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CHAPTER-III

DYNAMICAL CONDUCTIVITY OF HIGH-TC 

SUPERCONDUCTORS BELOW Tc

In this, chapter, we present a model calculation of frequency and 

temperature dependent conductivity for temperatures below Tc. Calculation has 

been performed for cuprate superconductors with one and two conducting Cu-0 

layers per unit cell. However, our results are mainly discussed for YBCO which 

consists of two conducting layers per unit cell. To make a comparison between 

our calculations and experimental results, we introduced frequency and 

temperature dependent transport relaxation time and frequency dependent 

effective mass of electron in our calculation. Otur computed macroscopic 

conductivity as afunction of temperature in microwave frequency regime shows 

a very good agreement with experimental data. A good agreement between our 

calculated macroscopic conductivity as a frmction of frequency and 

experimental results has also been obtained. It is found that the peak in 

temperature dependent conductivity, in microwave regime, is the manifestation 

of temperature and frequency dependent transport relaxation time. Our 

calculation of microscopic conductivity gives the frequency of longitudinal 

collective excitation modes whose frequency, for an arbitrary value of wave 

vector, lies below the frequency gap. These observations are very similar to 

those reported prior by Fertig and Das Sarma.
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3.1 INTRODUCTION

Dynamical conductivity of cuprate superconductors (CS) in different 

frequency(co) and temperature(T) regimes has been a subject of imance interest, 

during past few years. Several experimental [1-9] as well as theoretical [10-17] 

studied have been performed on infra-red as well as microwave conductivity of 

CS above and below Tc,. Recent, experimental studies on c-axis transport in CS 

have attracted a great deal of interest [3,18,19]. Most of the CS are layered 

materials in which layers are weakly coupled along c-axis. Nature of c-axis 

dynamical conductivity differs dramatically from that of a-b plane dynamical 

conductivity. It has widely been acknowledged that the mechanism of charge 

transport along c-axis must be fundamentally different from the mechanism of 

charge transport in a-b plane. Most interesting part of the studies on c-axis 

©-dependent conductivity is the appearance of pseudogap (a gap like 

depression) in it. Several explanation have been put forward for pseudogap in 

c-axis m-dependent conductivity. Angle-resolved photoemission and time- 

resolved optical photomodulation data on underdoped CS suggest that some 

kind of gap may also be present (at least for parts of Fermi-surface) for charge 

excitations. The appearance of such a pseudogap above T„ appears to be a 

general phenomena in all CS. The pseudogap state of the underdoped CS 

represents some type of pairing above Tc which has been postulated to derived 

from nuclear spinon pairs [20], spin density wave states [21], or from some form 

of (2e) Cooper pairing which foreshadows the ultimate superconducting state. 

The a~b plane optical data have mainly been discussed within the frame-work of 

extended Drude model with ©-and T-dependent transport scattering rate t(©, T) 

and the, mass of a charge carrier. The a-b plane optical data on optimally doped 

CS reals that the real part of optical conductivity in low frequency regime 

(©<50 meV) exhibits (l/©)-dependence rather than (l/©2)-dependence behavior
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of Fermi-liquid. There appears to be a crossing point in optical conductivity of 

different doping concentration at special ©-value.

An analysis of a-b plane optical conductivity date on CS has also been 

presented in terms of two component picture of charge camera rather than the 

opening of a simple gap for charge carrier excitation below a well defined 

temperature. It has been shown that an analysis of a-b plane optical conductivity 

as a function of T and doping suggests that a dip in spectrum which separates 

the infra-red charge excitation spectrum into two components with distinct 

energy scales. The interpretation is found to be consistent with angle-resolved 

photoemission and electronic Raman spectra.

Recent measurements on a-b plane microwave and infra-red conductivity 

as a llmction of T below Tc exhibit peak in real part of conductivity. The peak is 

broad and it increases in magnitude and shifts to lower T-values on decreasing 

a). This peak has widely been interpreted to be due to the rapid reduction in the 

inelastic scattering rate below Tc [13]. It is envisaged that a gap opens up in the 

spectral density of underlying fluctuation spectrum, which is responsible for 

drastic reduction of scattering rate below Tc, as compared to the value above Tc. 

The scattering rate above Tc in CS depends almost linearly on T for ©->0 and it 

also exhibits linear ©-dependence for ©»T. The scattering above Tc in CS has 

been found much larger than that in conventional superconductors.

The aim of this chapter is to explain some or the features of the 

experimental date on ©-and T-dependent dynamical conductivity of CS below 

Tc using a simple model. A CS has seen modeled to be layered structure of 

Cu-O conducting layer (COCL) embedded into an anisotropic dielectric medium 

of back ground dielectric function, sa*(©) along a-b plane and sc(©) along
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c-axis. The ea&(©) and ec(©) are expressed in a phenomenological manner in 

terms of a phonon frequencies. A coupling between the COCL is taken into 

consideration for calculating polarization function of a COCL. Further, ©-and 

T-dependence of x(©, T) is taken in a phenomenological manner and nature of 

©-and T-dependent t(©, T) has been chosen to be same for both the cases of 

T>TC and T<TC. Also, ©-dependence of effective mass of an electron has been 

introduced in our model calculation, in order to obtain good agreement between 

our calculation and available experimental data. The formalism used and the 

calculations are reported in sec. 3.2. Our results along with experimental data 

are discussed in sec. 3.3. We also performed a calculation of macroscopic and 

microscopic dynamical conductivity just below Tc, using polarization function 

given by Sharma and Kulshrestha [31] to study collective excitations in 

superconducting superlattices. This calculation is reported in sec. 3.4.

3.2 FORMALISM AND CALCULATION

As is mentioned in chapter-II, response of a system to an electromagnetic 

field can be described in terms of Maxwell’s equation. Response of a 

longitudinal external field to a CS is described by Eq. (2.1). In this chapter, we 

confined to the response of CS to longitudinal field in long wavelength limit.

a(r, ®) - fs4(r, r", ©)c°(r", r', ©) d3r", (3.1)

where a(r, r', ©) and 0°(r, r', ©) are microscopic conductivity and macroscopic 

conductivity, respectively at frequency, ©. e'^r, r, ©) is the inverse of dielectric 

response function of s(r, r, ©) which is given by

s(r, r, ©) = 8j(©) 8(r - r) - JFI(r, r’, ©) v(r", r) d3r", (3.2)
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where FI(r, r, o) is the polarization -function in the absence of bare Coulomb 

electron-electron interaction

(3.3)

The ej(o>) represents saj(co) for interaction confined to a-b plane and it represents 

sc(e») for interaction along c-axis. As was mentioned in chapter-II, existing 

theoretical and experimental investigations on lattice vibrations in CS suggest 

that there exist several optical and acoustical phonon branches both along a-b 

plane as well as along c-axis [22]. Again, number of phonon branches and their 

frequencies along a-b plane differ from those along c-axis. A phenomenological 

expression for Si(co) is given by Eq. (2.7). For the sake of completeness, we 

rewrite Eq. (2.7) below,

The 8go and l are high frequency dielectric constant and number of phonon 

branches, respectively. The (coTi) is the frequency of the phonon branches. 

Yph is damping constant for lattice vibrations, which is chosen to be same for all 

phonon branches. We choose a-b plane along x-y plane and c-axis along z-axis 

to Fourier transform Eq. (3.1). We obtain

l [o)Li2-(o((o + iyph)]

Ej(CD> = {800//} 2 (3.4)
i=l [0Ti2 - ©(© + iyPh)]

o°p(q, kz, co, T)
<rp(q,kz,c»,T) = (3.5)

ap(q,kz,<o,T)
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where q and kz are wave vector components along a-b plane and oaxis, 

respectively. The subscript p represents number of COCL in a unit cell. For a 

CS consisting of one COCL per unit cell, we can write

o°i(q, kz, co, T) = {-ico !A%}[ei(q, kz, ©, T) - 1 ] (3.6)

To proceed further, we have to specify the nature of interaction between the 

layers. In case of CS, width of a layer consisting of charge carriers is much 

smaller as compared with separation between two adjusting layers. Therefore 

the possible coupling between the layers should be weak, which could allow a 

small charge transfer between the layers. For a weak coupling case, 

8i(q, k2, ©, T) is given by [23]

8i(q, k2, ©, T) = si(co) - {2ite2d/q} II(q, kz, oo, T)S(q, kz), (3.7)

where d is length of a unit cell along c-axis. The structure factor is defined as 

sinh(qd)
S(q, kz) =------------------------- (3.8)

cosh(qd) - cos(kzd)

For CS having two COCL per unit cell, we obtain 
or°2(q, kz, ©, T) =

<A(q, k2, ©, T)[2-{27re2d/qE,(©)}n(q, k2, ©, T){2S(q, k2) - S'(q, k2) - S"(q, k2)}]

(3.9)
e2(q, k2, co, T) = 8i(m) - [{47te2d /q}Il(q, k2, ©, T)S(q, kz)]

+ [{2ite2d/q}2/81(©)]n2(q, kz, ©, T){S2(q, k2) - S'(q, k2) S"(q, k2)}

(3.10)
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The S(q, kz) and S (q, kz) are complex conjugate of each other and S(q, kz) is 

defined by

sinh(qd) + exp(-ikzd)sinh(qdi)
S(q, kz) =----------------------------------------- (3.11)

cosh(qd) - cos(kzd)

where d = d - dj, di is separation between two COCLs in a unit cell of CS 

consisting of two COCL per unit cell. Eqs. (3.5) to (3.11) describe dynamical 

conductivity of a CS for all values of q, kz, co and T.

3.3 CONDUCTIVITY WITH WEEK CHARGE TRANSFER 

BETWEEN CONDUCTING LAYERS

Further evaluation of cr°p(q, kz, go, T) and crp(q, k2, co, T) depends on 

calculation of ri(q, kz, to, T). Our aim is to perform a model calculation which 

incorporates basic characteristics of CS in a simple manner. For the case of 

weak coupling between COCls in long wave length limit, Tl(q, kz, to, T) can be 

given by [24,25]

n(q, kz T)
(nq2/m*}[l+ {4cog2 sin2(kzd/2)/ e>P2 (qd)2}] [Xs+ Xs(o> / (o+iYn)] 

A(q, kz) - co(co+iys)

(3.12)
with

qvF2 m*Vo
A(q,kz)= ------ ------ [1+ ----------- ] (3.13)

dS(q, kz) 27th2
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where <op = {4ime2/m*}1/2 is usual plasma frequency, n is number of electron per 

unit volume. Xs(= n^n) and Xn(= n„/n) are superfluid and normal fluid fractions, 

respectively. yn and ys are inverse of scattering rate of normal and 

superconducting state, respectively. vF is 2D Fermi velocity, vo is attractive 

potential within a layer and m* is effective mass of an electron. cog is.measure of 

coupling between COCLs. It depends on overlap integral between two adjacent 

COCLs, length of a unit cell and the effective Bohr radius [25]. The tog does not 

appear in single particle energy but it appears in IT(q, kz. a>, T). Therefore it 

represents a kind of pseudogap whose presence in single particle excitation 

across Fermi surface has been suggested by recent angle-resolved photoemission 

and time-resolved optical modulation experiments [26,27],

Recent experiments on the measurements of surface resistance and 

optical properties of CS suggest that quasi-particle transport scattering rate, for 

both the cases of T>TC and T<TC, depends on to and T. Further it has been found 

that T-dependence of x(co, T) for T»cq is almost identical to the co-dependence 

of x(co, T) for (o»T. However, h/x is rapidly suppressed on decreasing T 

form above Tc to below Tc [13]. A simple expression which describes © and T 

dependence of y„/s reasonably well, can be given by [28]

r^<D,T) = an/!I^.T2+m2]1'2 (3.14)

where ctn/s and 3n/s are constants which involve electron-electron interaction in a 

CS. The cts is much smaller a„ because of rapid suppression of scattering 

processes below Tc. Further, we express as as a function of co < oote where <oc is 

the cut-off frequency [28]. The T-dependence of Xs (= lrX„) used in Eq. (3.12), 

is determined form experimental date on T-dependent penetration depth, A.(T).
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The Xs=A,2(0)/A?(T) has been used to deduce Xs from experimental data 

X2(0)A,2(T) versus T, using numerical method of polynomial interpolation.

3.3.1 RESULTS AND DISCUSSION

Main results of our calculation are given by Eqs. (3.5) to (3.12). Major 

part of our discussion is devoted to CS with two COCL per unit cell. We apply 

our calculation to YE^CusO?^ (YBCO) for which maximum experimental data 

is available in the existing literature. We divide this section into two parts. 

Macroscopic conductivity is discussed in first part, whereas discussion on 

microscopic conductivity are reported in second part.

3.3.1(a) Macroscopic Conductivity

The YBCO is modeled in terms of following values of parameter: 600=4.0, 

d=11.67 A0, di=d/3 and n=l*7xl021 cm"3, m*, which is used to compute ©p 

defined above, in general is ©-and T-dependent. Also, it has larger value in 

superconducting state as compared to that in normal state. We define 

m*= f(oo)m«, where me is a function of ©, The ©-dependence of f(©) will be 

discuss later. There exist several phonon branches in YBCO. However to 

compute dominant ©-dependent behavior of sj(©) in a simple manner, we 

incorporated contribution from optical phonons only. To compute e^(©), we 

took four optical phonon branches; ©u=67.48 meV, ©^=58.25 meV, ©L3=42.38 

meV, ©L4=29.62 meV, ©Ti=67.42 meV, ©T2=48.96 meV, ©13=35.94 meV and 

©T4=29.50 meV [22]. The frequency of three optical phonon branches which 

mainly contributes to sc(©) are as; ©u=52.43 meV, ©L2=25,78 meV, ©13=18.59 

meV, ©ti=46.48 meV, ©12=19.95 meV, ©Tr=13.50 meV [22]. As has been 

mentioned before, a*« ctj, and ps differs from J3n because of rapid suppression
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below T0. The co-dependence of as(©) has been determined by keeping in mind; 

(i) almost linear ©-dependence of ys and (ii) to obtain a best possible agreement 

between our calculation and experimental results on macroscopic conductivity. 

Existing theoretical and experimental work on ys(©) suggests that ys(oo) almost 

linearly depends on © for all values of oo, covering microwave to optical 

frequency regime.

Our interpolated values of Xs along a-b plane using experimental data on 
A.2(0)A.2(T) from Ref. 3 are plotted as a function of T/T0 in Fig. 3.1. The 

interpolation has been done using Langrange’s formula with Pade 

approximation for rational function interpolation (Fortran programme used for 

interpolation is given in the Appendix). As can be seen from the figure, 

T-dependent of Xs along a-b plane is different from that along c-axis. In order 

to compare our theoretical results with available experimental data, we 
computed RecF2°(q, kz, ©, T) (real part of cj2°(q, kz, ©, T)) as a function of T for 

three values of © for fixed qd and kzd and then as a function of © for fixed T, qd 

and kzd. To compute Retr2°(q, kz, ©, T) using Eq. (3.9) and (3.12), we require 

yn, ys, Xg and Vo, as is obvious from Eq.(3.12) and (3.13). As has been mentioned 

before, in order to obtain a good agreement between our calculation and 
experimental results, as and m* are to be taken ©-dependent. Keeping in mind 

the behavior of as and m* as a function of © deduced from experimental data on 

dynamical conductivity, it has been suggested that as and m* depend on © for 

©< ©c, where ©c is a cut-off frequency [28]. For computation of our results we 

have taken ©0= 0.15 meV for YBCO. For ©>©c, as and m* are taken to be 

independent of ©. We used a.pO.0045 and m7mc= 2.0 for ©>0.15 meV. To 

choose the ©-dependence of as and m* for ©< 0.15 meV, our guiding principle 

has been a best possible agreement between our calculation and the available 

experimental results on microwave dynamical conductivity. Our computed
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a/6(co) and m7me for a-h plane conduction are plotted as a function of © in 

Fig. 3.2. It can be seen from the figure that mVnie has a strong ©-dependence for 

© < 0.02 meV and it becomes almost independent of © for © close to 0.15 meV. 

The plotted mVme versus © can be fitted to an interpolated polynomial of degree 

six. We find that

m7me=0.580464xl02- 0.304771xl04© + 0.943226xl05 ©2 - 0.153507xl07 ©3 

+ 0.135645x 108 ©4 - 0.619095x 108 ©5 + 0.114341x 109 ©6

(3.15)

for ©<0.15 meV. The computed ocs versus © becomes almost independent of © 

approaching to 0.15 meV as can be seen from the figure. Interpolated 

polynomial which fits the as versus © curve is given by

af = 0.361835x10'4+ 0.566579xl04© - 0.186080 ©2 + 0.174238 ©3 

- 0.142348x101 ©4+ 0.413868X101 ©5

(3.16)

Our computed ys(©) as a function of © for different T-values (for T<TC) 

is plotted in Fig. 3.3. As can be seen be from the figure ys(©, T) depends almost 

linearly on © for different value of T. The behavior of our computed ys(©, T) 

shown in Fig. 3.3 agrees with the behavior of ys(©, T) deduced from the 

experimental data on dynamical conductivity [2-4],

Our computed Rec/’^q, ©, T), value of Reo°2(q, kz, ©, T) for a-b plane, 

is plotted as a function of T for three values of © (0.0122 meV, 0.0397 meV, 

0.144 meV) and qd-»0 in Fig. 3.4. The experimental data [2-4] has also been 

plotted in figure along with the theoretical results. For computation of our
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Fig. 3.2 Plot ofm*/me versus © (solid line curve) and a“b versus © 
(desh-desh curve) for ©£0.15 raeV.
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Fig. 3.3 Plot of ys versus © for T=0 K (solid line curve), T=20 K 
(desh- open circle curve), T=40 K (desh-dot curve), T=60 K (desh- 
desh curve) and T=80 K (broken line curve).
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Fig. 3.4 Plot of RecT°2o6(q, o, T) versus T for ©=0.0122 meV (solid
line theo. curve and square expt. data), © = 0 0397 meV (desh-desh, 
theo. curve and triangles expt. data) and ©=0.144 meV (desh-dot theo! 

curve and open circle expt. data) at qd=lxl0'7 Experimental data is 
taken from Ref. 4,3 and 2.



results, we used P/4- 0.4 meV/K, p/6 = 0.5 meV/K, <xnofc=0.55. Hie superscript 

ab is used to identify the value of parameters for a-h plane. The guiding 

principle to choose these values of parameters has been the best possible 

agreement between our calculations and experimental results. We found that 

T-dependence of Recr^tq, ©, T) comes from the T-dependence of ysa*(oo, T), 

yna6(©, T) and of Xs. It has further been found that the peak in our computed 

Recr02ai(q, go, T) cannot be seen on taking; (i) T-independent value of ysab and 

(ii) qvF close to |© + iyfb\, This suggest that to understand the experimentally 

observed peak in microwave conductivity (as a function of temperature below 

Tc) within the frame-work of Fermi-liquid theory, one has to take © and T 

dependent transport relaxation time. During the computation of our results, we 

found that; (i) height of peak in Rea°2ai(q, go, T) is basically governed by ©p and 

(ii) position and shape of peak is controlled by die choice of values of psa6 and 

asab. On increasing |3sa6 and keeping asab, fiaab, anab and m7m« unchanged, peak 

height increases and peak position shifts towards lower value of ©. We further 

found that the T-dependence of Reo^Cq, ©, T) for T<peak position remains 

almost unchanged whereas, Recr°2ai(q, ©, T) exhibits stronger T-dependence for 

T>peak position, on increasing $sab. As can be seen from Fig. 3.4, 

Re<r°2ai(q, ©, T) versus T decreases on increasing © when other parameters 

remains unchanged. The figure clearly shows that model calculation gives a very 

good agreement with experimental results for appropriate choice of parameters 

used in our calculation.

We computed Reo°2c(kz, ©, T), real part of o^fq, kz, ©, T) along oaxis 

as a function of T for ©=0.0397 meV and kzd«l (k^lxlO"6). Values of rest 

of die parameters are token as follows: psc=5000.0 meVK, OsC=0.00027, 

P„c=4000.0 meVK, Oi,c=0.11, ©g=98.85 meV and ©p=312.62 meV. For 

computation of Re02c°(kz, ©, T) as a function of T at one value of ©, we do not
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require a curve between as° and co. Our computed Reo°2c(kz, ©, T) is plotted as a 

function of T in Fig. 3.5, along with experimental results from Ref. 2. As can be 

seen from the figure our calculated Reo°2c(kz, co, T), gives a good agreement 

with experimental results. Agreement between theory and experiment is much 

better for T<peak position as compared that for T>peak position. It is to 

mentioned that in computation of Reor°2aj(q, co, T) and Recr°2c(kz, co, T)„ we 

used ©-dependent and T-independent m*. However, it has been suggested that a 

T-dependent m* can be used to improve further the agreement between theory 

and experiment [28], Therefore it is possible to obtain excellent agreement 

between our calculation and experimental data on microwave Recr^Cq, ©, T) 

and Recr°2c(kz, ©, T) by considering ©-and T-dependence of both m* and ys 

along with right choice of values of other parameters involved in our 

calculation. An important point which very clearly emerges from our work is ro

und T-dependence of ys and y„ in the form similar to our Eq. (3.14) is to be 

taken.

Our computed Rea°2a6(q, ©, T) as a function of © at T=20 K and 

qd=Txl0‘7 is plotted in Fig. 3.6, along with experimental data from Ref. 30. For 

computation of Reo\rf,(q, ©, T), we used asab and m7me given by Eq. (3.15) 

and (3.16) for ©<0.15 meV, whereas for ©>0.15 meV, we used asah-0.05 and 

m7mc=2.0. The values of the rest of the parameters are taken those used to 

compute RecT°2«i(q, ©, T) as a function of T. We compute Recj02„5(q, ©, T) 

versus © for the range of © for which experimental data has been reported [30], 

As is seen from the figure, our calculation shows a good agreement with 
experimental results for ©<400 cm"1. The small-small peaks appearing in lower 

range of © of experimental results belong to lattice vibrations. These peaks are 

also seen in our computed results on Reo°2ai(q, ©, T) as a function of ©. For 

larger value of © (©>400 cm"1) our computed results shows large discrepancy
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Fig. 3.5 Plot of Rea°2c(kz, ©, T) versus T for ©=0.0122 meV (solid
line curve), ©=0.0397 meV at kzd=lxl0'6 along with experimental 
data from Ref. 3.



o

Fig. 3.6 Plot of Rea°2ofc(q, ©, I) versus © at T=20 K and qd=lxl0'7 
along with experimental data from Ref. 30.



with experimental data. It has been suggested that for larger value of to 

(frequency is much larger than the frequency of lattice modes), transition 

between different bonds significantly contributes to co-dependent conductivity. 

As our calculation does not incorporate interband transition, large discrepancy 

between our calculation and experimental results is expected in a manner.

As can be seen from the Eq. (3.9), a2°(q, kz, co, T) is contributed by both 

intralayer as well as interlayer interactions, whereas Gi°(q, kz, co, T) is 

contributed by intralayer interactions only. We have computed intralayer 

contribution and interlayer contribution to Reo2°(q, k2, to, T) separately as a 

function of T at fixed co-values and then as a function of to at fixed value of T. 

We found that interlayer interaction contribution more for smaller value of to 

and T and their contribution is positive. However for qd«l and kzd«l, 

contribution from interlayer interactions to Rea2°(q, kz, co, T) is negligibly small 

as compared that from intralayer interactions. Because of this reason, behavior 

of our computed Reoia/,°(q, co, T) and Reoic°(kz, co, T), versus T at fixed co-value 

and as a function of co at fixed T-value, found very similar to that of 

Reo^Aq, T) and Reo2c°(kz, co, T), respectively. Reoi„i°(q, co, T) and 

Reoic°(kz, co, T) are the real parts of oi°(q, kz, co, T) along a-b plane and along 

oaXis, respectively. We therefore do not report our discussion on 
RectiaAq, T) andReofic°(kz, co, T).

3.3.1(b) Microscopic Conductivity

The most interesting part of our study of cr2(q, kz, co, T) and 

Oi(q, kz, co, T), which are given by Eq. (3.5), is the peaks inRecr2(q, kz, co, T). 

The peaks in Recr2(q, kz, co, T) corresponds to zeros of the e2(q, kz, co, T). 

Solution of s2(q, kz, co, T)=0 for co as a function of q, kz and T gives the
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frequency of collective excitation modes (plasmons) in the system. A collective 

state appears in CS at different frequency-values which are determined by q, kz 

and T. The frequency for collective state can also be determined by computing 

Im{-l/s2(q, kz, os, T)} as a function of T for different values of q, kz and go. Our 

computed In^-l/e^q, oo, T)} as a function of co is plotted in Fig. 3.7, at two 

values of T (40 K and 20 K) for qd=lxl0~7. The e^Cq, co, T) is the value of 

e2(q, kz, (o, T) along a-b plane. Figure-3.7 shows a broad peak for co close to cop. 

Both unpaired electron (represented by Xn) and paired electron (represented by 

Xs) contribute to collective state of CS. The broadness of peak in 1m 

{-l/e2oi(q, ©, T)} is the indication of large contribution from unpaired electrons 

along a-b plane. It is interesting to notice that change in temperature does affect 

much, the frequency of a collective state. Figure also shows a small and sharp 

peak in lower region of ©-values. This peak represents the collective state which 

basically belong to lattice vibrations (phonons). We also computed 

lm{-l/e2c(kz, co, T)} as a function of © for k^lxlfr6 and T=40 K. Similar to 

the case of Im('-l/g2fl6(q, ©, T)}, lm{-l/e2c(kz, ©, T)} also shows one broader and 

large peak which appears at © close to ©g and two smaller peaks appearing in 

the range of © for ©<20 meV. The large peak represents electronic collective 

excitations, whereas smaller peaks represents lattice vibration.

The collective state which corresponds to zeros of s2(q, kz, ©, T) can also 

be study by plotting Iml-l/e^q, ©, T)} as a function of T for fixed value of © 

and qd. Our computed lm{-l/s2a6(q, ©, T)} is plotted as a function of T for three 

different value of © (0.0122 meV, 0.0397 meV and 0.144 meV) in Fig. 3.8. A 

doublet in Jm^l/s^q, kz, ©, T)} versus T can be seen for T varying in the 

range of 82 K to 85 K. It is important to notice that the position of the peaks 

does not change while height of the peak increases on increasing ©.
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Fig. 3.7 Plot of -lm{l/e2«/>(ci, o>, T)} versus o> at T=20 K (desh-dot 
curve) and T=40 K (desh-desh curve) for qd=l x 10'7.
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Fig. 3.8 Plot of -Im{l/s2a&(q5 ©, T)} versus T for ©=0.0122 meV 
(eross-desh curve), co=0.0397 meV (desh-dot curve) and ©=0.144 
meV (desh-desh curve) at qd=lxl0‘7.



In order to study the propagation of an electronic collective excitations 

mode along an arbitrary direction, we computed the zeros of e2(q, kz, co, T) as a 

function of qd for three values of kzd (0.01 0.05 and 0.1) at T= 20 K, taking 

ei = 4.0 (independent of a>). Our computed results are plottted in Fig. 3.9. As can 

be seen from figure frequency of a collective excitation mode is smaller than 

superconducting gap (2A= 20.895 meV) and it exhibits a linear dependence on 

qd. The general behavior of frequency of our computed collective excitation 

mode as a function of wave vector is very similar to the behavior of collective 

mode spectrum in asuperconducting superlattice, which has been reported by 

Fertig and Das Same [23]. On looking at Fig. 3.7 and 3.9, we notice that to 

observe soft collective excitation mode, which are plotted in Fig. 3.9, both qd 

and kjd should be non-zero and comparable with each other. For qd-»0 and 

kzd-»0, these collective excitation modes disappears because of pair breaking 

effect and a collective state appears at frequency close to cop.

3.4 CONDUCTIVITY WHEN NO CHARGE TRANSFER 
BETWEEN CONDUCTING LAYERS

In order to study collective excitations for temperature just below T0, 

Sharma and Kulshreshtha [31] calculated polarizability for CS by modelling 

them as layered electron gas (LEG), where charge transfer between the 
conducting layers is not allowed. The P(q, co, T) [= (2rce2/q) II(q, co, T))} is 

given by [31,32]

A co A (Dp2
P(q, co, T)- (2/qa) [ 1- {----------- (1......... )}] +----------------------- --,

2T qvF 2T Aq2(4A2-co2)1/2 - co2

(3.17)
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Fig. 3.9 Plot of frequency (<d) of collective excitation modes versus qd at 
kzd=0.01 (solid-line curve). kzd=0.05 (desh-desh curve) and kzd=0.1 
(desh-dot curve) at T=20 K.



where a = lt2£o/m*e2 is the effective Bohr radius, a>p = (2jtn2e2q/m*£0) is the 

usual plasma frequency of a 2D electron gas and n2 is number of electrons per 

unit area. The parameter A is defined to be

A = (n/^Xv/mA2). (3.18)

(n,/n2) represents the fraction of superfluid n2=ns-+^ia is number of 

superconducting electrons which varies with Tc and nn is number of normal 

electrons per unit area. An emperical relation based on the two-fluid model has 

been used to describe the T-dependence of (ns/n2) [32]

ns/n2 = [l-(T/Tc)4]. (3.19)

The T-dependence of A is taken from the experimental results of Ekino and 

Akimistu [33]. We used the emperical relation

A/Ao
T/Tc=--------------------- (3.20)

tanh4(A/Ao)

which reproduces the experimental results [33] for Atp 3kpTc. Eq. (3.17) has two 

terms on right hand side. First term represents the normal electrons, whereas 

second term is contributed by paired electrons (superelectrons). In absence of 

impurity scattering, single particle excitations in normal fluid causes damping of 

collective excitations of paired electrons. Damping of collective excitations of 

paired electrons also oceured due to electron impurity scattering. The impurity 

scattering is incorporated in a phenomenological manner in our calculation by 
replacing co2 by co(co+iy), where y is single particle damping.
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Strictly speaking Eq. (3.17) is valid in the frequency range 

■ho)<2A<qvF<kpT<kpTc, where q, A. vF, kp and T are the components of the wave 

vector in the a-b plane, the binding energy of Cooper-pair, Fermi velocity, 

Boltzman’s constant and temperature, respectively. We calculated 

ai°(q, kz, cd, T), cy2°(q, kz, co, T), ai(q, kz, cd, T) and cr2(q, kz, co, T) using 

Eq. (3.17) in Eqs. (3.5) to (3.10). 3h order to calculate dynamical conductivity of 

a conducting layer in our model system, we performed averaging over kz in 

following manner

Jt/d
p(q, co, T) = (3J2% jcjp(q, kz, co, T) dkz

-jc/d
(3.21)

Further averaging can be made over q to obtain a°p( co, T) and crp( co, T).

The inverse transport relaxation time (ys) can approximately be estimated 

using [34]

© a p(co, T)
Ys = —-------------- (3.22)

a"p(co, T)

and surface impedance can be obtain from [35]

im i a
Z(co,T)= I---------------- | , (3.23)

47TCTp(C0, T)

where a p(q, co, T) and cr p( co, T) are the real and imaginary part of crp(co, T).
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3.4.1 RESULTS AND DISCUSSION

We computed our results of this section for La2_xSrxCu04 by modelling it 

in terms of following values of parameters: m*=3.5me, n2=1.277xl014 cm'2, 

d=13.25 A0 and vp= 0.9414xl07 cm s'1. Figure 3.10 shows plot of T) and 

a"i(co, T) as a function of © for both the cases of with and witout including 

impurity scattering It is seen from the figure that on inclusion of impurity 

scattering the peak height of c»'(©, T) drastically reduces by an order of 103 and 

becomes much broader as compared to that in o'i(©, T) without impunity 

scattering The general behavior of cr?i(©, T), including impurity scattering as a 

function of © is very similar to that of Recn^q, co, T) versus co, which has been 

computed in sec. 3.3. Whereas it is almost insignificant for frequencies which 

are not close to pasma frequency. Also it can be seen that die two curves of the 

cr'hCco) versus co (i.e. curves with and without including impurity scattering) 

coincide with each other. The position of peak g'i(©, T) represents plasma 

frequency of our model La2.xSrxCu04 at T/Tc =0.997 (just below Tc).

Figure 3.11 shows the plot of ©(ay<5"i) versus to for T/To=0.997. The 

co(<y'i/or"i) yields an approximate estimate of ys. It can be seen from figure that 

©(o'i/cy"i) exhibits almost linear ©-dependence for ©<0.8 meV. As has been 

discussed in sec. 3.3, linear ©-dependence of ys is characteristics of quasi-two 

dimensional charge carriers which exist in a CS. This justifies our choice of 

©-dependence of ys which is givn by Eq. (3.14). Our computed Rs(©) (real part 

of Z(©)) is plotted as a function of © at T/Tc =0.997 in Fig. 3.12 for both the 

cases of with and without impurity scattering. The Rs(©) shows a sudden change 

at frequencies near to plasma frequency. The sudden change in Rs(©) represents 

the collective excitation state of system, which exists in our model system just 

below Tc. The change becomes smoother on inclusion of impurity scattering in
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Fig. 3.10 Plot of c'jC®, T) and o"i(®, T) versus © at T/Tc=0.997. 
Without impurity scattering: large desh-desh curve (cr'i) and solid line
curve With impurity scattering: inset curve (c'0 and small desh 
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Fig. 3.12 Plot of surface resistance (Rs) versus © at T/Tc =0.997. With 
impurity scattering (desh-desh curve) and without impurity scattering 
scattering (solid line curve).



c?i(to, T). Also, Rs(co) almost linearly increases with to for co>0.8 meV, which 

agree with the work of Chang et al.[35]. The aim of calculation presented in this 

section has been to calculate dynamical conductivity by making use of our 

earlier model calculation of polarizability and to show that both types of 

polarizabilities result in a similar conclusion.
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