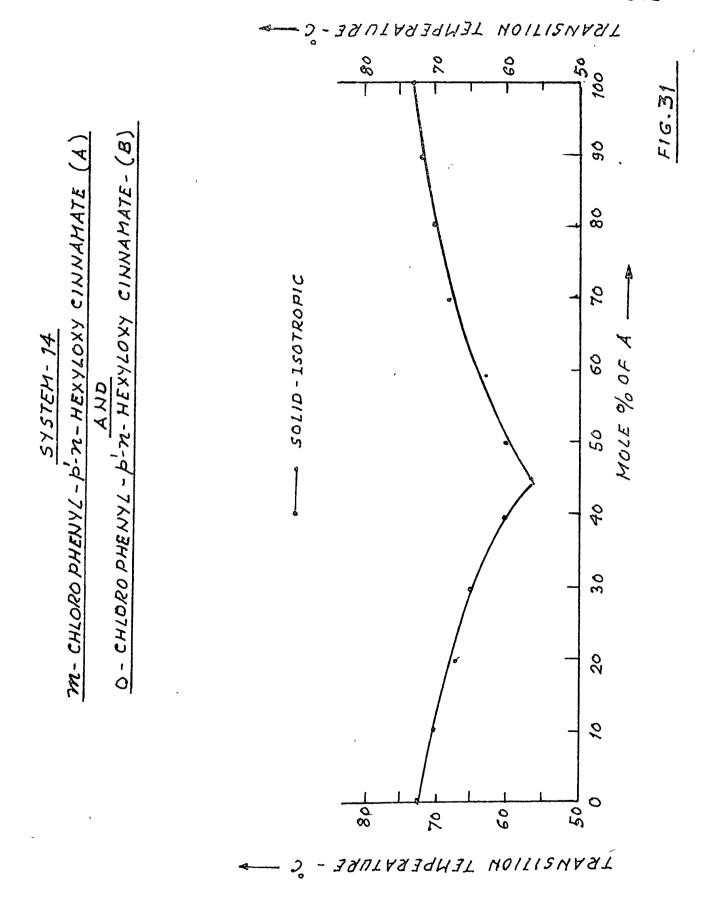
158

, •**-**

. .



# Binary System No.14

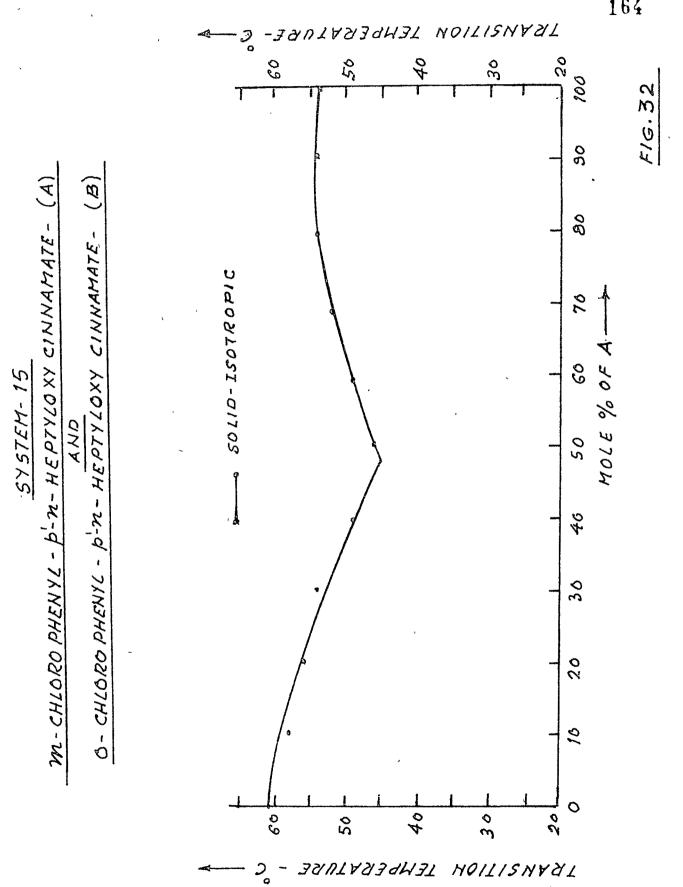

- (A) m-Chlorophenyl-p'-n-hexyloxycinnamate
- (B) O-Chlorophenyl-p'-n-hexyloxycinnamate

ŧ

۲

Mole % of A	Trans	Transition Temperatures °C			
MOLE % OI A	Smectic	Nematic	Isotropic		
0			72		
10.59	_	-	70		
20.30	-	-	67		
30.04	-	-	65		
39.86	-	-	60		
49.83	-	-	60		
59.62	-	<b>W</b> ith	63.5		
70.05	-	-	68		
80.53	-	-	70		
90.23	-	-	72		
100	-	-	73		

-

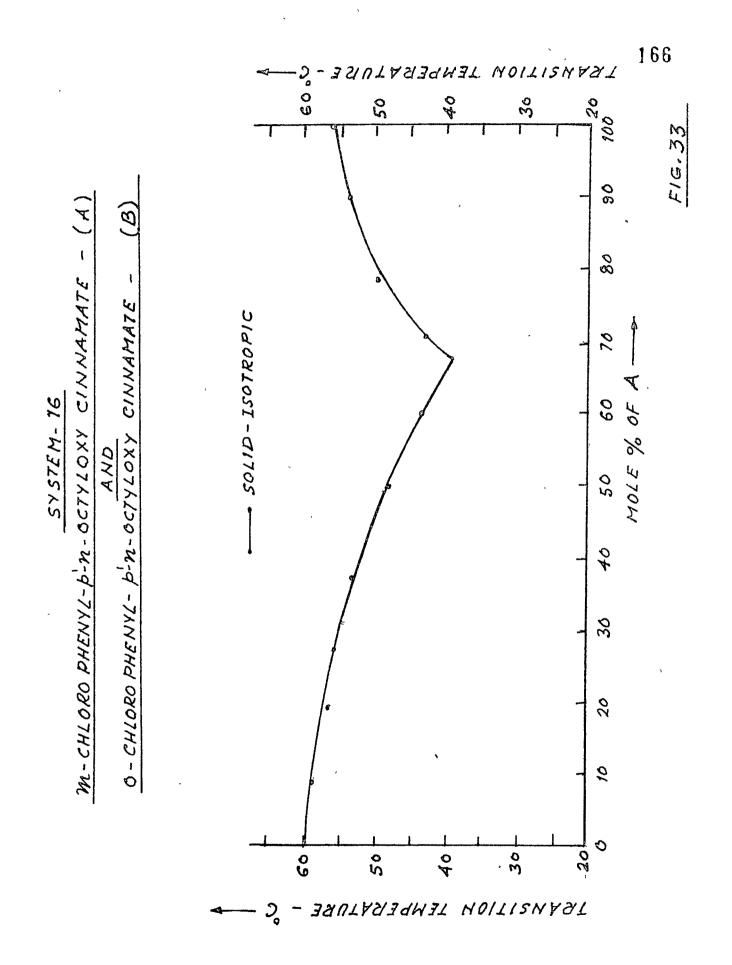



### Binary System No. 15

# (A) m-Chlorophenyl-p'-n-heptyloxycinnamate

(B) 0-Chlorophenyl-p'-n-heptyloxycinnamate

Mole% of A	Transition Temperatures °C		
	Smectic	Nematic	Isotropic
0		<b></b> ,	61
10.23	_	-	58
20.03	` <b>_</b>	-	56
30.14	-	-	54
40.10	-	-	49
50 <b>.1</b> 0	-	-	46
59.32	-	-	49
68.48	-	-	52
79.81		-	54
89.88	-	-	54
100	-	-	54




# Binary System No.16

(A) m-Chlorophenyl-p'-n-octyloxycinnamate

(B) O-Chlorophenyl-p'-n-octyloxycinnamate

Mole % of A	Transition Temperatures °C		
	Smectic	Nematic	Isotropic
0			60
	-	-	
9.37	-	-	59
19.59	-	-	57
27.63	-	-	56
39.89	-	-	53
49.92	-	-	48
59.77	-	-	44
70.43	-	-	43
79.16	-	-	50
89.80	-	-	54
100	-	-	56

