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CHAPTER - II

RELEVANT THEORETICAL FORMULATIONS

2.1 Introduction *

The second chapter deals with some of the intermediate/ 
high energy methods such that the subject matter of this 
chaptef is independent and self-consistent and useful in the 
discussions in the succeeding chapters. Since the study 
of electron-atom collisions cannot be done through one 
single theory that universally applies to electrons of any 
energy impinging on any target# specific quantum mechanical 
theories have been developed for specific energy domains of 
the projectile electron® The general classification of 
energy domains is three fold - low# intermediate and high.
If the speed of the projectile electron is less or nearly 
equal to that of the target atom# it refers to the ‘low* 
energy range# where only a few channels are open. The 
‘intermediate’ energy is near the excitation threshold of 
the target and extends upto a few times the ionization 
thresholds Thereafter# one is in the ‘high* energy region 
which finally goes over to 'very high' energies where 
relativistic considerations become prominent. Obviously# 
the energy domain depends on the target atom and quite gene
rally# a broad classification of different ranges of energy
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can be made as follows* the incident energy less thein 

10 eV is in the low energy range; the intermediate energy 

ranges from 10 eV to nearly 100 eV aid above that comes 

the high energy region. The present work is mainly 

concerned with intermediate / high energy regions and a 

discussion on the various theoretical methods in this 

energy regime will be instructive.

In recent years/ numerous calculations corresponding 

to nearly as many theoretical descriptions have been made 

of amplitudes of high energy collisions of charged particles 

with atomic targets. Because of the enormous complexity in 

describing and predicting the results of the associated 

experiments/ most of the cited works have had as their 

objective the determination of accurate and computationally 

feasible theoretical procedures. Included among the more 

successful methods are variations of traditional impact 

parameter studies (Dewangan/ 1975)/ the simplified second 

Born approximation (Holt and Moiseiwitch/ 1968)/ Glauber 

(Gerjuoy and Thomas/ 1974) and modified Glauber approaches 

(Harribro et al/ 1973)/ the Coubmfo Projected Bom calculations 

(Geltman and Hidalgo, 1971) and the Eikonal Bom Series 

approach (Byron and Joachain, 1973). Before going into the 

depths of the theories, let us have a bird's eye view of 

the development of various theoretical methods from time to

time
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Among the several methods that have been proposed 
In the recent past to study the scattering of electrons 
from atoms at intermediate and high energies, most of them 
are based on two basic approximations in the field - the 
eikonal approximation (Joachain and Quigg 1974) and the 
Born approximation (Schiff, 1968).

The Glauber approximation (Glauber 1959, Gerjuoy and
Thomas 1974) has been extensively used with reasonable
success to calculate the elastic and inelastic cross
sections for simple target systems. It is well-known that
the Glauber approximation suffers from several shortcomings,
the most prominent one being the logarithmic divergence of
the scattering amplitude in the forward direction. Various •
attempts have been made to rectify these defects. Chen
and Hambro (1972) and Chen et al (1973) have corrected the
classical straight line trajectory used in the Glauber
approximation. The assumption of the straight line
trajectory leads to the disappearance of the real part in
the second Born term. This was first identified in the
case of potential scattering by Byron et al (1973) and
Byron and Joachain (1973a) and then for electron-atom
scattering by Byron and Joachain (1973b). To account for 
"the, ''Vwb&S p<xk£ t hOiX'ffu/'A, (18.74) 'Vv^>c(A/^dLe_.cLf
the polarisation effect externally in the Glauber amplitude
by treating the target wave function perturbed by the
incident particle."' Joachain and Quigg (1974) used an
eikonal optical model which includes the second order
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potential in the evaluation of the Glauber - phase.
Byron and Joachain (1973 b# c# 1974 a# b# 1977) proposed 
the Eikonal Born series method which consists in expanding 
the scattering amplitude in alternate terms of the Bom 
series and the Glauber series. Flannery and Me Cann (1974) 
have used a multichannel eikonal treatment. Ishihara and 
Chen (1975) proposed a two-potential eikonal approximation 
and have demonstrated that the inadequacy of the Glauber 
approximation to predict elastic scattering cross-sections 
at all angles is mainly a result of the inadequate semiclassi 
cal treatment of the close-encounter collisions. Birman and 
Rosendroff (1976) have proposed a modified approach to the 
Glauber approximation.

Simultaneous with these developments# the second- 
order potential approach of Bransden and Colemma(l972) has 
also been successfully used at intermediate energies. In 
this method# allowances are made for the states omitted in 
the close-coupling method (Burke and Schey 1962). Latter 
Bransden and Noble (1976) used the four - state coupled - 
channel second-order - potential method to study the e - H 
elastic Scattering*

Among the first order theories# the first Born appro
ximation (FBA) is- the simplest eventhough it is known to be 
inadequate in the intermediate energy regime. Attempts to 
improve the FBa by including the second order effects have
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been made by Jhanwar et al (1975)® Junker (1975) proposed 
the modified Born approximation by considering the distortion 
of the incident wave. A similar procedure was used by 
Geltman and Hidalgo (1971a# b# 1974)# Geltman (1976) and 
Stauffer and Morgan (1975). An extention of the Born model# 
the distorted wave polarised orbital approximation has been 
used in the electron-atom scattering by Me Dowell et al 
(1973# 1974# 1975a# b).

Of the many attempts to improve the eikonal approxima
tion# the second order eikonal approximation named as the 
Wallace correction (Wallace 1973) is the most sophisticated 
method which was applied with success to e - H scattering by 
Roy and Sil (1974) and Unnikrishnan and Prasad (1982). The 
Wallace correction has further been elaborated by Franco 
(1982) and also by Byron et al (1982).. As the name implies# 
the 'modified Glauber method* (Gien 1976# 1977# Tayal et al 
1979# Jhanwar et al 1982) has been another successful modifi
cation of the Glauber theory. The work of Dewangan (1980) 
is also relevant with respect to the Glauber theory. Of the 
several modifications developed for high energy electron-atom 
collisions# the work of Rosendroff (1977# 1981) and 
Rosendroff and Birman (1980) is really worthy of mention.

Coming back to the -Bom frame work# the Fixed Scatterer 
approximation of Ghosh (1977# 1978), the Simplified Second 
Bom approximation (Byron and Joachain 1973) and the various
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calculations associated with it, the High Energy Higher 
Order Bom approximation (Yates 1979) and the distorted wave 
second Bom approximation (Kingston and Walters 1980) have 
been the major mile stones in the path of progress in the 
recent past# The review work of Byron and Joachain (1977) and 
the unitarised eikonal Born series calculations of Byron et al 
(1982) are also relevant in the context of electron-atom 
scattering studies.

Apart from the various methods mentioned above which 
are originating from the two basic approximations - Bora and 
Glauber - there is an important formalism in the scattering 
problems and that is the partial wave analysis (Schiff-1968). 
The optical model calculations which involve the evaluation 
of a model (optical) potential and further evaluation of the 
scattering amplitude is still another method followed in the 
collision physics®

Hence, we have seen that so many theoretical methods 
have come up to describe the electron-atom scattering. Some 
of the high energy methods are used in the present work. So 
it will be useful to elaborate upon those popular and prominent 
methods such that it will serve the purpose of ready reference 
for the later chapters of the thesis.
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2.2 High Energy Methods s

The different theories of collision physics# now in 

practice# are mainly quantum mechanical and thus originate 

from the well known Schroedinger equation. The different 

collision theories are# in general# different approximate 

ways to solve the differential Schroedinger equation or its 

integral counterpart - the Lippmann Schwinger equation.

The non-relativistic# time-independent Schroedinger 

equation for the system of incident electron plus 'target 

atom is

(H - E) f (r, x) = 0 (2.1)

where H is the Hamiltonian of the system# E is the total 

energy of the system and ^ (r# x) is the wavefunction which 

contains the co-ordinates of the incident electron (r) and 

of the target (x). There are certain basic assumptions or 

formulations like Bom - Oppenheimer approximation# fixed 

nuclei formulation etc. which help us to tackle the 

Schroedinger equation with relative ease. Various approxi

mations originate from (2.l). For e.g.# in close-coupling 

formulation# one seeks a solution of the equation (2.1)# 

as an expansion of ^ in terms of the eigen functions of the 

target states. The high energy methods arise from the 

integral equivalent of the Schroedinger equation.

For the scattering of an electron by a structureless 

target generating a potential V (r), equation (2.l) can be

rewritten as
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(vr2 + k±2) y (k±, r) = U (r) y (k^ r) (2.2)

2where7r is the K.E operator, is the incident momentum
vector and U (r) = 2 V (r) is the reduced potential. The 
solution of (2.2) denoted by yk> + (r) satisfies the boundary-

condition

+ki Cr)
/*.—><O K..r) +-f (9, 0) eXkir (2.3)

~ aT

where 41 (©, 0) is the scattering amplitude. The differential 
cross section can now be written as

d6^”

dw
f (©, p)/2 (2.4)

"totThe total cross section € is related to the scattering . 4 aamplitude as ^ = =-— ' Im -f(© = 0) (2.5)ki
where Im -f (8 = 0) means the imaginary part of f for 
© = 0e

Coming back to (2.2), the general solution is written 
as (Joachain, 1975)

(r) = (r) - / GQ+ (r, r ) U (r)

yk> (r) dr (2.6)
where & is the normalized plane wave given aski

0^ (r) = (27;) ■3/2 i k*r e “i” (2.7)



Similarly with k^ as the scattered electron momentum,

& (r) = (2*r3/2 e X~£‘~
iC j~f

(2.S^

The Green1s function or the free-particle propagator is 

given by

( r, r )
1 exp (ikj/r-x/)

/r - r/
(2»6) is the Lippmann - Schwinger equation, 

expression of the scattering amplitude is

(2.9)

The general

2 t
f (S, 0) = -47s < 0k /V/ Ifk (r)> (2.10)

f i
Now let us see how various high energy methods stem out from 
the above fundamentals.

2.3 The first Bom approximation (FBa) s

The zeroeth approximation to the solution of the
Lippmann-Schwinger equation is to replace + (r) simply

by (t)» Hence, the scattering amplitude (2.10) becomes 
Jci„’_,

(in the first Bom approximation).

fBl = “4^2 ^ /y/ &k > (2.11)
^ f i

The next iteration gives the second Bom approximation and 
this procedure generates the Bom series as a perturbative 
expansion in powers of U (r). The series converges to a 

limit if the potential is weak enough.
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The analysis of the first Bom amplitude is simple
giving

jp = - ^ ! e v (r) d v (2.12)
B1 •

Where q = /kj-k / is the momentum transfer. It can be
seen_ that for central potentials, the scattering amplitude
is independent of .the azimuthal angle 0. fR is nothing but1the Fourier transform of V (r). The first Bom approxima
tion is essentially a high energy method. For low energies, 
the potential should be very weak*

For considering a target with internal structure# 
the wave function of the target should be introduced through

/ k^, 1> = (r) ^ (x) (2.13)

Where ) is the eigen function of the target in its
initial stage i. Hence, the first Born amplitude for the 
scattering of electrons by a target leading to its transition 
i ---> f becomes

f B1 = ” 2 ~ Vfi dv (2.14)

with
Vfi = <.f / V (r, x) / i > (2.15)

The main attraction of the first Bom approximation is its 
simplicity. It does not take into account the distortion 
of the incident/scattered plane waves as they approach/ 
recede from the target. The effects like absorption (removal
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of electrons from'elastic to inelastic channels) and 

polarisation being recognised to be prominent in electron - 
atom collisions and since these are not accounted for by 
the first Bom approximation, there is a clear need to go 
beyond the first Bom calculations* The modified Bom 
approximation being one such attempt to improve upon the 
FBA, let us take it up next.

2 #4 The Modified Bom Approximation (.MBA) :

Junker (1975) has proposed this modification of the
t

Bom model for the study of the inelastic scattering, which, 
while retaining the simplicity of the first Bom approach 
gives much better agreement of the theoretical calculations 
with the experimental data. The modification of Junker 
consists in taking the incident wave to be distorted instead 
of the undistorted incident plane wave in the Bom approxi
mation. The distortion of the incident plane wave, which 
is represented by a coulomb wave is produced by assuming 

an effective nuclear charge 6 at the nucleus.
Let H be the Hamiltonian for the incident electron 

plus target atom system. Following Junker (1975)

H = HQ + V = H + W = HQ + U + W (2.16)

Where H is the unperturbed Hamiltonian, V is the interaction 
potential. V = U + W, where for the hydrogen atom

U and W i-6 i
/*!-V
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with 6 as the screening parameter and and r1 the 
incident and target electron co-ordinates. The method 
for the evaluation of for inelastic scattering was 
prescribed by Junker (1975). hater on Gupta and Mathur 
(1978) extended this method to the case of elastic 
scattering also.

The breaking of the Hamiltonian H into and W 
contains a certain amount of physical significance and 
has the advantages that the eigen functions of are known 
exactly and closed - form expressions exist for the evalua
tion of the integrals needed in the calculation of the 
cross-sections.

IIAssuming to be the solution of the Schroedinger 
equation

(Ho + 0) X. - E1Xi.

The differential cross section for a collision in which the 
target atom is excited from an initial state i to a final 
state f is given by

d6”"
d-o_

k, -f*

3 / <0± / v / y±> /“ki 4 7\

In the modified Bom approximation#
+h X. tr1<r2) F (r„) U (r,) 

0 2 o 1

(2.17)

(2.18)

Where UQ (rx) is the atomic wave function in the initial 
state and is the scattered electron wavefunction
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given by

— "l'Fq(r2) = |(l-iaJ , A » ,exp ti k^r*, + ~}1 kir2

(2.19)1 ^i-s2)
Where

ai = kA

The above expression used by Junker takes into account 
the distortion of the incident wave, hater on Gupta and 
Mathur (1978) included the effects of exchange and polarisa

tion within the framework of the MBA. Introducing exchange, 

we write the total wavefunction as

Yi” - X1 (rX'r2) ± Xi (r2'rlJ

The polarisation effect is included through the
\

polarised orbital method of Temkin and Lamkin (19Sl). Hence, 

the wave function becomes

Ti
( . ) 

FQ(r2) ( Uo(rjL) + Upol(rx,r2) )

( )± .( J^(r^) + U_(r,,rj )( o pol 12 } (2.20)
Where UpQj_ is ‘the polarisation term. Substitution of TjJ\ — 
in equation (2.17) will give the DCS. For example, in the 

case of elastic e - 14 scattering,

dS~ 1 , 2 9—- ( k / T+ / + % / T” /Z)
d-d. 4 A

(2.21)
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Where T^ = 1 Ci- ia^) exp (fta^ (lD + Ip + Ig)

ID = * g2<UQ (rx) / V / U0 (r1)>‘- (2.22)

with g2 = dr2 e x ^*-2 (ia.^# 1# ± k.^ - i 3^. r2)

Ip = f 92 < u0^1^ / V / UpQl (r1#r2> > (2.23)
V ' «*

IE = /dr^pg^.r^.^jj^pta.,!, i k.^-ik.. .r^

< Vo(,rl^ / V / Uo ^r2^ > (2.24)
V ‘

The above method was used to study the elastic 
electron Hydrogen scattering by Gupta and Mathur (1978)# and 
the results were very encouraging. Later on they extended 
the method to study the scattering from Helium (Gupta and 
Mathur 1979). Recently Kaushik et al (1982) studied the 
scattering of electrons from C, G and Ne'within the framework 
of the MBA approximation. They have reported that the 
results obtained are not at all satisfactory. In the 
present thesis# the MBA is applied to two different scattering 
phenomena - the 2S - 2S elastic scattering (in Hydrogen atom) 
and the alkali scattering with respect to Li target. An 
assessment of the suitability regarding the application of 
MBA in the above scattering processes is made.

Let us now switch over to the higher order
calculations
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2.5 The Second Bora Approximation :

Recalling the origin of the Bora series as a 
perturbative expansion in the powers of the interaction 
potential# we write it as

=5 2 f„ of which the n = 1 term is theB , onn=?l
first Bora amplitude» In the n Bom amplitude# the 
potential appears n times and the Green’s function (n-l) 
times. In particular# the direct second Bom term is 
written as

B2 ~ / dr e*p(ik|.r) £ <£ / v(r, x) / n>/dr 
dk e *

(2 7\)"3J

i k. .r e “X —
o 2,kz-kn -i « <n /V (r #x )/i>

(2.25)

Here /n> denotes the intermediate state of the target and 
kn is the intermediate momentum of the projectile electron, 
k is the variable coming from the Green’s function and the 
appearance of -4 implies 4 —> 0+. The vector k^ is

tz.lirelated to the Internal energy Wn of the target in Its n 
state through

1
2 2kn' + Wn (2.26)

Where WQ is the ground state energy of the target. After 
some mathematical rearrangements# we get



40

2
8 7i2 / dk S

— n

<k ^, £ /v/ k#n** <k#n/ v / k^, 
k^-k^2+2 (wn-wQ) - i-€

i> (2.27)

Where /k^#i> = initial asymptotic state of the system# etc.
V

The above amplitude represents the fact that the 
projectile with an incident momentum hk^ interacts with the 
target potential via an intermediate or virtual state from 
which it scatters with final momentum hk_g leaving the target 
in the final state f« The many times employed approximation 
to simplify the above expression is

VL - n W. w (2.28)

This turns out to be a good approximation above# say 50 eV 
incident energy (Walters and Ermolaev# 1980). The simplified 
second Bom approximation obtained using (2.28) is

fB
2

/ dk f-------
, k -k±

<:£/(%£ /V/ k > <k / V / k± >)/i>
S V

(2.29)

Here the closure relation has been used for the target 
states. The simplified second Bom term (2.29) has been 
evaluated using the Dalitz integrals (Joachain 19715).

Various modes of the second Born amplitude can be 
obtained from the work of Byron and Joachain (197 3# 1977), 
Ghosh (1977)# Tayal et al (1979)# Yates (1979) and Kingston 
and Walters (1980). Special mention should be made about the
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Distorted Wave Second Bom Approximation of Kingston and 
Walters (1980) and the high energy higher order Bom 
approximation of Yates (1979) which will be elaborated upon 
in a later section. Quite generally# it can be stated that 
the second Bom term is complex in nature# containing real 
and imaginary parts. Further# the imaginary term corres
ponds to tlie absorption effects and the real part# to the 
polarisation effects of scattering. These effects being 
more significant at small angles# the second Bom approxi
mation will take care of these effects neglected in the 
first Bom approximation and will improve upon the first Bom 
results tremendously at small angles of scattering. More 
about the Bom approximation will be discussed in the sections 
to follow when the context arises®

With so much discussions on the Born approximation# 
we now take up the Glauber theory.

2.6 Glauber Approximation s

The Glauber theory which stems from the eikonal
approximation is one basic formulation in the scattering
problems. This is also a high energy approximation wherein
the de Broglie wavelength of the incident particle is assumed
to be short compared to the distance over which the potential
varies appreciably. Thus k.a »1 where 'a' is the range of

/

the potential® Under this condition# the Lippmann Schwinger
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equation can be linearized and this procedure leads to the 

eikonal scattering wave function.

Tf(r) = (2 7T) -3/2exp (i k^.r 2k^ s . l/ U(b, z) dz) (2.3Q)

This shows that the incident particle suffers a potential- 

dependent phase change. Thus* the eikonal scattering - 
amplitude is (Joachain 1975)

Jv * *■*fE =—ZKi---^ d H exP (%*]=> ^ exp [i x (ki*b)-l] (2.3l)

Where b is the impact parameter®

The many-body generalization of the above treatment 
was done by Glauber (1959). For the direct collision of an 

electron with a target containing fixed scatterer» the 

Glauber scattering amplitude is 

k. „fQ =——* dzb exp (i a*b) <f/ expCi XQ) ~l/i>(2.32)

v 2
Where cj is assumed to be two dimensional and d b is an 
element of area in the (X, Y) plane#

The Glauber phase

^G “ "^G # — l' * * * * (2.33)

Where r = b + z , and the target co-ordinates

+ ^i
The Glauber multiple scattering series can be developed by 
the expansion of e i in (2.32) and its connection with the 
Born terms can be established (Byron and Joachain* 1977)®
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Because of the exponential phase function# the Glauber 
amplitude takes into account all orders of perturbation.
One major assumption taken in the evaluation of the Glauber 
amplitude is

cj.r ^.b (2.34)

which is valid for small angle scattering only. The above 
assumption makes the evaluation of the Glauber amplitude 
easier and also ensures that the first Glauber term is 
identical with the first Bom term®

.The evaluation of the Glauber amplitude depends on 
the expression of the Glauber phase

1 «3X = r/ da V (r,x) (2.35) k^ —

where x stands for target co-ordinates. Except for H and 
He# the Glauber phase has a complicated expression so that 
the evaluation of (2.32) becomes very difficult. Thomas 
and Gerjuoy (l97l) have obtained the closed form expressions 
for the Glauber amplitude for the collision of charged 
particles with hydrogen atom. Because of the difficulty 
involved in the evaluation of the Glauber amplitude (2.32)# 
the termwise analysis (Glauber eikonal series method) 
proposed by Yates (1974) becomes very significant. In this 
method# the Glauber amplitude is written in the form of a
series
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■f 2 ' *'■*"* **" .C£G " n=l 1 £Gn C2.36)

More about the GES method will be discussed in a later section 
devoted for it» An important point about the second Glauber 
term should however be mentioned that for elastic scattering 
it diverges as lncj# as q —> 0. This can be attributed to 
the suppression of the off-shell contributions in the 
evaluation of the Green's function. In the Second Born term 
also# this behaviour is found if the average excitation 
energy is replaced by zero (Moiseiwitch and Williams 1959# 
Yates 1973). further# the second Glauber term lacks a 
real part which represents the polarization effects in the 
target. It is found that at almost all angles# the Glauber 
cross sections underestimate the experimental data. 'The 
importante of the Glauber theory lies in the fact that it 
contains all orders of a perturbation expansion and hence 
satisfies the unitarity relation in its own framework* 0f 
the improvements suggested to modify the Glauber amplitude# 
mention must be made of the Wallace correction (1973). The 
modified Glauber theory is another attempt of improvement. 
More about the Glauber approximation is given by Joachain 
(1975), Byron et al (1977), Gau and Macek (1974# 1975) 
Dewangan (1978# 1980)# Roy and Sil (1978)# Unnikrishnan and 
Prasad (1982)# Franco (1982)# Byron et al (1982)# Gien (1976# 
1977) Rosendorff (l98l) etc.



Now we will go back to the Glauber Eikonal Series 
method of Yates (1974) as mentioned in the earlier section*

2«7 Glauber eikonal Series (GEs) Method *

The Glauber/E ikon al approximation has been successful 
in accurately predicting differential and integral cross 
sections describing the collisions of charged particles with 
low Z atoms* Its lack of application to complicated systems 
can be attributed to the rapidly increasing computational 
complexity involved in evaluating the Glauber amplitude 
expression. The GES# proposed by Yates (1974)# is an 
analytical procedure capable of providing quantitative 
estimates of the Glauber cross section.

Glauber’s rnultiparticle amplitude formula is given

as

'i->f

ik.r-- /d£n eXP ^ S'kJ27\ ° . °.
<ljf^/l-exp(ix)/^^ > (2.37)

'Thomas an<| Gerjuoy have evaluated this amplitude in 
the case of charged particles colliding with H atom. Franco 
(1971) has reduced the general amplitude expression to a 

one - dimensional integral representation involving sums and 
products of hypergeometric functions# by assuming a particular 
functional form for the atomic wave function. An alternative 
reduction, also resulting in a one-dimensional integral 
representation but involving modified Lommel function# has 
been given by Thomas and Chan (197 3). But both the above
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procedures still require a good deal of computational 
analysis before arriving at the final results.

Yates has proposed a third alternative to the 
evaluation of the Glauber amplitude. His approach involves 
expanding-the amplitude in reciprocal powers of for 
fixed q = / 2 / and attempting a term wise analysis. It 
is anticipated that for the energy range of applicability 
of the Glauber approximation? this Glauber Eikonal series 
will be rapidly convergent. Other works relevant to the 
development of this theory include that of Byron and 
Joachain (197 3) and Yates (1973).

iXExpansion of the phase function e in equation 
(2.37) gives

where

eo n-1 (n)

(n) k.

£i—>^"nSi 1 f i—>f (2.38)

’i—>f “ 27?n l-- ' / ® (2.39)

Hence for fixed q, the differential cross section through
Aorder (l/k^) is

k- ( (1) 2 (2) '2 Cl) (3)
~ ( [f 3 + Cf 3 "2 fl~>f

, )
+ 0 ( "■■■■'41 ) ) ... (2.40)k. \x )

which suggests that for large k^* only few terms in 
equation (2.38) are required to obtain good estimates of 
the Glauber cross sections. The Glauber phase function is
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X (b
Z oO

o
~ Tc .-*> dzoE N

ki

Isl
_ SJoL rQ 1=1 /r0~rj/Tr2/3

By using a transformation similar to that used by Tenney and

Yates (197 2)# the X is transformed to obtain a convenient

1form for • For this# ^ and ________
x- •£ r /r -r*/

ro /Lo
are replaced

by their 3 - Dimensional Fourier integral representations

N

x <*>6--------------V =

z

-z
i7?k±J

■ iP.b

,*! '#f,2£=0 - -i]

(2.41)= - — / e' B (P'bl-----V
TT^ p2

£
Where P‘ = P + P i.

— z

Substitution of (2.4l) in (2.39) and further simplification 

gives

. (n) 2*k. „ n dP-,____x / z ) f —1
•i—>-f “ n l p 2

dP ._ _ _/ n-1
n.P/q-p/'

<T/BlPl) CE’n-l) B (a -£>/ YP

n-1
Here B (P;) = B (P:#b, . .. .h.T); P= 2 P.

1 1 1 N — x=l —l.

(2.42)

For chosen co-ordinate system,

(1)
.---->;

(2)

= first Bom approximation#

2 dP
^-------- 2< Yf /B (P) B(q-p)/ Ij?^> and so on.z

"i——■>£ 7Sk, P/q~P/‘

(n)
Hence f^__^ becomes much simpler due to the uncoupling

of bQ and b^'s as a result of the transformation given by(2.41)
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Yates has demonstrated the feasibility and simplicity 

of the above GES method by the application to electron - 

hydrogen scattering. All the terms of the scattering amplitude 

upto n = 3 are derived analytically. It is seen that all 

infinite integrals cancel exactly with each other. He has 

compared the DCS values obtained from (2.40) with the exact 

Glauber result as evaluated by Thomas and Gerjuoy. It is 

shown that if the inequality k^>>l is only marginally 

satisfied/ the first three terms of the GES are sufficient 

to give a very good representation of the Glauber cross 

section for all values of q»

Later on Singh and Tripathi (1980) used the GES method 

to analyze the scattering of electrons by He atom. They 

have made a detailed assessment of the suitability of the GES 

method in comparison with the conventional Glauber calcula

tions. It should be mentioned here that the GES expressions 

can be used in analyzing the higher order correction within 

the frame work of EBS and modified Glauber method of Byron 

and Joachain/ thus avoiding the numerical evaluation 

adoptedby them. Eventhough the GES method represents the 

Glauber scattering amplitude satisfactorily/ it is not 

free from the shortcomings associated with the Glauber 

method - i.e. logarithmic divergence in forward direction 

(for elastic scattering) and low cross section values. As 

mentioned earlier# many efforts were so far made to improve
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upon the Glauber approximation# one such prominent effort 

being the Wallace correction (Wallace 1973?. We are not 

discussing this here in detail because the details will 

appear in a later chapter of the thesis. We will now take 

up another approach towards the modification of the Glauber 

framework i.e. the two potential eikonal approximation of 

Ishihara and Chen (1975?.

2.8 Two Potential Eikonal Approximation (TPE? :_

The Glauber approximation is known to be in appreciable 

error at all angles when applied to the elastic electron-atom 

scattering at medium and lower energies. Ishihara and Chen 

(1975? have shown that this discrepancy Is not due to the 

frozen-target approximation# but mainly due to the inadequate 

semiclassical treatment of close-encounter collisions in the 

Glauber approximation. They have proposed a simple method - 

the TPE approximation to correct this inadequacy by separating 

out a central - force potential for which the semiclassical 

approximation is no longer valid at these energies# and • 

treating it quantum mechanically. The basic formula is 

derived for potential scattering and is generalized to the 

case of a composite target in a straight .forward manner®

Consider the scattering by a central field V(r) which 

may be singular at r = 0. An arbitrary potential is so 

chosen that VQ = V - satisfies the semiclassical 

conditions; VQ being a slowly varying function and
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/V
E *< 1 for all values of r, E being the energy of the
system. In the two potential form of Rodberg and Thaler 
(1967), the scattering amplitude can be written as

F (0) = ~ 2 (2i+l) T^ PL (Cos
i X>

0)

with i ^ (0) / (0) 2i
e X., sin O ^ , + e

^o)

\
il

Eh

i^(l) 
e -y .

(0) / /(1) / / U)
and 0 X = x” ^X w^ere cX911 d ^Xs

(2.43)

•(1)

are the phase
shifts for the potentials V and V^, 9Cis the scattering angle.
With our choice of (o)

X ■

may be evaluated by the Jeffreys
Wenzer - Kramers - Brillouin (JWKB) approximation to the
first order in V^.

Since most of the effect of V-^ is included in the 
second term of equation (2.44)/ the contribution of the first 
term to equation (2.43) is concentrated in the forward 
direction and may be evaluated by using the asyrrptotic formula

P. (Cos ©) J ( (2X +l) Sin *- )
As 0 ^

00 co

a*6- jil 0 “ b dl *

Thus k. 00 i ^(b) , ©f l«) = ■” / b db (e -i) J (2kb sin - )
. - 1 0 . , °. 2/(l)

ik(b.) i ,+     ^ (2 X+l) P(Cos ©) e . e dj^ 5
0)

where we have introduced the impact parameter by
0 i A°)b» = ( £ + — ) /k and x (b.) = H o / .*

Generalizing the above formula to the case of electron atom



scattering in the frozen target approximation#
\ j-

interaction V (r# X ) depends on the target eleclj^dSi-,,..

^ 51
,■ j •■'■ r

co-ordinates also.

Hence X (b#X) = X^Cb/1 )+4x (b#X)# (2.45)

Where
1 ooX0(b,^.) = - —_fav0(r,l.} dz,
2 ooAx (b#1 ) = r— V_(z=0) / (1ki 0 ” Cz2-Vl r2)l/2 ) dz.

Now the transition amplitude from the target state /i> to 
the state /j> may be given as

IV . (9) = —i S^b e ±as- ( f(b) -1) + i S {2t+l)
’f i 27Ti

(Cos ©) e
i £(l) /(l) dtf)

h Sin Oj^ . / —

ki

27^ f i
Where q is the momentum transfer and

(—A * '

< f / e / i>

(2.46)

(2.47)

The two - potential scattering amplitude given by (2.46) 

does not add much practical difficulties to the usual 
Glauber approximation calculations® If we choose ‘d1# the 

range of small enough# we need take only a few terms in 
the second term of(2.46).

Ishihara and. Chen (1975) have studied the e - H 

scattering in the TPE approximation and have shown that 

this method provides an effective way to treat the close- 
encounter collisions properly. Later on Tayal et al (i960)



used 'the TPE approximation to study the elastic scattering 
of electrons from He and Li targets. Even though their
results are raich better than their Glauber counterparts* 
the improvement obtained is much less than that which is 
observed in the case of e - H elastic scattering. They 
have reached the conclusion that it is perhaps a reflection 
of the limitations of this method rather than the choice of 
the target wavefunction•

Having discussed the various aspects of the Bom and 
Glauber/Eikonal approximations# let us now turn to another 
major development in the field of scattering theory - the 
Eikonal Bom Series method which# as the name suggests# is 
a blend of the two approximations.

2s 9 Eikonal Bom Series (EBS) Method a

Byron- andrtToachain (197 3* 1974) proposed a new
approach - the Eikonal Born Series method - to the analysis
of electron/positron - atom collisons at intermediate and
high energies. This method combines the Born and Glauber
Series to get a consistent picture of the scattering

1amplitude through 0 ( --- )
- h '

The Bom series for the direct scattering amplitude is
oO

B n:?l 'Bn B1 + Im f,62 + RefB2 + fB3 (2.48)

The Glauber approximation to the scattering amplitude is
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o0
fr = S f 
G n=l Gn = fGl + Im fG2 + fG3 +----- (2.49)

With the choice of the z - axis perpendicular to q #

fGl = fBl

The EBS amplitude is written as

fBl + Im f.B2 Re fB2 + fG3 (2.50)

Here the third Bom term is approximated as the third

Glauber term since the direct evaluation of f__ is extremely
a 3

difficult and in the light of the relation between the
different terms of the Born and Glauber Series (for e.g.both

f and f__ are zero for elastic scattering in the forward B 3 G 3
direction (Dewangan 1980)• Knowing different terms of the 

above scattering amplitude# the DCS can be obtained as

— = / t / ^ (2.51)
d-n_

A comparison of the amplitudes (2.48)# (2.49) and 

(2.50) instantaneously reveals that the replacement of the 

second Glauber term Im f by the second Bom terms (im fg2 

and Re f0_) will result in the EBS amplitude (2.50). Hence 

one imaginary term is replaced by another imaginary term 

and a new real part has been included. The Glauber imaginary 

term is divergent in the forward direction whereas the 

corresponding Bom term is free from this defect because of 

the average excitation energy parameter. Further# the new



real part in the second Bom term i.e. Re will take care 
of the polarisation effect which is neglected in the Glauber 
amplitude (2.49). These are the two main achievements 
attained through the construction of the EBS amplitude (2.50) 
from the Bom and Glauber amplitudes. The application of the 
EBS method to Scattering problems makes it explicit that the 
EBS amplitude is superior to the usual Bom or Glauber 
amplitudes*

The EBS has already been applied successfully in the 
analysis of the elastic scattering of electrons and positrons 
by atomic hydrogen and helium (Byron & Joachain 197 3a# b# 1974 
a# b). Eater on detailed analysis of the above problem was 
carried out by the same authors (Byron & Joachain 1977). In 
the recent past the EBS has been used to study the scattering 
of electrons from excited 2S state of H atom (Joachain et al 1977) 
and the I>i atom (Byron and Joachain 1977). Within the basic 
frame work of. the EBS 'method itself# various alternatives 
are possible depending on the various modes of evaluation of 
the different terms appearing in the series. One such 
alternative approach is the recently proposed High Energy 
Higher Order Born approximation of Yates (1979) which was 
extensively explored by our group.

2.10 The High Energy Higher Order Bom Approximation (HHQB):

This method# which is aimed at suggesting yet another
description of high energy collisions# is motivated by two
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factors. The first is prompted by the work and success of 
Byron and Joachain in their Eikonal Born Series approach 
to medium to high energy electron atom collisions and 
constitutes an extension of earlier work of Yates (1974).
The primary purpose of the HHOB analysis was to develop an 
alternative high energy expansion of differential scattering 
cross section in terms of reciprocal powers of k^ through
O ( which is computationally tractable yet derived from

- 'analogously treated second and third Bom terms. A Second 
consideration has been the suggestion of anomalous behaviour 
of the small angle high energy differential cross section 
in electron atom collisions®

In the HHOB analysis the well-known generalized Bom 
Series description of the collision process is transformed 
into a more convenient form. Thereafter, the approximate 
formulae are developed through a partial expansion of the 
free particle Green's function. We will take up the important 
second Bom term.

(2)
->f

- S /dr el2*-0 v (r ) / dr ’ 
7^ n —o fn o —o
G (r ') V . (r -r*) e i*—o
n m o —o (2.52)

Where
V . (r ) nm —o
¥ (T-,.Tm 1

< ¥nlV ~• Tjj)/ V (rQ, r1# - - r^)/

and Gml£o'£o') 1
3(27C)

dk' ik'. (r -r ' ) — e o —o
— — rk - k - i -fc-m

-> QT
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Now the second Bom term is partially expanded parallel to 

the method of Glauber which is most akin to the high energy 

small angle potential scattering analysis of Schiff. The

basic approximations are introduced in the integral!

1 = / dr' G (r ') V . (r -r* ) e
n —o n —o nr —o —o
Here# the variable transformation

-i.r' -o (2.53)

S = k* - k is made. If it is assumed that V , is slowly 

varying over the distance of a wavelength of the scattering 

electron and that ^ does not differ iruch from k. in either 

magnitude or direction# then the integrated expansion of

2 * 1 2(S + 2S.kn-i-£) in powers of S should be rapidly covergent.

Hence# after performing the S integration in cylindrical

osing as 
i(k,-k ).r'

polar co-ordinates by choosing as the polar axis#

n 2k / dr' •i —n
n o

° V . (r -r ') 
nx —o *~o

[ i (b ' ) H (z 1) + 2k V ,
2 C^(b *) z • h (z 1) + o(k ”2)] 
Li —o o —o n j

Where H(z) is the Heaviside function. Again integrating 

the second term of the above equation by parts twice and 

simplifying further#

I ~ ——- / dz* e n 2k^ -*> o
i/3 . z° H(s- ) [1 + ^ ]

o *■ 2k,. o

n . Cr —r1 ) / b =x -o o f —o
(2.54)

where = k^-kn~ Ae/k^ where AS is the average

energy transferred to intermediate atomic states during the 

course of the collision.
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In simplifying the present approximations* it is 

useful to express the interaction potential in Fourier 

fonn as

v 'tec/ “ ~ / d&
N

•i 3b„ od -iP„
° / dP e 20

—rOQ Z

V (P + P„X * r, *
Z X

Where

id
V (P +P -----r ) = -------------------- 2~ 2 % 2^2(p2+p2} j=l

i P.b, i P Z;

(2.55)

z 6 _x)

z
Now substituting (2.54) and (2.55) in (2.52)* we get

(2)

HEA

. eo i °0 1
I dP J dP / dP / dP

2^k . “ -eo z — -«5 _ z

Yf / v CP + pzX .-----ip V (p +P’2X...........Jp/yp

i(^-P“P) • Uc oo -i(P +P* ) z
__  __ __ mSmO *7 *7 fh

f db_ e . - . / dz_ e
-•o o i

E
P11 p»z c -i(P‘1-,8 . ) Z

z -r^r- i / dZ* e 2 X ■ ° H (z1 Q) (2.56)
23ci 01 ? —0 o

ki
[ i/ dP il+^I J-cpt®i2))

(2) /V
u (a-p -8, x 
fi

*P +/3±X)

1
7\

ff OQJp / dP / dP,
—oO '

P+P 2 A
fi, z _SLz U+ 2k± d3±

1
) p

Z X

(2) A A T,
u (2 -p-p * * E + p X )]

f ,2. -2
(2.57)

Where stands for the principal value of integral and
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(2) a A Au >. (p+pzX ,p«+p^ x)= < yf / v (p +pzx ,—rN)

V (P +P« £ (2.58)
— z —N I i

Application to e - H elastic Scattering s

The real analysis of any theoretical femulation 
should be with respect to the application to practical 
problems. Now we evaluate the second term in HHGB approxima
tion for the e - H scattering. For this process# the inter
action potential is

V =

The groundstate wave function for H atom is y
/The evaluation of expression (2.58) gives

^2) A A 1U . . (2 -P-P * ,P +P X) =fl — — 2 z

~r, e 1
J 7\

7S4(/2 -P/2+p2)(P2+p2)

( q_ +2V
\2(q2+\2) /5-P /2+P2 +h2 P2+P2+X2 )

d sit 5

(2.59)
z • z

Here ^=2 and is obtained from the product of the initial and 
final wave functions written as

r* fi - j < - i > ^=2 .

Now substitution of (2.59) in (2*57) and further simplifications
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The integrals I-^,^,^ are defined and evaluated in the 
appendix. It should be noted that only the 0( -r— ) term of

iimaginary part is taken since we are interested in the DCS
0 ( ). If we take k. is large and q —> 0 in the

imaginary part, equation (2.60) reduces to exact agreement

with the large k^ limit of the imaginary part of the SSB
approximation as given by Byron and Joachain (1973) and 
, h Ink•e aves as ^ for q approaching zero. Further, if

Ki
is set equal to zero in (2.60), the corresponding term 

in the GES is obtained and diverges as Inq as q goes to zero. 
Similar analysis can be made with the real part also, for the 
0 ) term. Differences between the SSB and HHOB methods

bef^irv to manifest themselves in their predictions of terms 
proportional to r~2~ • However, for decreasing q, similarities

Xbetween the two descriptions should be enhanced. More comparisons
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can be made in respect of the cross-sections. To evaluate
the DCS# we should have the first and third terms of the HHOB
approximation also.- The first Bom term is simple and(!) 1 i<2»£ <
straight forward giving f = - —r / dv e < fTV, /tjf,>HEZk 2 7C Tf an Ti

where V. is the interaction potential ..(2.62)

Turning to the third Born term# the treatment parallels that 
of the second Bom term except that only the first term of 
I is required. Further analysis givesn

(3)
HEA

= f^3)+ f^3) + f^3) + f4(3)

where the first two terms are real and 0 ( ) and the
V). For the present purposelast two are imaginary and 0 ( —^

(3)only the real part of f is needed which is given as
HEA

(3)
Re f

HEA (2.63)

(3) (3)Coming to the evaluation of fj, and # they are
found to be algebraically very tedious. Further# if |8 is
set equal to zero# it is found that f (3)

HEA
(/3i=0)

which is the third GES term, which has been evaluated in 
closed form (Yates, 1974) . Hence, in the present study we 
take the third GES term as an approximate of third Bom term. 
How the direct Scattering amplitude can be written as

- (1) T Ai) n A2)f HEA + 1111 fHEA + Re fHEA + f, (3) (2.64)HEA HEA 1 — "HEA ' **w "HEA ‘ GES 
Knowing the scattering amplitudes# the D£S can be calculated
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d6“as __
d-O-

/ f /2
HEA '

Having obtained the expressions for the various terms 
of the scattering amplitude in HHOB# it will be interesting 
to have an analysis of the characteristics of the various 
terms- We note the following important points*

(1) Unlike the case of the Second Bom term £_ of EBS,
n 2.

here the momentum transfer q is two - dimensional®

(2) The assumptions of HHOB (especially in the evaluation 
of the integral Iri(2.53) make the theory valid for 
only small angles of scattering®

(3) The final integrals (in second and third Bom terras) 
over the variable P are two-dimensional# making the 
evaluation comparatively easier®

(4) Unlike the second and third Glauber terms where the 
individual integrals are singular# in HHOB# all the 
integrals are absolutely convergent.

(5) If we put the average excitation energy parameter
B s 0 in HHOB, we get the corresponding terms in GES.

(6) Because of the B parameter# the imaginary part of the 
second HHOB term does not diverge for forward elastic 
scatterings

x



62

(7) At q = 0, the imaginary part of the present second 

Born amplitude agrees with the imaginary part of the 
simplified second Bom result of Byron and Joachain 
(1973). Hence/ the TCS obtained from both the 

approximations will be identical*

(8) Similarly in the HHQB as well as in the EBS of Byron 
and Joachain (1973) the real parts of second Bom 

amplitude are identical at q = 0*

Ref 2) _ Z_ + _L_ - _5i_ . q=0
■Ke T “ v 9 2HEA *i 2k± 4k±

This shows that the series expansion of the Green's 
function in (2.53) is rapidly convergent in the forward 

direction,®

(9) In the above case/ the contribution of k^ order term 
(Re2) is quite small compared to that of k^ 1 term 

(Re^). But at large angles, as can be seen from the 
iater tables/ Re^ contribution is very high which makes 

the DCS values also high® It should be again stressed 
that HHOB is a small angle approximation.

(10) For q = 0 and 0=0, Re2 = (3/2)k^2, which is exactly 

the real part of the second term of the Wallace 
amplitude at q = 0 obtained recently by Byron et al 
(1982)• This correlation is made use of in the later 

part of my work.
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(ll) Making use of the relations (Dewangan 1980)

fQ(2n+l) = 0 at q = 0; n = 1,2 - - - and fg(2n+i)=®
at q=0, n =1/2 - - -# one can see that f cdG3 B3
at very small angles* Thus# our replacement of the 
difficult third Bom term with the compu tat ion ally 
'feasible third glauber term is justified for small 
angles of scattering.

2.11 Results and Discussion *

Calculations have been made for the DCS for the 
e - H elastic scattering for energies 100 eV to 600 eV 
using the scattering amplitude (2.64) given above. In fig.
(2.1) and (2.2) the results at 2.00 eV and 200 eV are 
displayed along with the data of other workers for comparison. 
It can be found that at £ < 5 0°# the present results are 
very good and they overestimate for large angles of scattering. 
It should be remembered that the HHOB analysis has been 
concerned with the elucidation of the character of the second 
and third Bom terms for short wave length collisions and 
for small momentum transfers. Specifically# the integral 
In has been expanded using small angle approximations. In 
order to understand more about the behaviour of the HHOB 
scattering amplitude# we study the individual terms as given 
in tables (2.1) and (2.2). It can be seen that the real "fesc-ws, 
of 0 ( —) has a peculiar behaviour. This term gives

Vspurious values at large angles which# when coupled with
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the first Bom term to form part of the scattering cross 

section, results in high values of cross section. It should 

be noted that Yates (1979) has commented that a detailed

analysis of
k.'

x
terms in second Born term should include a

discussion of the pertinent third Born terms. It should also

be remembered that in the third Born term (2.63), apart from

(3) 1the Glauber-like term f' there is a second term of 0 (—-)
ki

which contributes to the real part of the third Born term!

In the present analysis where the third Born term is approxi-
(3) (3)

mated- as f GES* it is totally ignored. The relation which f
(2)3bears with Re fLTT,_ 0(—**^r) has to be and remains to be explored

iriiiiA
and studied in detail*1 Perhaps this may give a clue regarding 

the presently observed overestimating DCS values at large 

angles. The DCS values at different energies are tabulated in 

table (2*3) • -

Eventhough the EBS results (Byron and Joachain 1977) 

are arrived at through a similar procedure as the HHOB, the 

EBS results are found to be much better than the HHOB results 

at large angles of scattering. This is because, a more 

accurate second Born amplitude is obtained by treating 

exactly the first term of the sum over states in equation 

(2.27) and employing-closure to the rest of them. This 

procedure exactly treats the static potential of the atom 

and hence improves the large angle scattering. The UEBS 

results are also much superior to the present results since 

the UEBS takes into account all orders of perturbation.
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Similar is the modified Glauber approach. Here# the 

Glauber term is replaced by the second Born term to remove 
the divergence of the Glauber amplitude and to account for 
the absorption and polarization effects through fB . The 
UEBS approach goes a step further to take into account the 
Wallace correction to the Glauber amplitude. Hence# the 
UEBS result should give very satisfactory results.

In the ordinary EBS methods to remove the drawbacks 
of the second Glauber term# there has been an arbitrary 
diggression from the basic framework of the Glauber theory 
and use has been made of an altogether different apparatus 
i.e. that of the Bom theory# which has been criticised by 
Rosendorff (i960) • But in the HHOB method# the new Bom 
term has been evaluated using Glauber methods# but retaining 
average excitation energy parameter. Hence# the basic 
procedure stands valid in the HHGB method. Only the basic 
assumptions in HHOB make it good/for small angles of 
scattering; thus the overestimation at large angles.

From the foregoing discussion# it is clear that the 
HHOB approximation is reasonably good at small angles of 
scattering as is evident from the results displayed earlier* 
However# there is much scope for improvement which is 
attempted in a later part of the present study.

It will be interesting to formulate the HHOB 
approximation with respect to the static potentials of the
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target atom. The static potential V .(r) contains only

S"C
the incident electron co-ordinate and the absence of the 

target electron co-ordinates r.^# etc. reduces the compli

cations in the formulation. In the following section# the 

HHOB formulation, for the static potentials of target atoms 

is given. This type of analysis is employed in the later 

chapters of this thesis.

2.12 HHOB approximation for the static potentials of 

the target atoms s

study# 
(1963)

Consider the static potential V ^,(r). In the present 

the static potential given by Boniham and Strand

is chosen because it is of the form

V . (r) 
st

Sj
Y.
j

-X ,re 3 (2.65)

which is simple in view of analytical purposes and the

same formulation can be extended to different atoms with
changes only in Vf and X,.

3 3

Now the scattering amplitude in the HHOB approxima“ 
tion is given by (2*64). We have to evaluate the various 

terms using the static potential of the form (2.65).

The evaluation of the first Bom term is simple and 

straightforward# which gives#

fB. 2 2 ---i---j 2 2« q + xj
(2.66)
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Imaginary part of the second Born term is given by (2.57) •

f Im = f dPkjL “ fx.

Here# we are interested in the 0 ( ki ) term of the

imaginary part only because we are considering the DCS
through 0 ( ).
For the case of static potentials#

(2) A t _u = V,( P + P V0 (/ q-p /-P X)fi

For the potential (2.65)

(2)
U E 2 11

fi" (P2+P2^+^?) (/q-P/2+P2+^2)
^ 2* 3

so tha,t f Im
z 1

lr 'a 52
1 V V V ./ A In 2!p +b^ +Kv)+^Y

| j Yi yj y ———
■2 +b (f2 ' * 2

02+\2) (b +2§)

where

(2.67)

(2.68)

= (q2-\2 +^j2)2 + 4q2 ()32 +X±2)

*2qLk 2+-k,

and Y = [ 02+X2)2+ ^f \
Now# the 0 ( r~~- ) real part of the second Bom term

K±
^ f> '<£ 1rh hf Re^ =

where Vx V2 is given by (2-67) and stands for the principal 

value of the integral.
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Hence f Re, — 2 S -/ yT

2V i j i j7rk St (2.69)

Where ISt f
ooJ dP
Pz“P (P2+P2+ xf) C/q“P/2+P2+^f)

z 1. 2 J
the derivation of which is given in the appendix.

Now the 0 ( —-r— ) real part of the second Bom term
ki

f Re, 27T ^ / dP. / dP (P2+P2) -f- p-^g- V V 
k 2 —» a . z. d|3i Pz Pi 1 2

_ 2, 2 i i2 -ft k/^ J
—! S ^ I «>*-$»

(P2+P2+X2\2) z 1 i
(P -3) (P2+P2+N?) (/q-p2/ + P2+^2 )

Z ^ Zi ' H ' Z J

2 2 / isf- ^'d" /q-p/Jp2+^2
2^k±2 i j i j’ z J

0 Jr °0 1- X2 IP /HP / __ §- ------- --=-----------1 -*> (P _|3j (P2+P2+k2) (/q-p2/+p2+^2)
” n z Jz z 1

*1
2^ k

„ „ s ? vT/— [i o#x2 x? icJ
K 2 1 J 1 J di9 3 J 1 St

(2.70)

*2where I O/^t) is the same as the I- integral appearing in 
3 J 3

(2.6l) and I_. is defined above, st

Now the scattering amplitude for the static potential

is given as
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f B^+ f Im + f Rel + f Re2 (2.71)

In order to have a check of the above formulation/ 
the TCS values for the e-H elastic scattering is evaluated. 
For this purpose# the famous optical theorem is used. Hence#

TCS 

ki 

4 7\

4
*i f Im (q=0)

1
% k,

2 2 Yf f 
i j i j

2 s -vf yT.i j x j
T~2
J

dP
(P2+P 2+X.2) (P2+P2+X2)

Z 1 2 J
B2 +Xi /t>***/\*Ki

1
]S2+X2 x.=x.i

(2.72)

Using the above formula# the total cross section for e-H 
collision was calculated* For this# the static potential 
for hydrogen atom given by Cox and Bonham (1967) as follows 

was made use of;
3 -{V = S V 

ST i=l

»\ r-i

inhere = 0.0524

Y2 = 5.0360 
f3 = -4.0876

Xx = 1.9986 
K2 = 1.8954
X « 2.1161 3

It should be remembered that the cross sections so obtained 
using the static potentials will be the total elastic cross 
sections only. The results are displayed in table (2.4). It 

can be seen that with the increase in incident energy# the
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agreement of the present results with the compared data 
becomes closer.

In order to have a rough estimate of the differential
cross sections using the static potentials# the DCS values
are calculated using the scattering amplitude (2.7l)# and
the static potential given by Bonham and Strand (1963). In
the present calculation# only the 0 (—----) terms of theKi
second Bom approximation were used because this calculation 
was done in a casual way as a rough approximate. The results 
obtained for the incident energy of 100 eV are displayed in 
fig.2.3* It can be seen that in the large angle region# the 
results are quite reasonable whereas in the low angle region 
the present values are very low. This is precisely the 
expected behaviour because the static potentials are supposed 
to hold good only in the large angle region due to the 
absence of the absorption and polarisation effects which are 
all-important in the small angle region.

from the above analysis the following conclusions can 
be made.

(l) that the formulation of the HHOB approximation using 
static potentials is a success in view of the above 
mentioned results®

(2) that the validity of the static potentials used here
at the intermediate energy region is indirectly checked
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The above formulation using the static potentials 

will be used in a later chapter of the thesis*

In the foregoing sections of this chapter various 
theoretical formulations were discussed. After a brief 
scan through the recent developments# some of the popular 
approximations were taken up in detail# with more attention 
to the recently proposed IiHOB method which was discussed with 
respect to the e-H elastic scattering. This method was 
formulated using the static potentials of the target atoms 
and applications were made in the case of e-H elastic scatter
ing. With a clear understanding of the shortcomings of this 
method attempts were made to improve upon it# which will be 
discussed in a following chapter. In the next chapter# a 
modification of the GES method discussed in this chapter is 
studied.

(
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Table 2.3 - DCS for the e - H elastic scattering in the 

HHQB approximation (without exchange)»

/ E
100 ev 200 eV 400 SV 600 eV

5 4.09615 2.00516 1.14114 0.91077
10 2.21504 1.04366 0^60546 0.44541
20 0.83061 0.37904 0.17104 0.09803
30 0.38125 0.15783 0.05661 0.02863
40 0.20364 0.07553 0.02401 0.01149
50 0.12241 0.04213 0.01244 0.00580
60 0.08158 0.02644 0.00747 0.00343

Table 2.4 — Total cross sections for & - H elastic scattering
using the static potential of Hydrogen atom
within the framework of the HHOB approximation.

E tT Present a b c aeV results UEBS MGES. QM D7JSBA

100 10.20 7.19 7.56 7.68 7.40
200 5.10 4.27 4.37 4.38 4.34
300 3.40 3.10 3.14 3.14 3 .11
400 2.55 2.45 2.48 2.48 2.46

500 2.04 « 2.06 m.

600 1.70 1.77 «•*

700 1.46 - - 1.55
------------------------------ -----—

(a) Byron et al (1982)
(b) Chapter III of the present work
(c) Byron and. Joachain (l9Sl)
(a) Kingston and Walters (1980)
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