


6. Real Time Control of Ship & Aircrafts
-Historical perspective

In terms of the real time control application of evolutionary algorithm are concerned, 

there are difficulties with pure Genetic Algorithm implementation, as we discussed in the 

previous chapters. Hence, we need to embed the evolutionary algorithm to any of the existing 

intelligent control methods, which in turn will improve the performance of the existing 

intelligent controller. This intelligent controller might have been designed based on the artificial 

neural network or fuzzy logic or both. We have discussed various real time applications the 

previous chapter. Here I am going to discuss the various methods implemented by researchers 

across the world to implement intelligent controllers for cargo ship steering and fault tolerant 

aircraft related problems.

6.1 Ship Steering Problem

Although the history of ships and sailing is spread over centuries, the concepts of 
autopilots are not more than 75 years old. Minorsky’s [189] work on automatic ship steering was 

one of the principal contributions to the early literature in the general field of automatic control. 
In the same year, Sperry [,90] introduced the first automatic steering control system for ships. 

These early autopilots were purely mechanical in construction and they provided a very simple 

steering action, the rudder demand being proportional to the heading error. To prevent oscillatory 

behavior, a low gain was selected which rendered the device useful only in the course keeping 

mode, where there was no significant desire for a high degree of accuracy in the response. When 

proportional-derivative-integral (PID) controllers became commercially available, they greatly 

improved the performance and until the 1980s almost all makes of autopilots were based on 

these controllers. The main disadvantage of the PID controllers is that they required manual 

adjustments to compensate for wind, waves, currents, speed, trim, draught and water depth. 

These adjustments are time consuming and tedious and are usually not optimal for the ship in 

question. However, the capability for manual adjustments of the parameters of the controller is
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added to compensate for disturbances acting upon the ship. Once suitable controller parameters 

are found manually, the controller will generally work well for small variations in the operating 

conditions. For large variations, however, the parameters of the autopilot must be continually 

modified. Such continual adjustments are necessary because the dynamics of a ship vary with, 

for example, speed, trim, and loading. Also, it is useful to change the autopilot control law 

parameters when the ship is exposed to large disturbances resulting from changes in the wind, 

waves, current, and water depth. Manual adjustment of the controller parameters is often a 

burden on the crew. Moreover, poor adjustment may result from human error. As a result, it is of 

great interest to have a method for automatically adjusting or modifying the underlying 

controller.

Ship dynamics are obtained by applying Newton’s laws of motion to the ship [191]. For 

very large ships, the motion in the vertical plane may be neglected since the “bobbing” or 

“bouncing” effects of the ship are small for large vessels,

6.1.1 Artificial Neural Network

Artificial neural networks (ANNs) in an early stage of development offered some 

advantages over other forms of control for ship steering. This is because of their ability to handle 

variations of plant dynamics without the element of unpredictability that may cause concern 
when adaptive control is considered for safety-critical applications. Witt et al [192] reported that a 

neuro-controller can improve the profit margin of a vessel and contribute to the safety of the 

vessel by: (a) reducing manning levels required on the bridge, (b) achieving a fuel saving by 

allowing the vessel to stay on course with little deviation and (c) providing accurate steering in 

an environment of increased traffic density and close proximity of obstacles. In an early stage of 

the neural network based implementation for ship steering control almost all have made use of 

multi-layered perceptron and have trained the networks by making use of the well known Back- 

Propagation learning algorithm.
Unar et al [19j,194], implemented the ship problem at different speed with the ANN, using 

multi-layer perceptron as well as radial basis functions (RBFs).
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The RBF network is powerful feed forward neural network architecture. The increasing 

popularity of RBF networks is because of their distinctive properties of best approximation, 

simple network structure and efficient learning procedure. The only disadvantage is that they 

require significantly more nodes than MLP networks for comparable performance levels. This 

affects the amount of computation required for the network to produce a classification.

An RBF network consists of three entirely different layers. The first layer, or the input 

layer, consists of a number of units clamped to the input vector. The hidden layer is composed of 

units, each having an overall response function, usually a Gaussian as below:

where, x is the input vector, c, is the centre of the kth RBF and <J2k is its variance. The centers can 

be either fixed before the training of the network or learned through the training of the network. 

The third layer computes the output function for each class as follows:

Where, M is the number of RBFs and W* is the weight of each RBF. A number of 

approaches to training RBF networks are available in the literature. Most of these can be divided 

in to two stages. The first stage involves the determination of an appropriate set of RBF centers 

and widths and the second stage deals with the determination of the connection weights from the 

hidden layer to the output layer. Indeed, the selection of the RBF centers is the most crucial 

problem in designing the RBF network. These should be located according to the demands of the 

system to be modeled. A number of different approaches are available for the selection of 
appropriate RBF centers. Orthogonal least square method developed by Chen et al [195] is widely 

used. In the context of a neural network, the OLS learning procedure chooses the RBF centers ch 

C2, .... Cm as a subset of the training data vectors pi, P2,-., Pn, where M<N. The centers are 

determined one by one in a well-defined manner, until a network of adequate performance is 

constructed. At each step of the procedure, the increment to the explained variance of the desired 

response is maximized. In this way, the OLS learning procedure generally produces an RBF

gk (x) — exp ...(6.1)

M

m=Hwk-gk{x) ...(6.2)
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network whose hidden layer is smaller than that of an RBF network with randomly selected 

centers.

The results of the simulations by Unar et al [193,194] demonstrated that the RBF 

networks are potentially useful for ship steering control systems. They yield satisfactory 

performance even when MLP networks fail. Moreover, their fast training time compare the MLP 

makes them attractive for the application. The only disadvantage is that they require more 

neurons in the hidden layer as compared to MLP networks. To minimize the number of neurons 

in the hidden layer, the data length should not be too large. The referred simulations do not 

include the effect of wind disturbances and other noise effects.

In the next chapter, I have simulated the results of the MLP as well as RBF networks for 

the purpose of comparison.

6.1.2 Fuzzy Controller

Autopilots used for ship steering seek to achieve a smooth response by appropriately 

actuating the rudder to steer the ship. The presence of unwanted oscillations in the ship heading 

results in loss of fuel efficiency and a less comfortable ride. While such oscillations, which are 

closed periodic orbits in the state plane, sometimes called “limit cycles,” result from certain 

inherent nonlinearities in the control loop, it is sometimes possible to carefully construct a 

controller so that such undesirable behavior is avoided. In order to have proper implementation, 

we need to use the describing function method for the prediction of the existence, frequency, 
amplitude, and stability of limit cycles. [196]

Above this if any limit cycles exist in the system and the basic assumptions of the system 

are satisfied, then the amplitude and frequency of the limit cycles can be predicted by solving the 

harmonic balance equation.

Designing the simple fuzzy controller as shown in the figure 2.1, using a nonlinear model 

for a ship [8], the controller surface shows that there is nothing mystical about the fuzzy 

controller! It is simply a static nonlinear map. For real-world applications most often the surface 

should have been shaped by the rules to have interesting nonlinearities.
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There are several design concerns that one encounters when constructing a fuzzy 

controller. First, it is generally important to have a very good understanding of the control 

problem, including the plant dynamics and closed-loop specifications. Second, it is important to 

construct the rule base very carefully. Third, for practical applications there are problems with 

controller complexity since the number of rules used grows exponentially with the number of 

inputs to the controller, if all possible combinations of rules are used. As with conventional 

controllers there are always concerns about the effects of disturbances and noise on, for example, 

tracking error. Just because it is a fuzzy controller does not mean that it is automatically a 

“robust” controller. Analysis of robustness properties, along with stability, steady state tracking 

error, and limit cycles can be quite important for some applications. As mentioned above, since 

the fuzzy controller is a nonlinear controller, the current methods in nonlinear analysis apply to 

fuzzy control systems also to find out how to perform stability analysis of fuzzy control systems. 

In short one can say that the main advantage of fuzzy control is that it provides a heuristic 

approach to nonlinear controller construction.

While the fuzzy control has emerged as an alternative to some conventional control 

schemes since it has shown success in many application areas there are several drawbacks to this 

approach: a) the design of fuzzy controllers is usually performed in an ad hoc manner where it is 

hard to justify the choice of some controller parameters (e.g., the membership functions), and b) 

the fuzzy controller constructed for the nominal plant may later perform inadequately if 

significant and unpredictable plant parameter variations occur. This is the reason that the 

researchers opted for learning control systems.

The use of a "learning control system" to maintain adequate performance of a cargo ship 

autopilot when there are process disturbances or variations as mentioned above. In general, a 

"learning system" possesses the capability to improve its performance over time by interaction 

with its environment. A "learning control system" is required to be designed so that its "learning 

controller" has the ability to improve the performance of the closed loop system by generating 

command inputs to the plant and utilizing feedback information from the plant. The learning 

control algorithms are based on a direct fuzzy controller.
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In general, a "fuzzy controller" utilizes a fuzzy system to capture a human expert's 

knowledge about how to control a process for use in a computer algorithm. Often, the human 

expert's knowledge must be known a priori for fuzzy controller design. However, the learning 

control algorithm automatically generates the fuzzy controller’s knowledge base on-line as new 

information on how to control the ship is gathered. The “fuzzy model reference learning 
controller” (FMRLC) is a (direct) model reference adaptive controller [!97]. The term “learning” 

is used as opposed to “adaptive” to distinguish it from the approach to the conventional model 

reference adaptive controller for linear systems with unknown plant parameters. In particular, the 

distinction is drawn since the FMRLC will tune and to some extent remember the values that it 

had tuned in the past, while the conventional approaches for linear systems simply continue to 

tune the controller parameters. Hence, for some applications when a properly designed FMRLC 

returns to a familiar operating condition, it will already know how to control for that condition. 

Many past conventional adaptive control techniques for linear systems would have to retune each 

time a new operating condition is encountered.

Layne et al [I98] presented the architecture of FMRLC and Shah et al [,99] implemented 

the same and found that the FMRLC can automatically synthesize a fuzzy controller for the 

cargo ship and later tune it if there are significant disturbances/process variations.

The "fuzzy model reference learning controller" (FMRLC) and other adaptive fuzzy 

control approaches seek to address these issues, they primarily focus on improving existing 

learning control approaches or introducing new ones. A comparative analysis of the FMRLC 

and conventional "model reference adaptive control" (MRAC) for a ship steering application 

shows that the FMRLC has several potential advantages over MRAC including a) improved 

convergence rates, b) use of less control energy, c) enhanced disturbance rejection properties, 

and d) lack of dependence on a mathematical model.

The simulation results of the FMRLC are found to be much better compared to the earlier 

approaches but they are little complex. In the next chapter implementation of the FMRLC and 

GA — FMRLC for the ship steering application is carried out.
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6.2 Aircrafts maneuvering & control

Aircraft maneuvering and control problems are of the similar nature as that of ship 

steering except that time available for pilot to respond in critical situation is limited as well as 

there are virtually an unlimited number of possible failures that can occur on sophisticated 

modem aircrafts. While preplanned pilot executed response procedures have been developed for 

certain anticipated failures, especially catastrophic and high probability failures, certain 

—unanticipated events can occur that complicate successful failure accommodation. Accident 
Investigations sometimes find that even with some of the most severe unanticipated failures, 

there was a way in which aircraft could have been saved, if the pilot had taken proper action in a 

timely fashion. Because the time frame during the catastrophic event is typically short, given the 

level of stress and confusion during these incidents, it is understandable that pilot may not find 

the solution in time to save the aircraft.

Besides the increased usage of control systems, the requirements for a control system 

increase considerably, resulting in more and more complex control systems. For designing a 

classical and modem control system, it is necessary to have an accurate mathematical model of 

the .plant, which is to be controlled. In such applications however this is impossible or very 

; difficult to achieve-this due to complicated dynamics, severe nonlinearity and / or influence of 

environmental conditions. Modeling difficulties like these have forced researchers to use 

simplified or linearized models. However when required operation range is large this model can 

relax a good nonlinearity and then degraded control performance. Then nonlinear control comes 

into play. As all the reality aspects are not taken into account in this model and some parameters 

of the system are poorly modeled, we speaks thus of the uncertain nonlinear model. [199]

The high performance of the first jet aircraft stepped ahead of stability and control 
technology [200], as did the first supersonic flight, where the difference between success and 

failure was getting the elevators to work. In terms of hypersonic flight control design, the 

challenges generated are two fold. The first relates to the flight constraints of a highly nonlinear 

time-varying vehicle performance and the second is due to the degree of uncertainty in the 

performance of airframe, propulsive and control components. The common theme amongst
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developments in control theory is therefore the optimal design of a robust controller. Another 
recognized feature is the integration of guidance and control [201], due to the coupling of airframe 

and propulsion systems and the sensitivity of both to the flight conditions and vehicle attitude.

6.2.1 Fuzzy Control

Fuzzy control is seemingly well suited to the aircraft control problem due its robustness 

to variations in the vehicle performance, and the capability of describing a nonlinear control law 

[74]. There have been many proposals for the application of fuzzy logic based guidance and 

control, including conventional proportional derivative controlsadaptive control, sliding mode 
control, hierarchical systems, optimal control, and fuzzy gain scheduling [202]. There have been 

limited studies on the application of fuzzy control to flight control. Christian [203] reported the 

application of a fuzzy logic controller for the regulation of the acceleration of a hypersonic 

interceptor. A linearized longitudinal dynamics model was used with the aerodynamic 

coefficients defined by nonlinear functions of angle of attack, providing an unstable airframe. 

The primary objective of the study was the design of a broad range fuzzy controller to express 

the thrust level as a function of acceleration error and pitch rate. It appears that the rules were 

heuristically determined. That the controller was so effective is probably a reflection of the 

simple system model used in the analysis. With the addition of an adaptive scheme based on 

changing the membership functions, the acceleration response showed considerable robustness to 

large changes in the aerodynamic parameters.

Zhou et al. [204] presented an application of fuzzy controller for the purpose of providing 

longitudinal stability and attitude command tracking. The flight characteristics were defined 

through the longitudinal linearized equations of motion about a horizontal reference flight 

condition, with elevator deflection angle as the control variable. Four reference flight conditions 

were used, the two hypersonic conditions possessing short period modes which were 

dynamically unstable. Angle of attack and pitch rate were used as inputs, and the rule base was 

developed according to the behavior of a human pilot. Simulated angle of attack responses 

depicted a favorable comparison between the fuzzy controller and standard linear proportional- 

derivative feedback control system, and showed the robustness of the fuzzy controller to 

variations in the flight condition. The superiority of the fuzzy control law in this case is
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attributable to the non-linear control law which was generated by localized manipulation of the 

control surface.

In the most of the existing fuzzy systems, the designing problems can be considered as 

approximation problems of functions. Before a type of fuzzy systems is put into application, it is 

helpful if we know clearly the basic mechanism of how they approximate a desired function. 

Theoretically fuzzy systems are capable of approximating any real continuous function on a 
compact set of arbitrary accuracy. [20S] In addition adaptive control theory has evolved as a 

powerful methodology for designing feedback controller for nonlinear systems with parametric 

uncertainties and/or external disturbance. So advanced fuzzy control must be adaptive.

There are two general approaches for the adaptive control, in the first approach the 

“adaptation mechanism” observes the signals from the control system and adapts the parameters 

of the controller to maintain performance even if there are changes in the plant. Sometimes, the 

desired performancejs characterized with a “reference model,” and the controller then seeks to 

make the closed-loop system behave „as the reference model would even if the plant changes. 

This is called “model reference adaptive control”[197].

. Second general ^approach to adaptive control, uses an on-line system identification 

method to estimate the parameters of the plant and a “controller designer” module to 

subsequently specify the parameters of the controller. If the plant parameters change, the 

identifier will provide estimates of these and the controller designer will subsequently tune the 

controller. It is inherently assumed that we are certain that the estimated plant parameters are 

equivalent to the actual ones at all times. Then if the controller designer can specify a controller 

for each set of plant parameter estimates, it will succeed in controlling the plant. The overall 

approach is called “indirect adaptive control” since we tune the controller indirectly by first 

estimating the plant parameters, as opposed to direct adaptive control, where the controller 

parameters are estimated directly without first identifying the plant parameters.
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6.2.2 Genetic Algorithm based approach

As mentioned earlier, the basis of the control design approach is to use simulated flight 

responses to guide a parameter optimization procedure. The basic structure of the controllers is 

predetermined, and the free parameters are then optimized by a genetic algorithm, so that the 

simulated flight responses for a variety of initial conditions display desirable properties, such as 

long term stability, fast settling, disturbance rejection and broad range performance.

The genetic algorithm is a zero-order search procedure, where the only information used 

to direct the search process is a performance measure, referred to as the objective function, 

computed from a set of simulations. Though the design procedure is essentially a brute force 

approach, it has been configured, in terms of the controller structure, the search algorithm, and 

the adaptive performance measure, to moderate the computation time required.

There are a number of advantages to designing the controller with an optimization tool 

and a performance metric abstracted from the randomly perturbed flight responses. Firstly, it 

relieves a common issue faced by many control design approaches, namely representing the 

vehicle mathematically in an appropriate form. The accuracy of the model is a function of 

available computing power and the knowledge of the vehicle physical properties and the 

processes governing the performance, rather than being, bound by the structure of the control 

design procedure. In conventional design theories the system is typically assumed to be LTI and, 

in the case of robust control theory, uncertainty added to the system to account for system 

nonlinearities and variations with time. Representation of performance uncertainty is critical for 

the development of a robust control law. Much work in robust control theory is directed towards 

the development of compatible structured and unstructured uncertainty models. When the 

simulated flight responses are used, the inclusion of parametric uncertainty can describe the 

physical process leading to the variations in the vehicle performance, through the inclusion of 

appropriate simulation models. Another advantage of the design approach is that the control law 

development is linked directly to the time history responses, allowing stability and performance 

measures to be easily quantified.
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The genetic algorithm does not need the components of the objective function to be the 

same throughout the design. They too can evolve with the controller design so that as the 

controlled flight responses improve, greater demands can be placed on the performance of the 

controller. Though the genetic algorithm is noted for its global search capabilities, it is also 

extremely opportunistic. Considerable care is therefore needed when defining objective 

functions, and when combining multiple and possibly conflicting design objectives. However, 

this is a feature which must be addressed in all optimal control theories. In problems where non 

commensurate objectives are unavoidable, evolutionary algorithms are considered to be 

particularly suited since a set of-solutions are processed in parallel. One means of dealing with 
such problems is to use a multi-objective genetic algorithm [179, 206] to obtain Pareto-optimal 

solutions. One potential problem in an iterative design approach is the “curse of dimensionality”.

As the number of design parameters increases there may be an exponential increase in the 

effort required to arrive at the solution. Though this can be mitigated by providing some structure 

to the design, it is important that a large number of design parameters can be dealt with. 

Evolutionary based search procedures are readily applied to problems of high dimension, and are 

able to rapidly extract useful designs in spite of the size of the problem. If the absolute global 

minimum or maximum of a complex multi-modal search space is required, then the computing 

effort remains considerable; However there are few algorithms capable of performing well on 

such functions and the notion of an efficient search procedure is still being established.

The focus of this effort is the design of an inner-loop attitude controller which would 

offer closed-loop vehicle stability, subject to system uncertainties, broad range performance 

variations, disturbances, sensor noise, and severe operational constraints. In the chapter that 

follow, a detailed description of the major areas of the research is provided.

6.2.3 Adaptive Critic Network

Recently, Kampmen et al [207] proposed a newer method for the control of aircraft 

dynamics. In that approach they have separated the normal action network and critical network 

and both are implemented using a separate reinforcement learning controller. This separation of
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control has the advantage that it is much easier for the individual controllers to learn the correct 

behavior, because the appropriate control mechanism is automatically chosen. If the control 

channels are not separated, the controller might learn to regulate the airspeed by changing the 

elevator deflection, because a change in elevator deflection might have a more immediate effect 

on the airspeed then a change in throttle setting. The reward function could be shaped in such a 

way that this effect is reduced, but there will still be extra errors in the controller as a 

consequence of the cross-coupling.

The disadvantage of using separate channels can be explained using the same argument 

as above. It is not possible to adapt the control behavior such that there is a switch to a different 

control mechanism, for example in the case of a complete failure of a specific control 

mechanism. A single reinforcement learning controller for the two control channels that would 

be able to perform this switch between control mechanisms is definitely possible given enough 

training and this should be looked at in further research.

Tangent hyperbolic functions are used to implement the nonlinear properties in the 

network. ANN with MLP is trained using back propagation algorithm with constant as well as 

- variable learning rate parameters. The simulation results shown are quite comparable with that of 

Fuzzy controller discussed earlier but the computational complexity has been increased a lot and 

also the simulation time required is also comparatively larger.

6.3 Summary

Since the early implementation of the ship steering control, the researches have tried and 

implemented various approaches to design proper control strategies, which is true in case of 

aircraft as well as helicopter related problems. Every time new methods are suggested there are 

improvements in either the performance or the structure or complexity in one or other ways. But 

achieving the real time performance are concerned still it has a long way. In the next chapter, I 

have tried to answer many of the questions by embedding evolutionary methods for the problems 

on the hand.
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