
CHAPTER -VI

METHODOLOGY AND MODELS

Every business has a fundamental concept - that of understanding its performance, in the 

form of measuring its achievements either against the goals and objectives set by it or, 

against the competition. Ports are not different and it is only by comparison that 

performance can be evaluated. However, ports being a complex business with many 

different sources of inputs and outputs, direct comparison among apparently 

homogeneous ports seem difficult.

1. PORT PERFORMANCE AS AN INDICATOR OF PORT 
COMPETITIVENESS

Logistics chains are stretching across continents where production may be in one 

continent and the market in another. Cargoes and shipments from all over the world have 

been increasing exponentially. Seaports have not kept pace with the economic 

development and cargo movement that has been taking place. In fact, many seaports are 

experiencing difficulties. There exist many bottlenecks in terms of information and 

physical status of the cargo leading to low productivity within the terminal. The needs for 

higher operational productivity, faster exchange of information, and speedier vessel turn­

around times are just a few of many critical factors that are currently pressing port’s nodal 

position within logistics systems and supply chains. Thus, port performance becomes a 

critical issue in itself. Expansion, though a solution, is not without its own difficulties. 

There are many obstacles in increasing terminal capacity through expansion (Notteboom 
and Winklemans, 2002)1.

As nations are becoming more global and their industries more exposed to the pressures 

of international competition, there is a growing realization that services supplied to their 

industries must be provided on an internationally competitive basis. Thus, there is a push 

amongst port authorities to improve their port performance and efficiency due to 

increasing competition between ports and growing pressure from shippers for lower port



and shipping charges. Since ports from a vital link in the overall trading-chain, their level 

of efficiency and performance determine, to a large extent, a nation’s international 

competitiveness. In order to achieve and maintain a competitive edge in the international 

markets, port authorities need to understand the underlying factors of port 

competitiveness, and continually asses its performance relative to the rest of the world so 

that appropriate business strategies can be established. Porte need to know how to 

compare with their rivals and advance their competitiveness for holding dominant market 

position.

1.1 Importance of Performance Measurement

Production, a fundamental concept in economic theory, can be defined in simple terms as 

a process by which inputs are combined and transformed into outputs (Case and Fair, 
1999)2. The inputs can normally be generalised as natural resources such as land, human 

resources, etc. and man-made aids like tools and machinery which are used to further 

production. Outputs, on the other hand, can be categorised into tangible products 

including goods and intangible products including services. Studying production, also 

known as performance measurement, is of great significance because of scarce resources 
and the human desire to fully utilise them. According to Dyson (2000)3, performance 

measurement, plays an essential role in evaluating production because it defines not only 

the current state of the system but also its future. Performance measurement helps to 

move the system in the desired direction through the effect exerted by the behavioural 

responses, which exist within the system towards these measures. Mis-specified 

performance measures, however, will cause unintended consequences with the system 

moving in the wrong direction.

Thanassoulis (2001)4 identifies the following information that can be obtained by 

performance measurement:

• The identification ofgood operating practices for dissemination;

• The most productive operating scale;
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• The scope for efficiency savings in resources use and/or for output augmentation;

• The most suitable role model for an inefficient unit to emulate to improve its 

performance;

• The marginal rates of substitution between the factors ofproduction; and

• The productivity change over time by each operating unit and by the most efficient of 

the operating units at each point in time.

1.2 Measurement of Port Performance

Performance measurement plays an important role in the development of a company (or 

firm, etc). As the clearinghouses for a major portion of the world’s rapidly increasing 

international trade flows, ocean ports and the efficiency with which they process cargo 

have become an ever more important topic. Poorly performing ports may reduce trade 

volumes, particularly for small, less-developed countries (Clark et al., 2004, and Wilson
et al., 2003)5. Among the factors yielding on a port’s competitiveness, performance or

£

efficiency is considered as one of the most influential elements (Tongzon 1995 & 2001 ; 
Song et al, 20017; Song & Han, 20048). Port efficiency is an important issue in addressing 

trade facilitation practices, which has been a recent focus of the World Trade 

Organization and regional trade institutions, such as the Asia-Pacific Economic 

Cooperation organization. As mentioned above, the impact of a port’s performance is not 

only confined to its competitiveness, but also goes beyond the industry to affect a 

country’s overall competitiveness. Measurement of port performance is a crucial method 

of checking the competitiveness of a port, compared to rival ports.

Even though the concept of port performance has been used widely, the concept is still 

unclear because it includes overall concepts such as port productivity, port efficiency, port 

effectiveness, and economy of a port. Port performance is used as a joint definition of 

effectiveness and efficiency. A port is a meeting place in which multipart organizations 

and institutions interplay at various levels and thus is complex. Ports are essentially 

providers of service activities, in particular for vessels, cargo and inland transport. As 

such, it is possible that a port may provide sound service to vessel operators on the one
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hand and unsatisfactory service to cargo or inland transport operators on the other. 

Therefore, port performance cannot normally be assessed on the basis of a single value or 

measure. Ports are not a kind of organization where only one service is rendered. On the 

contrary, multiple activities are developed in them and a great number of agents are 

involved in their provision (port authorities, tugs, consignees, repair shops, etc.), each of 

which pursues its own objective. Moreover, these operators deliver their activities with 

very uneven levels of competition and regulation. This diversity of activities hinders the 

analysis of ports as a whole and, on the contrary, calls for an analysis focused on a 
specific activity (Nombela and Trujillo, 1999)9, a specific cargo type and a limited 

number of ports (Tongzon, 1995a, 1995b, 2001)10. A myriad of factors contribute to port 

efficiency. Some of the more obvious factors include dock facilities, connections to rail 

and trucking lines, harbor characteristics (including channel depth and ocean/tidal 

movements), time to clear customs, and labor relations. Despite the obvious significance 

of port efficiency, consistent and comparable measurement of such efficiencies is a 

daunting task. Moreover, consistent data and methods to construct measures that allow 

comparisons across ports are not currently available even in developed countries. 

Problems always arise when one tries to apply a single analytical instrument to a range of 

ports and terminals. Thus, inspite of a widespread recognition of the potential importance 

of ports, a widely accepted performance measurement method for evaluating such centers 
have yet to be developed (Bichou and Gray, 200411).

The efficiency analysis of container ports or terminals has an important implication for 

both the government and port/terminal operators. Based on the efficiency measure, the 

government can optimize the allocation of resources and funding for improving the 

overall competence. The port/terminal operators want to benchmark their own 

ports/terminals against comparable ports/terminals to ensure competitiveness. Thus, a 

fundamental task for policymakers and other stakeholders is to gauge and monitor 

efficiency of the port services. But this is a difficult task in the fluid environment of the 

port industry. Technological change has made the shipping business very different from 

what it used to be. Containerisation has transformed the cargo management operation 

from a break-bulk process into a bulk and unitized one. From a labour intensive activity, it
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has switched into a capital intensive one. The diffusion and the increasing importance of 

the container business have required large investments and a change in the terminal 

management philosophy.

As seen in chapter: V, the penetration of containers is also associated with the upsizing of 

vessels. The increase of container vessels size deeply affects the port. According to 
Cullinane and Khanna (1999, pp.19312): The latest generation of container ships make 

considerable demands on terminals and ports in the form of additional infrastructure, 

cranes, depth in ports, productivity, etc. The first level at which the upsizing of vessels 

will concern port authorities is the physical level of equipment and infrastructure. Port 

authorities are required to invest consistently to upgrade and extend their infrastructure 

and equipment in order to berth the new bigger ships. The second level of effects on ports 

will concern the competitive position of the ports and the consequences the level of 

infrastructure will have on the attractiveness of the port for shipping lines and the port 

capacity to withhold them. Because ports will require sufficient infrastructure in terms of 

berths, depth of water and craneage, fewer ports will be in a position to compete for these 

larger and larger ships. As a result, additional casualties will be added to the existing list 
of redundant liner ports (Cullinane and Khanna, 1999, pp.19413). As a result, if ports want 

to play the role of large transhipment hubs they will have to provide adequate 

infrastructures and equipment to berth large container ships and handle effectively the 

consequent large numbers of container boxes. In fact, the development of container 

transport activities requires and is motivated by an increase in the efficiency of ports and 

terminal operators. The efficiency in operating terminal facilities is the basis in realizing 

high productivity and, consequently, low costs per TEU (Wiegmans, 2003). The 

requirement of more efficiency in terminal and port operations is leading to more capital- 

intensive handling techniques and increasing specialization of port labour. In addition, the 

diffusion of containers has favoured integrated logistics and intermodality, thus increasing 

the challenges on port authorities and port management (Notteboom and Winkelmans, 
2001)14.

In this changing environment, monitoring efficiency based on historical performance 

might be misleading, and comparing port performance with peers may be more
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informative. This is reflected in the recent interest of policymakers and the academic 

community in international benchmarking of container ports. Port’s performance, 

especially related to container handling capacity, is die most important factor to maintain 

and to advance port competitiveness.

In an effort to evaluate port performance, several methods have been suggested, such as 

the estimation of a port cost function (De Neufville and Tsunokawa, 1981)15 the 

estimation of the total factor productivity of a port (Kim and Sachish, 1986)16 and the 

establishment of a port performance and efficiency model using multiple regression 
analysis (Tongzon, 1995)17. In recent years, Data Envelopment Analysis (DEA) has 

frequently been used to analyse port production. Compared with traditional approaches, 

DEA has the advantage that consideration can be given to multiple inputs and outputs. 

This accords with the characteristics of port production, so that there exists, therefore, the 

capability of providing an overall evaluation of port performance.

2. CONCEPTS IN PERFORMANCE MEASUREMENT

Productivity and efficiency are the two most important and commonly used concepts to 

measure performance. However, these two different concepts have mistakenly been 

treated as the same in most of the literature. The productivity of a producer can be loosely 

defined as the ratio of output(s) to input(s). This definition is easily and very obviously 

capable of explaining any situation where there is a single output and single input. 

However, it is more common that production has multiple outputs and inputs, in which 

case productivity refers to Total Factor Productivity; a productivity measure involving all 
factors of production (Coelli et al, 2002)18.

The literature of efficiency dates back to the early 1950s. The first formal definition of 
efficiency comes from Koopmans (1951)19 and file first measure of efficiency was 

proposed by Debreu (1951)20 and Shephard (1953)21. Despite the theoretical relevance of 

these studies, efficiency was not quantified in any of these. This task was undertaken by 
Farell (1957)22, who is considered the pioneer in the measurement of efficiency. The 

literature agrees that Farrell (1957) introduced the modem measurement of economic 

efficiency, drawing upon the work of Debreu (1951) and Koopmans (1951) to define a
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simple measure of a firm’s efficiency. Farrell proposed that the economic efficiency of a 

firm is a combination of its technical efficiency, which reflects its ability to obtain the 

maximal outputs from a given set of inputs, and its allocative efficiency, which reflects its 

ability to use inputs in optimal proportions given their respective prices. In order to 

determine efficiency measures for firms, Farrell (1957) proposed to first identify an 

assumed existing efficient frontier using the production function. Then deviations from 

the efficient frontier have a natural interpretation as a measure of inefficiency with which 

economic units, or firms, pursue their technical or behavioral objectives.

Efficiency can be defined as relative productivity over time or space, or both. For 

instance, it can be divided into intra- and inter-firm efficiency measures. The former 

involves measuring the use of the firm’s own production potential by computing the 

productivity level over time relative to a firm-specific Production Frontier, which refers 

to the set of maximum outputs given the different level of inputs. In contrast, the latter 

measures the performance of a particular firm relative to its best counterparts) available 
in the industry (Lansink et al, 2002)23. A definition of efficiency that can be used to 

measure and compare different degrees of efficiency can be stated as: Efficiency is a 

relative measure of the success of a production unit in maximizing its desirable outputs 

while at the same time minimizing its relevant inputs. Defining efficiency in this way, we 

equate efficiency and the value of efficiency.

The difference between efficiency and productivity can be simply illustrated, as shown in 

Figure®. Points A, B and C refer to three different producers. The productivity of point A 

can be measured by the ratio DA/OD according to the definition of productivity where the 

x-axis represents inputs and the y-axis denotes outputs.

Given the same input, it is quite clear that productivity can be further improved by 
moving from point A to point B. The new level of productivity is then given by BD/OD. 
Clearly, productivity can be represented, therefore, by the slope of the ray through the 
origin which joins the specific point under study. The efficiency of point A, on the other 
hand, can be measured by the ratio of the productivity of point A to that of point B, i.e.,

AD/OP 
BD/OD'
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Figure 6.1 Illustration of Efficiency and Productivity

Source: Derived from Coelli et.al (1998)

The above efficiency is normally termed Technical Efficiency - the most common 

efficiency concept in economics: the conversion of physical inputs (such as the services of 

employees and machines) into outputs relative to best practice. In other words, given 

current technology, there is no wastage of inputs whatsoever in producing the given 

quantity of output. An organisation operating at best practice is said to be 100 per cent 

technically efficient. If operating below best practice levels, then the organisation’s 

technical efficiency is expressed as a percentage of best practice. Managerial practices and 

the scale or size of operations affect technical efficiency, which is based on engineering 

relationships but not on prices and costs. It includes output- and input-oriented technical 

efficiencies, i.e., the producer can either improve output given the same input (output- 

oriented. point A to B) or reduce the input given the same output (input-oriented, point A 

to E) by improving technology.

The thick curve OF in Figured! is the so-called production frontier. All the points on the 

production frontier are technically efficient, whilst all the points below or lying to the 

right of the efficient frontier are technically inefficient. The production frontier reflects 

the current state of technology in the industry.
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The ray through the origin and point C in Figure JLis at a tangent to the production 

frontier, and hence defines the point of maximum possible productivity. This leads to 

another important concept, Scale Efficiency, which relates to a possible divergence 

between actual and ideal production size.

Allocative efficiency is another important concept in the context of production economics. 

Unlike technical and scale efficiencies, which only consider physical quantities and 

technical relationships and do not address issues such as costs or profits, allocative 

efficiency studies the costs of production given that the information on prices and a 

behavioural assumption such as cost minimisation or profit maximisation is properly 

established. For instance, allocative efficiency in input selection occurs when a selection 

of inputs (e.g. materials, labour and capital) produce a given quantity of output at 

minimum cost given the prevailing input prices (Coelli et al., 2002, p. 5). Allocative 

efficiency refers to whether inputs, for a given level of output and set of input prices, are 

chosen to minimise the cost of production, assuming that the organisation being examined 

is already fixity technically efficient. Allocative efficiency is also expressed as a 

percentage score, with a score of 100 per cent indicating that the organisation is using its 

inputs in the proportions which would minimise costs. An organisation that is operating at 

best practice in engineering terms could still be allocativety inefficient because it is not 

using inputs in the proportions which minimise its costs, given relative input prices.

The concept of technical efficiency is distinct from allocative efficiency. Allocative 

efficiency occurs when a firm employs its factors in the correct proportions. On the other 

hand, technical efficiency arises when a firm makes the best use of its inputs. Technical 

efficiency is obtained by minimizing the cost incurred at each level of activity. Technical 

efficiency has also been called X efficiency by Leibenstein (1966). Farrell (1957) 

established that technical inefficiency could occur through the use of bundles of inputs 

that were larger than the minimum required to obtain the output

Finally, cost efficiency refers to the combination of technical and allocative efficiency. An 

organisation will only be cost efficient if it is both technically and allocativety efficient. 

Cost efficiency is calculated as the product of the technical and allocative efficiency
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scores (expressed as a percentage), so an organisation can only achieve a 100 per cent 

score in cost efficiency if it has achieved 100 per cent in both technical and allocative 

efficiency. Cost efficiency is sometimes extended to include a third measure called 

dynamic efficiency: the degree to which producers respond to changes to technology and 

products following changes in consumer preferences and productive opportunities.

Figure: 6.2 Concepts of Efficiency

These concepts are better depicted graphically, as in Figure 6.2 which plots different 

combinations of two inputs, labour and capital, required to produce a given output 

quantity. The curve plotting the minimum amounts of the two inputs required to produce 

the output quantity is known as an isoquant or efficient frontier. It is a smooth curve 

representing theoretical best engineering practice. Producers can gradually change input 

combinations given current technological possibilities. If an organisation is producing at a 

point on the isoquant then it is technically efficient. The straight line denoted as the 

budget line plots combinations of the two inputs that have the same cost. The slope of the 

budget line is given by the negative of the ratio of the capital price to the labour price.
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Budget lines closer to the origin represent a lower total cost. Thus, the cost of pro&din#^ 

given output quantity is minimised at the point where the budget line is tangent to the 

isoquant. At this point both technical and allocative efficiencies are attained.

The point of operation marked A would be technically inefficient because more inputs are 

used than are needed to produce the level of output designated by the isoquant. Point B is 

technically efficient but not cost efficient because the same level of output could be 

produced at less cost at point C. Thus, if an organisation moved from point A to point C 

its cost efficiency would increase by (OA-OA")/OA. This would consist of an 

improvement in technical efficiency measured by the distance (OA-OA')/OA and an 

allocative efficiency improvement measured by the distance (OA'-OA")/OA'. Technical 

efficiency is usually measured by checking whether inputs need to be reduced in equal 

proportions to reach the frontier. This is known as a ‘radial contraction’ of inputs because 

the point of operation moves along the line from the origin to where the organisation is 

now.

The smooth curve in Figure 6.2, representing theoretical best practice typically, cannot be 

calculated from observed data. Rather, data usually are only available on a group of 

organisations which gives limited information on theoretical best practice. First, it is 

unknown whether any of the organisations in the group, or sample, are achieving outright 

best practice. Second, the sample points will not cover all of the range of possible input 

combinations.

There are several ways to use the data from the sample to try and approximate the smooth 

curve in Figure 6.2. Early attempts used ordinary least squares regression techniques, 

which plot an average curve through the sample points. However, this was not satisfactory 

because an individual organisation’s efficiency was compared with an average level of 

performance in the sample rather than an estimate of best practice within the sample. This 

led to attempts to approximate best practice in the sample by estimating frontiers.

Numerous techniques have been developed over the past decades to tackle the empirical 

problem of estimating the unknown and unobservable efficient frontier. We discuss here 

the different types of benchmarking models and briefly summarise their pros and cons.
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2.1 Benchmarking Models

At a general level, we can distinguish them between parametric and non-parametric 

models on the one hand and the stochastic and non-stochastic on the other.

• Parametric versus Non-Parametric

In the modem benchmarking literature (as opposed to traditional statistics), parametric 

models are characterised by being defined a priori except for a finite set of unknown 

parameters that are estimated from data. Thus, the parametric approach assumes a specific 

functional form for the relationship between the inputs and the outputs as well as for the 

inefficiency term incorporated in the deviation of the observed values from the frontier. 

The parameters may refer to the relative importance of different cost drivers or to the 

parameters in the possibly random noise and efficiency distributions. Non-parametric 

models are characterised by being much less restricted a priori. Only a broad class of 

functions - or even production sets - is fixed a priori and data is used to estimate one of 

its elements. The classes are so broad as to prohibit a parameterisation in terms of a 

limited number of parameters. In other words, the non-parametric approach calculates the 

frontier directly from the data without imposing specific functional restrictions. The first 

approach is based on econometric methods, while the second one uses mathematical 

programming techniques.

• Deterministic versus Stochastic Models

In stochastic models, one makes a priori allowance for the fact that the individual 

observation may be somewhat affected by random noise, and tries to identify the 

underlying mean structure stripped from the impact of the random elements. In other 

words, the stochastic approach considers the deviations from the frontier as a combination 

of inefficiency and random shocks outside the control of the decision maker. In non­

stochastic elements, the possible noise is suppressed and any variation in data is 

considered to contain significant information about the performance of the unit and the 

shape of the technology. Simply put, the deterministic approach considers all deviations 

from the frontier explained by inefficiency.
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Taxonomy of the methods, with original key references, is represented in Table: 6.1 

below.

Deterministic

Corrected Ordinary Least Squares 

(COLS)

Greene (1997), Lovell (1993),

Aigner and Chu (1968)

Data Envelopment Analysis (DEA)

Charnes. Cooper and Rhodes (1978). 

Deprins, Simar and Tulkens (1984)

Stochastic

Stochastic Frontier Analysis (SFA)

Aigner, Lovel and Schmidt (1977), 

Batesse and Coelli (1992), Coelli, 

Rao and Batesse (1998, 2002)

Stochastic data Envelopment 

Analysis (SDEA)

Land. Lovel and Thore (1993), 

Olesen and Petersen (1995), 

Weyman-Jones (2001)

Table: 6.1 Taxonomy of Benchmarking Methods

This thesis uses a non-parametric method to avoid assuming specific functional forms for 

the relationship between inputs and outputs or for the inefficiency terms. The focus in this 

thesis is on DEA, which is a deterministic means of constructing a 'piece-wise linear" 

approximation to the smooth curve of Figure 6.2 based on the available sample. In simple 

terms, the distribution of sample points is observed and a ‘kinked’ line is constructed 

around the outside of them, ‘enveloping’ them (hence the term data envelopment 

analysis).

Methods of productivity and efficiency evaluation in economics, business and engineering 

are output-to-input ratio-based approaches to assessing performance of various economic 

units, e.g.. firms, products, production systems or, in the parlance of DEA, Decision 

Making Units (DMUs). However, most of these approaches result in absolute measures.
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Although it is also a ratio-based approach, DEA has the distinguished characteristic of 

always providing relative measures of performance for each in a set of such DMUs. In 

other words, the focal point of DEA is on individual observations as opposed to single 

optimization statistical approaches which focus on averages of parameters. The term Data 

Envelopment Analysis (DEA) was first introduced by Chames, Cooper and Rhodes 
(1978)24, to measure the efficiency of each Decision Making Units (DMUs) or the Unit of 

Assessment (Thanassoulis, 2001), that is obtained as a maximum of a ratio of weighted 

outputs to weighted inputs. The DMUs involved in the analysis are assumed to be 

homogeneous and competing in the same market while utilizing the same set of inputs to 

produce the same set of outputs and are responsible for controlling the process of 

production and making decisions at various levels including daily operation, short-term 

tactics and long-term strategy. The weights for the ratio are determined by a restriction 

that the similar ratios for every DMU have to be less than or equal to unity. This 

definition of efficiency measure allows multiple outputs and inputs without requiring 

preassigned weights. Multiple inputs and outputs are reduced to single ‘virtual’ input and 

single ‘virtual’ output by optimal weights. The efficiency measure is then a function of 

multipliers of the ‘virtual’ input-output combination. The best performers among the 

DMUs considered are used to define what is called the efficient frontier. Specifically this 

frontier is defined as the boundary of the convex hull of the best performers, considered to 

be fully efficient. Deviations from the efficient frontier are interpreted as measures of 

inefficiency for the remaining DMUs. A virtually efficient target, belonging to the 

efficient frontier, is identified for each inefficient DMU. The radial deviation from the 

efficient virtual target is interpreted as a measure of inefficiency. Thus the ratio of the 

radial distance of the virtual efficient target to the radial distance of the corresponding 

DMU defines the efficiency measure. Its complement is the unit measure of its 

inefficiency. In less technical and more concrete terms, the efficiency of a given DMU is 

measured, (in an input oriented DEA), by comparing the inputs it needs to those needed 

by the most efficient virtual DMU in order to produce an equivalent amount of output. 

Conventionally, a fully efficient DMU is given 1 (unity) as a measure of efficiency and all 

efficiency coefficients have non-zero values. This denotes that the more the output 

produced from given inputs, the more efficient is the production.
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The CCR model presupposes that there is no significant relationship between the scale of 

operations and efficiency by assuming constant returns to scale (CRS), and it delivers the 

overall technical efficiency (OTE). The CRS assumption is only justifiable when all 

DMUs are operating at an optimal scale. However, firms or DMUs in practice might face 

either economies or diseconomies of scale. Thus, if one makes the CRS assumption when 

not all DMUs are operating at the optimal scale, the computed measures of technical 

efficiency will be contaminated with scale efficiencies.

A DEA model can be constructed either to minimise inputs or to maximise outputs. An 

input orientation aims at reducing the input amounts as much as possible while keeping at 

least the present output levels, while an output orientation aims at maximising output 

levels without increasing use of inputs (Cooper et ah, 2006)25.

As we are looking at relative efficiency, it is important for the DMUs to be sufficiently 

similar, so that comparisons are meaningful. This is particularly the case with DEA, 

where Dyson et al. (2001)26 have developed what they describe as a series of 

homogeneity assumptions. The first of these is that the DMUs the performance of which 

is being compared should be undertaking similar activities and producing comparable 

products and services so that a common set of outputs can be defined. The second 

homogeneity assumption is that a similar range of resources is available to all the units 

and they operate in a similar environment.

3. DATA ENVELOPMENT ANALYSIS MODELS

Data envelopment analysis is not just one single method. This analysis is a collection of 

different methods which serve different needs depending on scale effects, measurement of 

the distance to the envelopment surface or the functional form of the envelopment 

analysis. Usually in literature four different characteristic models of the DEA are 

differentiated:

1. CCR model (Charlies, Cooper and Rhodes, 1978)

The CCR model bases the evaluation on a production technology that has constant returns 

to scale (CRS) and radial distance measure to the efficient frontier, i.e. that the
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inefficiency of a DMU compared to the corresponding efficient units lying on the efficient 

border is measured via a radius vector. Furthermore the efficient frontier is piecewise 

linear. The CCR model is differentiated in input or output orientation, depending upon 

reduction of inputs with constant outputs or enhancement of output with constant input. 

As a result the CCR model reveals an objective description of overall efficiency and 

identifies the sources of inefficiencies.

2. BCC Model (Banker, Charnes and Cooper, 1984)

In contrast to the CCR model the BCC model offers a differentiation between technical 

efficiency and scale-efficiency because it evaluates solutions for nonincreasing returns to 

scale (NIRS), nondecreasing returns to scale (NDRS) or variable returns to scale (VRS). 

With a combination of the CCR model inefficient CCR DMUs do not have to be technical 

inefficient. Potentially a part of this inefficiency can be mitigated by increasing or 

decreasing the production volume resulting in a removal of scale inefficiencies. As the 

CCR model the BCC model also implies a radial distance measure and a piecewise linear 

frontier. Like the CCR model the BCC model also differentiates in an input or output 

orientation.

3. Multiplicative Model (Charnes, Cooper, Seiford and Stutz, 1983)

In contrast to the CCR and BCC model the multiplicative model offers a different 

characteristic of the efficient frontier by providing a piecewise log-linear envelopment 

surface or a piecewise Cobb-Douglas interpretation of the production process [Charnes A. 

et al. (1994), p. 24]. The returns to scale assumption depend on the envelopment surface: 

a log-linear surface assumes constant returns to scale and a Cobb-Douglas coherence 

assumes variable returns to scale.

4. Additive Model (Charnes, Cooper, Golany, Seiford and Stutz, 1985):

Unlike the CCR or BCC model the additive model is unoriented, i.e. it does not 

differentiate between input or output orientation which means that a reduction of input 

with a synchronous enhancement of outputs is possible. The additive model assumes 

constant returns to scale and piecewise linear efficient frontier.

256



These four commonly used and described DEA models in literature build a profound basis 

for an efficiency analysis with different returns to scale, different envelopment surfaces 

and different ways to project inefficient units to the efficient frontier. Since this thesis 

would be using DEA-CCR and DEA-BCC models, we discuss them in a greater detail 

(flie theoretical description of DEA is drawn heavily from Cooper et ah, 2000 and 

Thanassoulis, 2001).

3.1 CCR Model Algorithm

Chames, Cooper and Rhodes (1978) extended Farrell’s (1957) work in the measurement 

of technical efficiency and first introduced the term data envelopment analysis. The model 

was known as the CCR (Chames, Cooper and Rhodes) model. Here we give a brief 

introduction of the model.

Basis for the efficiency measurement is usually the productivity Q that can be described 

as:
Output

0 _---------Input

Equation: 1. Efficiency measure in the one input/ one output case

This case assumes a single input and output. If some organizations are compared this way 

a bigger (smaller) 0 means a better (worse) performance because less (more) input is used 

for a constant amount of output. The meaning of 0 is only available through a comparison 

to other organization, for this reason the efficiency is always a relative measure. 

Typically, organizations have multiple inputs and outputs. Let us denote DMUs by index 

j-1, 2, ..., n. Each DMU uses a varying amount of m different inputs (i=T, 2, ..., m) 

described by the vector xj to produce s different outputs 0=1, 2, ..., s) described by the 

vector yj. Specifically, DMUj consumes amount Xg of input i and produces yrj of output r. 

We assume that Xy>0 and yrj>0 and further that each DMU has at least one positive input 

and one positive output value. These inputs and outputs have to be weighted (v;, «r) (these 

weights have to be defined by the researcher before a calculation), which can then be 

summated as described in equation'2_-The numerator describes the sum of the weighted 

output and the denominator the sum of the weighted inputs. The efficiency score in the
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presence of multiple input and output factors is defined as:

Weighted Sum of Outputs 
Efficiency Weighted Sum of Inputs

Xr=l yro

Equation: 2. Efficiency measure in the multiple input/ output case

where u r is the weight for output r and v,- is the weight given to input i.

The comparison of different organizations using the measure described in equation: 2 is 

quite inaccurate because it is not clear if the resulting efficiency measures depend on the 

real performance or on the (randomly) chosen weights. DEA treats the observed inputs xj 

and outputs yj as given constants and chooses the optimal individual weights for every 

DMU derived from the data. Therefore every DMUj maximises its efficiency by choosing 

its individual weights which suit best to its situation (equation: 3). DEA chooses values of 

input and output weights for a particular DMU0 by the following optimization problem:

maxQ _ Er=l ur yro

Equation: 3. Objective function of the DEA algorithm

As a constraint, it is important that every other DMUi has a 9< 1 with the chosen weights 

of DMU0 because die DEA efficiency measure should be scaled between 0 and 1. This 

coherency can be described by equation: 4.

Xr=l ur Vrj .
Ki VlXij -

Equation: 4. Constraint Equation

These equations provide the basis for the formulation of CCR as described in equation: 5. 

To the above described objective function and the side condition we have the non­

negative constraint that the weights v,-, ur must be bigger or equal than 0.
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(1)
maxO Ef=i uryro
u,v ~ Y.%x vixi0

Subject to

Xr=l Vrj

Em r=
l vi %ij

<lj = 1,2, ,..,jQ,...,n

ur>0, r = l, 2,..., s 

vf >0, i = 1, 2,..., m

Equation: 5. Basic formulation for the CCR model

The objective of the above programming problem is to determine/obtain the weights ur 
and v;27. However, this problem has an infinite number of solutions since if (w*, v*) is 

optimal then a (au*, av*) is also optimal for each positive scalar. This formulation has 

another disadvantage: it cannot be solved by linear programming because it is not linear. 

Following the Chames-Cooper transformation (1962), one can select a representative 

solution («, v) by very simply linearising the constraint by the multiplication of the 

denominator resulting in equation: 6.

s m
ZV..1ur yrj £ y.Vt %ii j = 1'2' -■'n r~1'2> "■■'S

r=1 £=1

Equation: 6. Linearised side condition

The objective function will be linearised via the normalization of the denominator. The 

denominator can be normalized and added to the side functions. Equation: 7 describes this 

coherency.

m 
yr~i

2_, vl xi0 = 1£=1

Equation: 7. Normalised denominator of the objective function
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The input weights v,- of the denominator are independent anent the value of the equations 

right side. A “2” on the right side produces the same result concerning the weights vf as a 

“4”. Therefore the denominator of the objective function is equalled to “1”, added to the 

side functions resulting in a linear objective function.

After the linearization of both the objective function and the constraint function the 

complete linear program of the CCR model is described in equation: 8.

s
max® = ^Tur yr0 (2)

r=l

subject to 

s m
ur Vrj -2jViXiJ - °' 

r=l i=l
7 = 1,2, ,n

m

I1 = 1
nxio = i

r — l, 2..., s 

i = 1,2, ...,m

ur> 0, r — l, 2,s 
Vj>0, i = 1, 2,..., m

Equation: 8. Linear CCR-algorithm

The measures of efficiency described by the problems (1) and (2) are “units invariant” - 

i.e., they are independent of the units in which the inputs and the outputs are measured, 

provided these units are the same for every DMU.

Replacing the non-negativity constraints for the weights in (2) by and v,- >e , where e 

is an infinitesimal constant, we write the so-called CCR ratio model (Chames - Cooper - 

Rhodes, 1979):
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s
max# =
u,v I VrO (3)

subject to 

s m
Z'V'.....1

Wr yr/ - 2,
7-= 1 1 = 1

*i xij < 0, ; = i,2, ,n

m

i=l
ViXt0 = 1

Mr>e, r-1, 2, ...,s 

Vi>e, i = 1, 2, ...,m

where e is defined as an infinitesimal constant (a non-Archimedean quantity). 

The dual to the above LP Equation: 8 is28:

min 0 — e

subject to 

n
^ * 2-j yrj $r VrQ, Y 2, ...,S (4.2)

7=1

n
AjXtj+sj = 9xi0i i = l,2,...,m (4.3)

/=!

sf, Sr, A/ >0 j = 1,2,..., n

(4-1)

where are the weights of DMUs, Sir are the input slacks and Sr+ are the output slacks.
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The problem (4) seeks values of %j to construct a composite unit, with outputs £/=i yrj % 

and inputs. £”=i Aj Xij.

The dual constraints in (4.2) imply that even after the proportional reduction of all inputs, 

the inputs of the evaluated DMU0 cannot be lower than the inputs of the composite unit. 

According to (4.3), the outputs of the DMU0 cannot be higher than the outputs of the 

composite unit

• Efficiency Analysis

Both above linear problems yield the optimal solution 0*, which is the efficiency score 

(so-called technical efficiency or CCR-efficiency) for the particular DMUo, and efficiency 

scores for all of them are obtained by repeating them for each DMU,,y'=l,2,The 

value of 0 is always less than or equal to unity (since when tested, each particular DMU0 

is constrained by its own virtual input-output combination) and those for which 0* = 1 are 

relatively efficient, having their virtual input-output combination points on the frontier. 

The frontier itself consists of linear facets spanned by efficient units of the data, and the 

resulting frontier production function (obtained with the implicit constant retums-to-scale 

assumption) has no unknown parameters.

If, in optimality,

1) 0o=l and

2) all input and output slack variables, S* = S,r =0,

then DMU0 is DBA CCR-efficient (Constant Returns to Scale efficient), operating on the 

CRS frontier.

In other words, the DMU0 will be efficient when it has proved impossible to construct a 

composite unit that outperforms DMU0. Conversely, if DMU0 is inefficient, the optimal 

values of Aj form a composite unit outperforming DMUo and providing targets for DMU0 

(the peer group or the reference set for DMU0).
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The first condition is known as the Radial or Technical Efficiency (TE). The (scalar) 

variable 9q gives us the proportion of all inputs of DMU0 necessary to achieve the given 

output levels efficiently. In other words, 1- 9q gives the necessary proportional reduction 

of all inputs of the DMU0 being evaluated in order to achieve the efficient frontier. This 

reduction is applied simultaneously to all inputs and results in a radial movement toward 

die envelopment surface. Because of the focus on maximal movement toward the frontier 

through proportional reduction of inputs, the models (3) - (4) are denoted as input- 

oriented CCR models.

Both the above mentioned conditions must be satisfied for full efficiency. These two 

conditions together define the “Pareto-Koopmans” or “strong” efficiency, which can be 
verbalized as29:

Pareto-Koopmans Efficiency: A DMU is folly efficient if and only if it is not possible to 

improve any input or output without worsening some other input or output.

If 9q=\ and S* ^ 0 or Sf 4 0, then DMU0 shows DEA weak-efficiency (CRS-inefficient), 

also known as Farrell efficiency. This indicates that improvements can be brought about 

in the DMU without worsening any other input or output.

If 9q< 1, it implies that the DMU0 is relatively inefficient and shows the need for a 

proportional reduction of inputs for it to become efficient. In other words, it means that all 

inputs can be simultaneously reduced without making any change in the input mix or 

proportions. The lower the value of 9q, the less efficient is the unit compared to the rest 

of the population. The advantage of the DEA model is that it advises how the unit 

evaluated should mend its behaviour to reach efficiency. Since the Models (2) and (3) are 

input-oriented - they try to find out how to improve the input characteristics of the unit 

concerned for it to become efficient.

• Output-oriented CCR Model

The alternative DEA model denoted as output-oriented CCR model (Chames-Cooper-
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Rhodes, 1978). It focuses on maximal movement via proportional augmentation of 

outputs under at most the present inputs. The required linear programming problem is:

s

min 0 =
u,v

r=l
Z Vi Xi0 (5)

Subject to

n

r=l
Vi Xi}

m

/ uryr0t—i
i=1

1,2, ,n

Ur>£

Vi>S

The corresponding dual model is:

max 0 + 8
s

+ > sr+
r=l

r** 1,2,..... s 

i = 1, 2,..... m

(6.1)

Subject to

r — 1,2,..., s (6.2)

i = 1,2,..., m (6.3)

si,Sr,2.j >0 j = 1,2, ,n
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The variable 0% yields the proportion by which all the DMU0’s outputs should be 

produced (under the given input levels) for the DMUo to be efficient. In other words, 

^f^cflindicates the necessary proportional increase of all DMUo’s outputs in order to 

achieve the efficiency frontier. The higher is the value of 0*D, the less efficient is the 

DMU. The constraint (6.2) indicates that even after a proportional increase of all outputs, 

the outputs of the evaluated DMUo cannot be higher than the outputs of the composite 

unit. According to (6.3), the inputs of die DMUo cannot be lower than the inputs of the 

composite unit. Like for the input-oriented model (4) a DMU is efficient if and only if 

0o=l and all slack variables, S* and S,r are equal to zero.

The optimal solutions of the two orientations of the CCR model are related as:

Here, 6q shows the input reduction rate whereas 0* shows the output enlargement rate. 

From the above relation, it can be concluded that an input-oriented CCR model will be 

efficient if and only if it is also efficient when the output-oriented CCR model is used to 

evaluate a DMU’s performance.30

Models (4) and (6), both yield identical envelopment surfaces and identical sets of 

efficient and inefficient DMUs. However an inefficient DMU will be projected to 

different points on the efficiency frontier under the input and output orientations. Up to 

this point, we have been dealing with models built on the assumption of constant retums- 

to-scale (CRS) of activities. CRS implies that the radial expansion and reduction of all 

observed DMUs and the nonnegative combinations are possible. Geometrically speaking, 

all supporting hyperplanes for a CRS efficiency frontier pass through the origin. The DEA 

models involving weights of inputs and outputs (v, u) are called Multiplier DEA Models. 

Those involving weight of firms (0, A) are called Envelopment DEA Models.

Table 6.2 presents the CCR (Charles, Cooper, Rhodes, 1978) models (Cooper et all. 

2006).
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Table: 6.2 DEA CCR Models

Input-Oriented

Envelopment Model Multiple Model

/ 771 S S

min 9 — £ | y sf + y

\i=l r=1

S?)
max# = / ur yr0

U,l> / i
r-1

subject to subject to

71 S 771

y Ay yry - sr+ = yr0, r = 1,2, ! S / «r yr; ~ / ,vi xij - 7 = 1> 2> - <n

7=1 r=l t=l
71 771

/ 2j xij + si — ®xio, t = 1,2,.. y yi xio = 1

7=1 i=l

Sf, Sr+, Ay > 0 y = 1,2,.. ■ ,n ur>£, r = 1, 2, ..., .y

v,>£, / = 7, 2..... m

Output-Oriented

Envelopment Model Multiple Model

max 0 + e Xs‘+^v\i=l r=1 /

Subject to

n
^ Ay yrj - s+ = oyr0, r = 1,2,..., s

;=i

V Xij + s- = xi0i i = 1,2,..., m

j=i

,5/, Ay > 0 7 = 1, 2, ...,n

"I
min 0 = > Vi xi0
u,v

r=1

Subject to

71 771

Vj Xij H7- y7"y 2^ 0, j 1; 2, ..., 71

r=1 i=l

in
^ Ur JrO = 1

£ = 1

Z7r > e 

v,>e

r = 1,2....... 5

/ = 7, 2   m
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The above models can also be expressed in vector-matrix notation. The input-oriented 

model can be expressed as below:

Assume that there are n DMUs, where each DMU produces s outputs by utilizing m 
inputs. For the j* DMU these are represented by the column vectors xt and_y, respectively. 

The m x n input matrix, X and the s x n output matrix, Y represent the data for all n 
DMUs. Then, relative efficiency of the 7th DMU can be found by solving the following 

linear programming problem:

(LP0)
max z = utY0 

subject to

vTX„ = 1 

utY-vtX<0 

u > e 

v < e

where u is a s x 1 vector of output weights and v is a m x 1 vector of input weights 
(the T prime denotes a transposed vector). The dual model to this can be stated as follows:

min / = 0 - e (eTs+ + e s~)

subject to

Yk~s+ = Y0 

Xk + s' = OXo 
kfs+,s->0

where 6 is a scalar representing the efficiency score for the z* DMU; % I2, K) is a

n x 1 vector of constants assigned to individual productive units, % > 0; s+ and s~ are 

vectors of addition input and output variables; eT = (1,1,..., 1) and e is a constant greater 

than zero, which is normally pitched at 10'6 or 10'8.
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Similarly the dual of the output oriented model could be written as follows: 

max g- = (j)+ g (eTs+ + eTs~)

subject to

n-.y+ = <|>r0
Xk +5 — Xo 
X s+, s~ > 0

For the optimal solution to the CCR model, the values of objective functions should be 

inverted, i.e. f* = 1/g*. Input-oriented efficiency scores range between 0 and 1 whereas 

output-oriented efficiency scores range from 1 to infinity, in both cases 1 is efficient. For 

the output-oriented model, we define the efficiency score as the inverse of the estimated 

score (i.e. 1 / <]>).

The aim of DEA analysis is not only to determine the efficiency rate of the units 

reviewed, but in particular to find target values for inputs X’a and outputs Y’0 for an 

inefficient unit. After reaching these values, the unit would arrive at the threshold of 

efficiency. Target values are calculated:

1. by means of productive unit vectors:

X’q =Xk*
Y’q = Yk*

where X* is the vector of optimal variable values.

2. by means of the efficiency rate and values of additional variables s~ and s*: 

Input-oriented CCR model:

X'o = 9X0 - s~ Y’o = 70 + s+

Output-oriented CCR model:

X’0=X0-s-Y’0=$Y0 + s+

where 0 is the efficiency rate in the input-oriented model and ((> is the efficiency rate in the 

output-oriented model.
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3.2 BCC Model

The constant returns to scale (CRS) surface is presented by a straight line that starts at the 

origin and passes through the first DMU that it meets as it approaches the observed 

population. The models with CRS envelopment surface assume that an increase in inputs 

will result in a proportional increase in outputs. However, it is rare for markets to function 

in an ideal way. There will always be financial limitations or imperfect competitive 

markets where increased amounts of inputs do not proportionally increase the amount of 

outputs obtained. For example, in agriculture, when the water volume applied to crops is 

increased, we do not necessarily obtain a linearly proportional increase in agricultural 

production. In order to account for this effect, the DEA model for variable-retums-to- 

scale (BCC) was developed [Banker et.al, 1984].

The variable returns to scale (VRS) model allows an increase in input values to result in a 

non-proportional increase of output levels. The VRS surface envelops the population by 

connecting the outermost DMUs, including the one approached by the CRS surface. 

Hence the BCC model envelops more data and efficiency scores are bigger than or equal 

to scores of CCR.

The absence of constraints for the weights lj, other than the positivity conditions in the 

above, implies constant returns to scale. For allowing variable returns to scale, it is 

necessary to add the convexity condition for the weights Xj, i.e. to include in the model.

The resulting DEA model that exhibits variable returns to scale is called the BCC-model, 

after Banker, Chames and Cooper (1984).The input-oriented BCC-model for the DMU„ 

can be written formally as:

n
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min 0 — s (7)

Subject to

n

n

j=1
Aj Xtj + Sj = dxl0i

n

/=!
4 = 1

St , S^, Aj > 0

r = 1,2, ...,s

i = 1,2

j = 1,2,...,71

To express the BGC model in vector-matrix notation, the CCR model in matrix form 
needs to be rewritten to include a condition of convexity e\ = 1. The formulations of the 

input-oriented and output-oriented BCC models are as follows, respectively:

Input-oriented

min 0 - e(eTs+ + eTs ) (8)

Subject to

Yk-s+ = Yq 

J^+5~ = 0XO 
eTX = 1 

X,s+,s~>0
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Output-oriented

max g = <|>+ e (esr + es ) (9)

subject to

Yk - s+ = §Yq 
Xk + s~=Xq 
/X=l 
k, s+, s~>0

As already mentioned above, the VRS specification forms a production frontier that 

envelopes data more closely than the CRS specification. Therefore, the resulting 

efficiency scores are equal to or greater than those obtained with the CRS model. The 

BCC-efficiency scores are obtained by running the above model for each DMU (with 

similar interpretation of its values as in the CCR-model). These scores are also called 

“Pure Technical Efficiency (PTE) scores”; since they are obtained from the model that 

allows variable returns to scale and hence eliminates the “scale part” of the efficiency 

from the analysis. In fact, an efficiency score obtained using the CCR-model is called 

Technical Efficiency (TE), which comprises of both Scale Efficiency (SE) and “Pure” 

Technical Efficiency (PTE). Technical efficiency describes the efficiency in converting 

inputs to outputs, while scale efficiency recognises that economy of scale cannot be 

attained at all scales of production, and that there is one most productive scale size, where 

the scale efficiency is maximum at 100 per cent. Therefore, comparison of the CCR and 

BCC scores provides deeper insight into the sources of inefficiency that a DMU might 

have. If there is a difference between the CRS and VRS TE scores, this indicates scale 

inefficiencies exist. In a case where a DMU is found to be inefficient, one can decompose 

this total inefficiency to see in what degree this is due to scale inefficiency or technical 

inefficiency.

Let 6ccr #(fE) and 0gCC(jprE) denote the CCR and BCC TE scores of a DMU. The 

scale efficiency is defined by

SE=e*CCRieiBCC
* (10)
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Therefore, Scale Efficiency can be defined to be CCR Efficiency over BCC Efficiency. 

Scale efficiency can be interpreted as follows:

- If SE = 1, then a DMU is scale efficient, i.e., its combination of inputs and outputs is

efficient under both CRS as well VRS.

- If SE < 1, then the combination of inputs and outputs is not scale efficient.

The above described approach does not allow identifying whether the DMU is operating 

under increasing returns to scale (IRS) or decreasing returns to scale (DRS). This problem 

can be solved by application of a further DEA model under the non-increasing returns to 

scale (NIRS). The (NIRS) DEA model is formulated by substituting the eTX =1 restriction 

in the above BCC model with, eT X <1 as shown below:

Input-oriented

min 0-6 (eTs+'+ eTs ~) (11)

subject to

n-s+ = r? 
Xk+s~ = %X0 
eTX<\

X, s+,s >0

Output-oriented

max (|>+ e (eTs+ + eTs ) (12)

subject to

Yk-s+ = $Yq 
Xk + S = Xq 
e\<l

X, s+,s >0
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This constraint ensures that DMUs will only be compared to DMUs of the same or 

smaller size, not with any DMU that is larger. Scale efficiency is due to either increasing 

or decreasing returns to scale, which can be determined by comparing the BCC score with 

that estimated under non-increasing returns to scale (NIRS), i.e. to determine if IRS or 

DRS exists, the NIRS TE is compared to the BCC TE estimate.

Scale efficiency is then derived according to the following rules (Fare, Grosskopf & 

Lovell, 1994):

- If = 1 then the DMU operates under decreasing returns to scale. It means that
teNIRS

a firm is scale inefficient because of the possibility that it can achieve a larger output.

- If-—--- =£ 1, then the DMU operates under increasing returns to scale and
‘EN1RS

inefficiency is caused by a too less of output.

In other words, if the NIRS TE and BCC TE estimates are unequal, then this indicates IRS 

and the scale of DMU level operations can be increased. If the two are equal, DRS exists 

and DMU operations needs to be reduced in size.

Using the relationship (10) the (global) technical efficiency (TE) of a DMU is 

decomposed as

TE = PTE x SE (13)

The global or overall inefficiency of a DMU is explained by inefficient operation (PTE) 

or by the scale effect (SE) or by both.

The characterization of the CCR model as “constant retums-to-scale” model is technically 

correct but somewhat misleading because this model can also be used to determine 

whether retums-to-scale are increasing or decreasing. This is accomplished by the 
following theorem proved by Banker and Thrall (1992)31:
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Theorem 1: Let (x0 ,y0f2 be a point on the efficiency frontier. Employing a CCR model 

in envelopment form to obtain an optimal solution (A.i\ ..., retums-to-scale at this

point can be determined from the following conditions:

(i) If £/=i X] = 1 in any alternate optimum then constant retums-to-scale prevails.

(ii) If £"=1 Aj > 1 for all alternate optima then decreasing retums-to-scale prevail.

(iii) If £"=i Aj <1 for all alternate optima then increasing retums-to-scale prevail.

The relations between BCC and CCR models are described be the following theorem due 
toAhnetal. (1989):33

Theorem 2: A DMU0 found to be efficient with a CCR model will also be found to be 

efficient with the corresponding BCC model and constant retums-to-scale prevail at 

DMU0.

The converse is not necessarily true. A DMU can be simultaneously characterised 

efficient by a BCC model and inefficient by a CCR model with 

9 CCRBCC -However, if Qccr~ @BCC then there will be at least one alternate optimum 

for this 6ccr for which. YI}=\ A] = l,34

Generally, the CCR-efficiency score for each DMU will not exceed the BCC-efficiency 

score, i.e.

n* ^ Q*"CCR - °BCC

which is intuitively clear since the BCC-model analyzes each DMU “locally” (i.e. 

compared to the subset of DMUs that operate in the same region of returns to scale) rather 

than “globally”. The equality holds when the scale efficiency is unity, i.e., the DMU is 

operating at the Most Productive Scale Size (MPSS).
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3.3 Ranking in DEA

CCR model and BCC model are called classical models and they can not be used in 

ranking efficient units. Since efficiency score of all DMUs that are effective in DEA are 

assigned as “1”, it is not possible to rank effective units between each other. DEA can be 

used only for ranking inefficient DMUs and in order to abolish this disadvantage various 

methods were developed. The most commonly used method developed for ranking 

efficient decision units is the super efficiency model proposed by Andersen and Petersen.

3.3.1 Super-Efficiency Model

The efficiency score in standard DEA models is limited to unit (100%). Nevertheless, the 

number of efficient units identified by DEA models and reaching the maximum efficiency 

score 100% can be relatively high and especially in problems with a small number of 

decision units the efficient set can contain almost all the units. In such cases it is very 

important to have a tool for a diversification and classification of efficient units. That is 

why several DEA models for classification of efficient units were formulated. In these 

models, the efficient scores of inefficient units remain lower than 100% but the efficient 

score for efficient units can be higher than 100 percent. Thus, the efficient score can be 

taken as a basis for a complete ranking of efficient units. The DEA models that relax the 

condition for unit efficiency are called super-efficiency models.

The super-efficiency models are always based on removing the evaluated efficient unit 

from the set of units. This removal leads to the modification of the efficient frontier and 

the super-efficiency is measured as a distance between evaluated unit and a unit on the 

new efficient frontier. Of course several distance measures can be used - this leads to 

different super-efficiency definitions. The first super-efficiency DEA model was 

formulated by Andersen and Petersen (1993). Its input oriented formulation (3) below is 

very close to the standard input oriented formulation of model (1). In this model the 

weight Aq of the evaluated unit DMUq is equated to zero. This cannot influence the 

efficient score of the inefficient units but the efficient score of the efficient units is not 

limited by 100 percent in this case. The input oriented formulation of the Andersen and 

Petersen model with constant return to scale is as follows:
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(14)min 0 — 8

subject to

n
I

j=i,j*o
AjXij + Si = dxi0i

n

X xiyrJ~j=l,j*0
Yro,

i = 1,2, ...,m

t — 12, ,5

Xj >0

st > 0,

Sr > 0,

j = 1,2,..., n, j =£ 0 

i = 1, ...,m 

r = 1,..., s

where 0 denotes the analyzed decision making unit and j i- 0 means removing the 

analyzed decision making unit from the constraint group, this is the basic idea of the super 
efficiency model. For efficient units, 8* > 1 and for inefficient units, 0 < 6* < 1.

However, under certain conditions this procedure can lead to infeasibility. A necessary, 

but not sufficient, condition for infeasibility is that an excluded DMU be ‘extreme- 

efficient’. Either it has a feasible LP with super-efficiency scores strictly greater than 

100%, or it has an infeasible LP. A necessary and sufficient condition for infeasibility in 

an input-oriented model is that the excluded DMU have the only zero value for any input, 

or the only positive value for any output, among all DMUs in the reference set. 

Infeasibility cannot arise in an output-oriented CCR super-efficiency model. In case of 

BCC model, infeasibility arises in either orientation whenever there is no referent DMU 

for the excluded DMU. A necessary condition for infeasibility is that the excluded DMU 

be ‘extreme-efficient’. A sufficient condition for infeasibility is the pattern of zeros
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mentioned above. When all inputs and all outputs are positive for all DMUs, a sufficient 

condition for infeasibility is that the excluded DMU be ‘strongly super-efficient’ in the 

sense that (a) in an input-oriented model it has at least one output strictly larger than the 

corresponding output for any other DMU in the reference set, or (b) in an output-oriented 

model it has at least one input strictly smaller than the corresponding input for any other 

DMU in the reference set. A necessary and sufficient condition for infeasibility is that the 

excluded DMU be ‘super-efficient’ in the sense that (a) in an input oriented model it has 

at least one output strictly larger than a convex combination of that output among all 

DMUs in the reference set, or (b) in an output-oriented model it has at least one input 

strictly smaller than a convex combination of that input among all DMUs in the reference 

set.

In particular, the super-efficiency measure examines the maximal radial change in inputs 

and/or outputs for an observation to remain efficient, i.e. how much can the inputs be 

increased (or the outputs decreased) while not become inefficient. The larger the value of 

the super-efficiency measure the higher an observation is ranked among the efficient 

units. Super-efficiency measures can be calculated for both inefficient and efficient 

observations. In the case of inefficient observations the values of the efficiency measure 

do not change, while efficient observations may obtain higher values. Values of super­

efficiency are therefore not restricted to 1 (for the efficient observations), but can in 

principle take any value greater than or equal 1. Super-efficiency measures are calculated 

on the basis of removing the production unit from the best-practice reference technology. 

This explains why the inefficient observations do not change value by calculating super­

efficiency measures, as the inefficient observations are not influencing the best-practice 

technology. But for an efficient DMU we may get in the input oriented perspective an 

efficiency score larger than one and in the output oriented perspective an efficiency score
A*

of less than one, where a high (a low) super-efficiency score is associated with a high 

efficiency rank. However, a very high score in the input oriented (a very low score in the 

output oriented perspective) may indicate that a DMU is highly specialized and therefore 

not comparable to other DMUs. Hence the concept of super-efficiency also helps to 

identify such DMUs.
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3.3.2 Cross-Efficiency Model

The cross-efficiency model was first developed by Sexton et al. (1986), inaugurating the 

subject of ranking in DEA with increased discriminatory power. Given n DMUs, the cross 

efficiency method simply calculates the efficiency score of each DMU n times, using the 

optimal weights evaluated by the n separate DEA models built for each of the n DMUs. In 

the cross-efficiency model, the evaluation loses its connection to the multiplier weights as 

the weights are used equally on all the units. Additionally, if the optimal weights are not 

unique, goal-programming has to be applied to choose from optimal solutions, such as 

aggressive or benevolent secondary goals (Sexton et al., 1986). Moreover, if the number 

of DMUs being evaluated increases, the calculation burden of cross-efficiency model 

becomes extremely heavy.

There has been a tremendous development in the subject matter of DEA, with many more 

new approaches introduced, more and newer modifications to the original models, etc. 

New uses of DEA with accompanying new developments and extensions continue to 

appear. To cover all these topics is beyond the scope of this thesis but we will look at a 

few of the extensions that have been attached to the above standard models.

3.4 Extensions to the Basic DEA Models

A lot of extensions to the above mentioned four models have been developed in recent 

times, which allow further fine tuning to the basic models. A few of these numerous 
extensions are briefly presented35:

a) The basic DEA models always assume that inputs and outputs can be altered by the 

DMUs. In realistic situation there are often variables that are exogenous variables that 

can not be altered. For example the distribution of competitors may influence 

efficiency scores without being alterable by the DMUs. These variables are called 

nondiscretionary. When we have a so called uncontrolled or non-discretionary input 
variable, then according to Banker and Morey (1986a)36 the model (4) then takes the 

following form:
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(15)min 0-e si +

subject to 

n
^ Aj xtj + sf = 6xi0i i E D

/=!

n

y^Aj Xij Si = X[q

7=1

i END

(r = 1,2, ...,s)

Aj >0 (j = l,2,...,ri)

s*>0, (r = 1,2,..., s)

st > 0, (i = 1,2,..., m)

The symbols D and ND refer to “discretionary” and “non-discretionaiy”, respectively. In 

model (12) the non-discretionary variables do not enter directly into the efficiency 

evaluations. But the slacks for uncontrolled inputs are still useful. They indicate that more 

output is achievable. Hence, the DMU0 will be CCR (or BCC) efficient if and only if both 

of the following conditions are satisfied 1) 0o=l and 2) all slacks in the objective 

functions are zero.

b) The comparison of quite different units was also addressed by Banker, R. D.; Morey, 
R. C. (1986b)37. The introduction of categorical variables extends the application focus of 

the DEA.
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c) The former described models all focus only analyse one period situation. This 

restriction was enhanced through a window analysis that allows the comparison of 

changing efficiency of a unit over time, by treating this DMU as if it were a different 

DMU.

d) Besides the above models, certain other modifications also exist. One of them, labelled 

the Slacks-Based Measure of Efficiency (SBM) model, was designed by Tone (2001). 

This model serves as the basis for the definition of super-efficiency. Efficiency is 

measured only by additional variables s+ and s' The model formula, provided constant 

returns to scale, is:

*7*10
min P = y-----------------

l+jSF-itf/yro
(16)

subject to

n
/ Ay Xij 4- Sj Xiot r = 1,2, ....,s
j= 1

n
/ t Ay yrj — yro, i = 1,2, ...,m
j=i

st~,s+,Ay,> 0, j = 1,2,..., m
I

The variables s+ and s~ measure the distance of inputs XL and outputs Yk of a virtual unit 

from those of the unit evaluated (Xq). The numerator and the denominator of the objective 
function of model (5) measures the average distance of inputs and outputs, respectively, 
from the efficiency threshold. For variable returns to scale, condition eTX = 1 only needs 

to be appended to the formula. The SBM efficiency rate is always lower or equal to that of

the input-oriented OCR model, i.e.
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Theorem 3: The optimal SBM p* is not greater than the optimal @ccr-

This theorem reflects the fact that SBM accounts for all inefficiencies whereas &ccr 

accounts only for “purely technical inefficiencies”.38 The relationship between CCR- 

efficiency and BSM-efficiency is given by the following theorem due Tone (1997):

Theorem:4 A DMU is CCR-efficient if and only if it is SBM-efficient.

This means that a unit rated as SBM efficient is CCR efficient at the same time.

3.5 Strengths and Limitations of DEA

Amongst the strengths of the DEA is that, DEA is less data demanding as it works fine 

with small sample size. The small sample size is among other reasons, which leads us to 

DEA as the tool of choice for evaluating efficiency of Indian container handling 

ports/terminals. Furthermore, DEA does not require a preconceived structure or specific 

functional form to be imposed on the data in identifying and determining the efficient 

frontier, error and inefficiency structures of the DMUs. According to the literature, it is 

better to adopt the DEA technique when it has been shown that a commonly agreed 

functional form relating inputs to outputs is difficult to prove or find. Such specific 

functional form is truly difficult to show for port services. The literature also 

acknowledges the edge of the DEA by stating that this technique allows the researchers to 

choose any kind of input and output of managerial interest, regardless of different 
measurement units. There is no need for standardisation39.

Three useful features of DEA are first, each DMU is assigned a single efficiency score, 

hence allowing ranking amongst the DMUs in the sample. Second, it highlights the areas 

of improvement for each single DMU. For example, since a DMU is compared to a set of 

efficient DMUs with similar input-output configurations, the DMU in question is able to 

identify whether it has used input excessively or its output has been under-produced. 

Finally, there is possibility of making inferences on the DMUs general profile. We should 

be aware that the technique used here is a comparison between the production 

performances of each DMU to a set of efficiency DMUs. The set of efficiency DMUs is
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called the reference set. The owners of the DMUs may be interested to know which DMU 

frequently appears in this set. A DMU that appears more than others in this set is called 

the global leader. Clearly, this information gives huge benefits to the DMU owner, 

especially in positioning its entity in the market.

The main weakness of the DEA is that it assumes data are free from measurement errors. 

Furthermore, since efficiency is measured in a relative way, its analysis is confined to the 

sample set used. This means that an efficient DMU found in the analysis cannot be 

compared with other DMUs outside of the sample. The reason is simple. Each sample, 

separated, let us say, by year, represents a single frontier, which is constructed on the 

assumption of same technology. Therefore, comparing the efficiency measures of a DMU 

across time cannot be interpreted as technical progress but rather has to be taken as 
changes in efficiency (Canhoto and Dermine, 20O340). One another limitation of the DEA 

model that needs to be borne in mind is that as the number of variables in a DEA model 

increases, the discrimination power of DEA models decreases: more firms tend to be on 

the efficiency frontier. An individual firm is likely to be using relatively less of a 

particular input or producing more of a particular output, which places it near or on the 

multidimensional frontier (Rossi and Ruzzier (2000). This problem is more common 

under the variable returns to scale (VRS) environment since the VRS efficiency scores are 

relatively higher than CRS efficiency scores.

Thus, the most important advantage of DEA over traditional econometric frontier studies 

is that it is a non-parametrie, deterministic method and therefore does not require a priori 

assumptions about the analytical form of the production function. Therefore, the 

probability of a misspecification of the production technology is zero. The disadvantage is 

that, being a non-parametric method, it is more sensitive to possible mis-measurement 

problems.

4. CONCEPT OF PRODUCTIVITY

Productivity is one important component of the monitoring, analysis and .supervision of 

company performance. The term productivity was probably first mentioned by the French 

mathematician Quesnay in an article in 1766 (Sumanth 1998). In 1950, the Organization
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for European Economic Cooperation (OEEC), one of the oldest organizations espousing 

productivity enhancement, particularly in the Europe, issued a formal definition 

(OEEC1950)41:

Productivity is the quotient obtained by dividing output by one of the factors of 

production. In this way it is possible to speak of the productivity of capital, investment, or 

raw materials, according to whether output is being considered in relation to capital, 

investment, or raw materials etc.

Different financial ratios can provide a description of the productivity of a firm and its 

productivity change over time or between firms. We will briefly look at the classical 

productivity measures and then go on to describe a newer method for measuring 

productivity change - the Malmquist productivity change index.

4.1 Importance of Productivity

The performance of a firm, converting inputs into outputs, can be defined in many ways. 

One possible measure of performance is a productivity ratio. By defining the productivity 

of a firm as the ratio of outputs that it produces to the inputs used, the larger values of this 

ratio are associated with better performance. Productivity is a relative concept. Therefore, 

the productivity of a company in the present year could be measured relative to its 

productivity last year, or it could be measured relative to the productivity of another 

company in the same year. It is even possible to compare the productivity of an industry 

over time or across countries.

4.2 Productivity Management

Productivity is one of the major responsibilities of management. By attaining productivity 

increases, several other management goals are automatically achieved. An increase in the
I

productivity of a firm results in improved product quality and service, decreased 

production costs as well as improved market share and profit. In the effort to achieve 

productivity goals, however, management must not lose sight of the other important 

management responsibilities - ensuring service quality, timeliness, accomplishing the
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mission and customer satisfaction. Indicators of the performance of these management 

responsibilities should also be tracked and emphasized by management.

Success in any productivity enhancement program depends on the leadership, 

participation and the ongoing support of every manager. The main point of productivity 

management is to identify areas of potential productivity improvement. In order to 

manage productivity in the true sense of the term, four phases must be linked together 

(Sumanth 1998):

• Measurement

• Evaluation

• Planning

• Improvement

These four phases form a continuous productivity process or cycle. The first phase of the 

productivity cycle is measurement. The present productivity level of the firm must be 

compared with the target level. This evaluation will provide a vision of the new 

productivity level for the following period. Depending on the planned level of 

productivity, improvement must arrive in the subsequent periods. Productivity 

improvement marks the end of the first productivity cycle, but productivity must be 

measured again in the next period and this then becomes the beginning of the next new 

productivity cycle.

The following sections of this study focus on productivity measurement. On the whole, it 

is not easy to measure productivity due to the following important aspects. Productivity 

information must be understandable. The results, and also the data collection and analysis 

system, should be easy to interpret and at the disposal of fire decision maker at the 

appropriate time. Only then will productivity information have predictive value in the 

planning phase and feedback value to aid monitoring and supervisory activities. Finally, 

productivity data must also include all those aspects of production that are important to 

management and that actually represent the activity.
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4.3 Productivity Measures

Productivity measures may be classified into several major groups, where none of the 

measures or groups is considered to be the best. The most commonly used productivity 

ratio groups are:

• Partial productivity (PP)

• Total factor (labour plus capital) productivity (TFP)

• Total productivity (TP)

The formulae for partial productivity, total foctor productivity and total productivity are 

presented below.

opp =-----------------L (or M,C,E,m)

TFP o
L+C

TP -------------------
L+ M+C+E+m

where, PP - partial productivity, TFP - total factor productivity, TP - total productivity 

O - output, L - labour, M - material, C - capital, E - energy, m - other inputs.

Partial productivity measures look at the ratio of output to a single input. These include 

labour productivity (e.g. output per hour worked or per employee), materials productivity 

(e.g. output per unit of material used), capital productivity (e.g. output per unit of capital 

invested) and energy productivity (e.g. output per unit of energy consumed). Therefore, 

this single input can either be labour, materials, capital, energy or some other input. The 

weakness of partial productivity measures is that they tend to overstate increases in 

productivity. The advantage of partial productivity measures is that they are much easier 

to understand and to measure.
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A broader and theoretically more pertinent concept that also incorporates the effect of 

capital is total factor productivity. Total factor productivity (TFP) takes the ratio of output 

to capital and labour services. The advantage of total factor productivity is that it accounts 

for capital-labour substitution. The disadvantages are that it is a more difficult ratio to 

understand and measure.

Total productivity (TP) is the ratio of output to all combined inputs including labour, 

materials, capital, energy and others inputs. Total productivity is a more accurate 

productivity measure than total factor productivity, and its weaknesses are similar to those 

of total factor productivity.

4.4 Productivity Indices

Productivity measurement is usually conducted from two perspectives - according to the 

level of productivity and trends in the productivity. The productivity ratio refers to the 

productivity level at a given point in time expressed as output units delivered per unit of 

input resources expended. Trends are defined by looking at productivity development 

over time. Productivity trend ratios are commonly converted into an index.

These two measurement dimensions have different uses. Productivity level data can be 

useful in detennining budget requirements and identifying opportunities for improvement 

by comparing an entity’s productivity levels with that of other entities delivering the same 

or similar services. Productivity trend data can be useful in identifying opportunities for 

improvement by comparing current productivity with that of previous periods, and 

providing a scorekeeping device on management accountability for improving 

productivity.

Indices make it possible to show the input, output and productivity rates on the same 

graph. So productivity indices can provide us with some information on the causes of 

changes to productivity - whether they are attributable to the input or the output 

dimension. There have been used two different performance indices for the evaluation of 

efficiency and productivity change in economic units - the stochastic Tomqvist (1936) 

index and the non-stochastic Malmquist (1953) index. The former approach requires,
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explicitly or implicitly, a specific assumption about the foim of the production 

technology. It is difficult to determine how well a postulating parametric function 

approaches the unknown true technology because the maintained hypothesis of parametric 

form can never be tested directly (Varian, 1984). The parametric approach has additional 

problems due to the estimation of accurate parameters from scarce and imperfect data 

(Stier and Bengston, 1992). To aggregate inputs and outputs, the Tomqvist index requires
9

cost or revenue shares, which are hard to obtain, especially in cross-nation analysis. The 

Mahnquist index is defined by using distance functions. The distance functions allow us 

to describe a multi-input, multi-output production technology without the need to specify 

the producer behavior (such as cost minimization or profit maximization). While the 

Tomqvist index presumes production is always efficient, the Malmquist productivity 

index allows for inefficient performance and does not presume an underlying functional 

form for technology. Under the stochastic approaches the deviations from the frontier are 

attributed to purely random shocks and inefficiency. Under the non-stochastic approaches 

all such deviations are attributed to inefficiency. Therefore, this study adopts the 

Malmquist index in examining the productivity change of the container handling ports in 

India.

4.4.1 Malmquist Productivity Index and its Decomposition

Calculating the productivity level or index can be very easy when a single output is 

produced from a single input (partial productivity). But companies usually produce many 

outputs from many inputs. How is it possible then to calculate the productivity change 

index? Enter the Malmquist productivity change index - one method for measuring 

productivity change over time or between firms.

In 1953, Sten Malmquist, a Swedish economist and statistician, published in Trabajos de 
Estadistica (Malmquist 1953)42 a quantity index for use in consumption analysis. Later 

Caves, Christensen and Divert (1982)43 adapted Malmquist’s idea for production analysis 

and they named their productivity change indices after Sten Malmquist. According to 
Grifell-Tatje and Lovell (1996)44, the Malmquist index has some advantages relative to 

other productivity indices. As mentioned above, it does not require input prices or output
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prices, which makes it particularly useful in situations where prices are misrepresented or 

non-existent. The Malmquist index also does not require the profit maximization or cost 

minimization assumption. This makes it useful in situations where the objectives of 

producers differ, are unknown or not achieved. An attractive feature of the Malmquist 

productivity index is that it decomposes.

Fare et al. (1989) showed that the Malmquist productivity index can be decomposed into 

two components - technical efficiency change and technical change. The value of this 

decomposition is that it provides insight into the sources of productivity change. The main 

disadvantage of the Malmquist index is the necessity to compute distance functions. There 

are many different methods that could be used to measure the distance function, which 

makes up the Malmquist productivity index. One of the more popular methods has been 

the DEA-like linear programming method suggested by Fare et al. (1994).

Productivity indices explain the role of index figures in measuring growth in outputs 

(output oriented approach) that are net of input growth. One way to measure a change in 

productivity is to see how much more output has been produced, using a given input level 

and the present state of technology, relative to what could be produced under a given 

reference technology using the same input level. An alternative is to measure the change 

in productivity by examining the reduction in input use, which is feasible given the need 

to produce a given level of output under a reference technology. These two approaches 

are referred to as the output-oriented and input-oriented measures of change in 

productivity (Coelli, 1998). In the current study I have concentrated on the output- 

oriented Malmquist productivity index.

To define an output distance function, following Fare (1994a)45, we begin by defining the 

production technology T in any given time period. T is the set of all feasible input-output 

vectors, x is an N dimensional vector of inputs and y is an M dimensional vector of 

outputs.

T{(x, y) : A'can produce y) (17)
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One can define an output distance function which is a multi-output generalization of what 

in the single output case would be the ratio of actual to potential output. Thus if the 

production point is on the frontier, this ratio equals unity. The distance function is the 

reciprocal of the Farrell output-oriented measure of efficiency, which can be calculated 

using DEA.

D{x,y)mf{q:{x,y/q}€'n (18)

Caves, Christensen and Diewert (1982)46 define the Malmquist productivity index with 

reference to the technology in time period t as:

M = gtSai-yy.) {19)
t Dt(xtlyt) K J

A similar measure could be defined using period t+1 as the base. To avoid arbitrariness in 

the choice of base period, Fare et al. (1994a) propose using the geometric mean of the 

indexes for the periods t and t+1 which yields the following Malmquist index of 

productivity change:

Mtt,t+i
(xt+i,yt+i y ~Dt+i (xt+1,yt+1y
Dt(xt,yt) Dt+1(xt,yt)

(20)

This equation represents the productivity point (x,+i, yt+i) relative to the production point

Fare et al. (1994a) show that the above measure can also be expressed as:

M,
®t+i (.xt+1,yt+1) (T Dt (*t+i>yt+i)

t,t+i
ft

Dt(xt,yt) 0-£)t+1 (xt+1, yt+1 )J Wt+1(xt,yt)
Dc(xt,yt) ,,1/2

J (21)

In the above equation, the first term measures efficiency change and the second term (in 

square brackets) measures technical change. Calculating Malmquist index and its 

components requires the calculation of four distances: Dt (xt, y, ), Dt+l(x, +\, j(+i),

Dt(xt +\, Jz+i) and Df+i(xt ,yt). This is accomplished by solving four (constant returns
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to scale) linear programming problems, thus making use of the fact that output distance 

function is the inverse of the Farrell output oriented measure of technical efficiency. For 

each firm k, Dt (pct , yt ) can be computed as follows, as can Dt+ \(xt +i, yt+1) by 

substituting t+1 for t:

[Dt (yti xt)] 1 = max 0 + G (eTs+ + eTs~) (22)

Subject to

YtX-s+ = 0Yot

Xt X + s~ = XQt

A,s+,s~ > 0

Wt+i (yt+i W]-1 = max 0 + G (eTs+ + eTs~) (23)

Subject to

Yt+1 A — s+ = 0 Fo t+1
%t+1 ^ s =

A,s+,s~ > 0

lDt (Yt+i %t+i)] 1 = max 0 + G (eTs++ eTs ) (24)

Subject to

YtA-s+ = 0YOit+1 

Xt A + s = XQ>t+1 

A,s+,s~ > 0
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[Dt+1 (yt> xt)] = max 0 + G (eTs+ + eTs“) (25)

Subject to

Yt+i

*t+i

A — s+ = 0 Yo t 

A + s~ = XQt

A,s+,s~ > 0
2£L

Both the efficiency change and technical change measures in ($) can be decomposed 

further [Grifell-Tatje and Lovell (1997)47]. They define the output oriented measure of 

scale efficiency as the ratio of an output oriented distance function for a variable returns 

to scale technology (V) to that for constant returns to scale technology (C) or:

St (Xt,yt) = Dt(.xt,yt W)
Dt(xt,yt\c) (26)

. QzX) (2-3£>
Calculating this requires solving the LP in (®) with the following additional restriction

for variable returns to scale;

eTA = 1
■2.X-

Thus, the efficiency change component in (&) can be decomposed into scale efficiency 

change and pure efficiency change as:

EFFCH = st+i(.xt+i,yt+i)
Dt+i(.xt+i,yt+i\v)

Dt(.xt,yt IP)
(27)

The technical change component in (^) can also be decomposed as the product of the 

magnitude of technical change and (input and output) bias, where magnitude is defined as 

follows:

MTECH = Dtixt.yt)
£t+i(*t+i>yt+i) (28)
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To summarize, the Malmquist index of productivity change can be represented as the 

product of efficiency change and technical change. Efficiency change can be further 

decomposed as the sum product of scale efficiency change and pure efficiency change, 

whereas technical change can be decomposed as the sum product of the change in the 

magnitude of technical change and bias.

DEA is not only used to determine efficient and non-efficient units but recently, it is also 

used to rank DMUs.

Standing at the interface of sea and inland transportation, modem ports with modem 

logistics and hub-and-spoke transportation patterns face much fiercer competition than 

ever before. The modem container ports suffer under both internal and external pressure 

and need to exhibit management competency in the pursuit of a suitable strategy and in 

the allocation of scarce resources. Indian ports, after years of neglect and failure by the 

State in ensuring the level of investment necessary for infrastructure maintenance and 

development which undermined their competitiveness, are undergoing a sea-change. 

There is a heavy investment in infrastructure build-up, with adoption of new technologies 

as well as in maintenance, which calls for more efficiency among them. Thus, the need for 

performance appraisal and benchmarking! The next chapter undertakes to empirically 

analyse the efficiency container handling ports in India with the help of Data 

Envelopment Analysis. The ranking of efficient ports is then undertaken with the help of 

the super-efficiency model. We also employ die Malmquist total factor productivity (TFP) 

index to measure the impact of productivity change among the different ports/terminals.
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