List	of	Fig	ures
------	----	-----	------

Figure 1.1 Anatomical organization of the pancreas depicting exocrine and endocrine sections with
various cell types
Figure 1.2 Mechanism of glucose-stimulated insulin secretion in pancreatic islet β cells
Figure 1.3 Pancreatic organogenesis demonstrating islet cell development
Figure 1.4 Key transcription factors involved in different steps of Pancreatic islet β -cell formation
Figure 1.5 Risk Factors associated with the pathogenesis of Diabetes Mellitus
Figure 1.6 Mechanism of β cell destruction in T1DM
Figure 1.7 Different cell sources for islet neogenesis
Figure 1.8 Small molecules induced MSC differentiation to β cells
Figure 1.9 Properties of Enicostemma Littorale, Swertisin and swertiamarin (Our Lab Reports)35
Figure 1.10 Insulin signaling pathway
Figure 1.11 Physiological insulin resistance and insulin dependent tissues
Figure 1.12 Effects of various myokines on different organs
Figure 1.13 Site of action for glucose-lowering medications
Figure 1.14 Glucose reabsorption by SGLT1/2 through a proximal tubule epithelial cell in nephron
Figure 1.15 Mechanism of action of SGLT2 inhibitors
Figure 3.1 I-TASSER protocol for protein structure and function prediction
Figure 3.2 In silico plan of work for molecular docking of swertisin
Figure 3.3 In vitro plan of work for Sodium dependent glucose uptake
Figure 3.4 Figure showing schematic <i>in vivo</i> plan of work72
Figure 3.5 Distribution of predicted targets of swertisin in different protein classes by SwissTarget
Prediction tool
Figure 3.6 Graphical representation of pair-wise alignment of human SGLT2 structure against
3DH4
Figure 3.7 Graphical representation of pair-wise alignment of human SGLT2 structure against
2QX2
Figure 3.8 Figure showing ligand binding site residues of the PDB Hit used for template threading
of hSGLT2 by I-TASSER

Figure 3.9 Computationally modelled human SGLT2 structure using I-TASSER 89 Figure 3.11 Swertisin interacts with key residues within the active site of hSGLT2 by molecular Figure 3.12 3D and 2D diagram of molecular docking interaction of Canagliflozin-hSGLT2....92 Figure 3.13 Molecular Dynamics Simulations of SGLT2 in apo and inhibitor bound complexes, computing the deviation (nm) versus function of time (100 ns). RMSD of the protein Ca backbone Figure 3.14 Molecular Dynamics Simulations of SGLT2 in apo and inhibitor bound complexes, computing the residue-wise RMSF deviations (nm). RMSF deviation plot of the protein Ca backbone atoms of SGLT2 (black), SGLT2-canagliflozin (red), and SGLT2-swertisin (green). 95 Figure 3.15 Molecular Dynamics Simulations of SGLT2 in apo and inhibitor bound complexes, computing the radius of gyration (nm) versus function of time (100 ns). RoG of the protein Ca backbone atoms of SGLT2 (black), SGLT2-canagliflozin (red), and SGLT2-swertisin (green). 96 Figure 3.16 Intra and Inter hydrogen bonds of SGLT2 in apo and inhibitor bound complexes: (a) Intra H-bond formation plot computed versus function of time (100 ns) between protein and inhibitor in SGLT2 (black), SGLT2-canagliflozin (red), and SGLT2-swertisin (green). (b) Number of hydrogen bonds computed versus function of time (100 ns) between SGLT2 and inhibitor in Figure 3.17 Dynamics cross-correlation for SGLT2, SGLT2-canagliflozin and SGLT2-swertisin complexes. DCCM was calculated according to time average of Ca atoms. The whole range of correlation from -1 to +1 is represented in three ranges: cyan color corresponding to positive correlation values ranging from 0.25 to 1; magenta color corresponding to negative correlation values ranging from -0.25 to -1; and white color corresponding to weak or no-correlation values ranging from -0.25 to +0.25. The extent of correlation or anti-correlation is indicated by variation in the intensity of respective cyan or magenta color in SGLT2 (a), SGLT2-canagliflozin (b), and Figure 3.18 PCA analysis for SGLT2 (a), SGLT2-canagliflozin (b), and SGLT2-swertisin (c). In all three sections, the PC1, PC2 and PC3 eigen values are plotted against each other and the fourth

Figure 3.19 MM-PBSA Calculation for binding free energy. The total binding free energy for all the SGLT2-inhibitor complexes calculated for last 50 ns stable trajectory for a total of 200 frames, Figure 3.20 SGLT2 specific inhibition by swertisin affects sodium dependent glucose uptake *in* vitro in HEK293 cell line. Sodium dependent glucose uptake assay was performed in the HEK293 cell line. Swertisin treatment was given at varying doses and uptake inhibition of 2-NBDG was performed in (B) sodium buffer (C) sodium free buffer and (D) sodium buffer with 10 µM cytochalasin B (GLUT inhibitor) for 60 min. Canagliflozin was taken as a positive control. Results are represented as % Fluorescence intensity per total DNA \pm SEM, N=3. Significance is expressed as p-value *** <0.001, **** <0.0001 control vs treatment groups. G=Glucose, S=Swertisin, Figure 3.21 Representative time dependent fluorescence imaging of uptake was performed. HEK293 cells were incubated in sodium buffer in the absence (Control) and presence of 7.5µg/ml swertisin with 10 µM cytochalasin B for 10 min in presence of 2-NBDG (green) Figure 3.22 Sodium dependent glucose uptake demonstrating unaltered SGLT1 inhibition by swertisin. Sodium dependent glucose uptake assay was performed in the Caco2 cell line. Swertisin treatment was given at varying doses and uptake inhibition of 2-NBDG was performed in (B) sodium buffer (C) sodium free buffer and (D) sodium buffer with 10 µM cytochalasin B (GLUT inhibitor) for 60 min. Canagliflozin was taken as a positive control. Results are represented as % Fluorescence intensity per total DNA \pm SEM, N=3. G=Glucose, S=Swertisin, C=Cytochalasin B

Figure 3.28 Graphs representing different parameters serum creatinine, urine creatinine and creatinine clearance for control, diabetic control, swertisin and canagliflozin treated STZ diabetic BALB/c mice groups. Data are represented as mean± SEM. *<0.05 (N=8) 115 Figure 3.29 Graphs representing different parameters serum urea (K) urine urea (L) urea clearance for control, diabetic control, swertisin and canagliflozin treated STZ diabetic BALB/c mice groups. Data are represented as mean± SEM. *<0.01, **** <0.001, **** <0.0001 Control vs treatment groups #<0.05, ### <0.001, #### <0.0001 Diabetic control vs treatment groups (N=8)

Figure 3.30 SGLT2 and PKC expression is reduced by swertisin in mice kidney. Western Blot analysis of proteins PKC and SGLT2 along with densitometric analysis normalized to respective internal control beta-actin Data are represented as mean \pm SEM. p *<0.05, *** <0.001, **** <0.0001 Control vs treatment groups ## <0.01, #### <0.001 Diabetic control vs treatment groups. Swertisin treatment vs canagliflozin treatment + <0.05, ++++ <0.0001 (N=3) 117

Figure 3.31 Immunohistochemistry was performed in mice kidney. Reduced SGLT2 expression
was observed (N=3)
Figure 3.32 Staining of mice kidney and intestine by H&E for analysis of cytoarchitecture 119
Figure 3.33 Graphical Summary of Chapter 3 125
Figure 4.1 In vitro Plan of work insulin resistant model generation and secretome collection132
Figure 4.2 In vitro Plan of work of differentiation of PREP into ILCCs
Figure 4.3 Differentiation of C2C12 myoblast into myotubes. Day wise maturation of myoblast
into myotube. Visualization of myotube formation by May-grunwald giemsa staining
Figure 4.4 Confirmation of C2C12 myoblast into myotubes. Confirmation by gene expression of
myogenin (Data is expressed as Fold change ± S.E.M. N=3), protein expression of desmin
(Densitometric analysis was done normalized to beta-actin and data expressed as arbitrary unit \pm
S.E.M. N=3). Significance is expressed as p-value *<0.05 and immunocytochemistry of α -SMA
was performed (magnification 20x)
Figure 4.5 Confirmation of insulin resistance in C2C12 myotube Myotubes were treated with TNF-
α to make <i>in vitro</i> insulin resistant model and confirmation of insulin resistant condition was done
by Gene expression of Insr (Expression of Insr was evaluated both by RT-PCR and dd-PCR), Irs1,
Glut4 was done (Data is expressed as Fold change \pm S.E.M. N=3). Significance is expressed as p-
value *<0.05, ** <0.01, *** <0.001
Figure 4.6 Confirmation of insulin resistance in C2C12 myotube Myotubes were treated with TNF-
α to make <i>in vitro</i> insulin resistant model and confirmation of insulin resistant condition was done
by Protein expression of IR, IRS1, pAkt/Akt key insulin signaling proteins (Densitometric analysis
was done normalized to beta-actin and expressed as arbitrary unit± S.E.M. N=3). Significance is
expressed as p-value *<0.05, ** <0.01
Figure 4.7 Myokine gene expression in C2C12 myotube under insulin resistance. Differential gene
expression of IL6, IL13, IL15, IL10, CX3CL1, CXCL1, FGF21 myokines were performed in
control and IR C2C12 myotubes. Data is expressed as Fold change \pm S.E.M. N=3. Significance is
expressed as p-value *<0.05,** <0.01, **** <0.0001
Figure 4.8 Characterization of differentially regulated proteins from secretomes. Chromatogram
of secretomes of C2C12 myotube from control and IR groups

Figure 4.11 Functional analysis of ILCCs under the influence of C2C12 myotube secretome. PREPs were subjected to control and IR secretomes of C2C12 myotubes and ILCCs were differentiated. Functional parameters like DTZ staining (magnification 20X), Yield and Morphometric analysis was done. Data is expressed as Mean ± S.E.M. N=3. Significance is Figure 4.12 Functional analysis of ILCCs under the influence of C2C12 myotube secretome. Functional parameters like Immunocytochemistry of C-peptide and Glucagon were performed Figure 4.13 Islet integrity parameter of ILCCs under the influence of C2C12 myotube secretome was done. DCFDA analysis for ROS measurement was done. Data is expressed as Mean \pm S.E.M. Figure 4.14 Islet survival parameter by FDA PI staining was performed (magnification 20X). 150 Figure 4.15 Islet survival parameter by Annexin PI was performed (magnification 20X). 151 Figure 4.16 Western blotting of Parp1 and Caspase3 was done for cell death evaluation. Densitometric analysis of cleaved PARP-1 and CASP-3 was done normalized to Beta-actin and data expressed as arbitrary unit± S.E.M. N=3, Significance is expressed as p-value *<0.05, ** Figure 4.17 Temporal analysis of proteins involved in islet differentiation of ILCCs under the influence of C2C12 myotube secretome Differentiation of ILCC took place from day 0 to day 4 from PREPs with secretomes of C2C12 myotube. HNF-3B, NGN-3, Nestin, Pax4, Nkx6.1, NeuroD1, PDX-1, MaF-A and GLUT-2 expression was checked for islet differentiation key proteins. Densitometric analysis was done normalized to Beta-actin and expressed as arbitrary unit± S.E.M. N=3, Significance is expressed as p-value *<0.05, ** <0.01, *** <0.001, ****

Figure 5.1 In vitro Plan of work for hADSC secretome collection
Figure 5.2 In vitro Plan of work of differentiation of PREP into ILCCs
Figure 5.3 HPLC Chromatogram of secretome from Control hADSC 168
Figure 5.4 HPLC Chromatogram of secretome from Obese hADSC 168
Figure 5.5 HPLC Chromatogram of secretome from Control and Obese hADSC. The graph
represents the specific peak difference between the secretome. Distinct peaks in comparison to the
vehicle control and secretomes were highlighted with blue arrow169
Figure 5.6 Differential characterization of protein from secretomes Chromatogram of secretomes
of hADSC from control and obese
Figure 5.7 Differential characterization of protein from secretomes) Graph showing abundance
and classification of proteins present in secretomes of hADSC from control and obese 172
Figure 5.8 Functional analysis of ILCCs in the presence of hADSC conditioned media ILCCs were
differentiated from PREPs in presence of control and obese secretomes of hADSC. Representative
images of temporal differentiation of ILCC from day 0 to day 4 with control and obese hADSC
secretomes
Figure 5.9 Functional analysis of ILCCs in the presence of hADSC conditioned media ILCCs were
differentiated from PREPs in presence of control and obese secretomes of hADSC. Functional
parameters like DTZ staining, Yield and Morphometric analysis was done (magnification 20X)
Figure 5.10 Immunocytochemistry of C-peptide and Glucagon were done in ILCC (magnification
63X)
Figure 5.11 Islet survival and integrity parameter of ILCCs in the presence of hADSC conditioned
media ILCC were differentiated from day 0 to day 4 under the influence of secretomes of hADSC.
Parameter like ROS measurement by DCFDA analysis
Figure 5.12 Islet survival and integrity parameter of ILCCs in the presence of hADSC conditioned
media ILCC were differentiated from day 0 to day 4 under the influence of secretomes of hADSC.
Islet survival parameter by FDA PI staining was done
Figure 5.13 PARP-1 and CASP-3 expression by western blotting were done to check islet cell
death. Densitometric analysis was done normalized to Beta-actin and expressed as arbitrary unit±

S.E.M. N=3, Significance is expressed as p-value *<0.05, ** <0.01, *** <0.001, **** <0.	0001
	. 179
Figure 5.14 Temporal analysis of proteins involved in islet differentiation Differentiation of I	LCC
took place from day 0 to day 4 from PREPs with secretomes of hADSC.Western blotting of H	INF-
3B,NGN-3,NeuroD1,PDX-1, Maf-A and GLUT-2.Densitometric analysis was done normaliz	ed to
Beta-actin and expressed as arbitrary unit± S.E.M. N=3, Significance is expressed as p-v	value
*<0.05, ** <0.01, *** <0.001, **** <0.0001	. 181
Figure 5.15 Summary of Chapter 5	. 187

List of Tables

Table 3.1 In silico pharmacokinetic analysis demonstrating Absorption, Distribution, Metabolism,
Elimination and Toxicity analysis of swertisin by ADMETLab 80
Table 3.2 Predicted targets of swertisin by SwissTargetPrediction tool 83
Table 3.3 PASS analysis of swertisin. Activities with $P_a > P_i$ are only considered for a Homology
Modelling of hSGLT2 compound. Pa (probability "to be active") calculates the chance that the
compound under query resembles the structures of molecules, which are the most typical in a sub-
set of "actives" in PASS training set. Pi (probability "to be inactive") calculates the chance that the
compound under query resembles the structures of molecules, which are the most typical in a sub-
set of "inactives" in PASS training set
Table 3.4 NCBI-Protein BLAST showing percent identity of human SGLT2 structure against
3DH4 and 2QX2
Table 3.5 EMBOSS-pair wise alignment of human SGLT2 structure with 3DH4 and 2QX2 86
Table 3.6 I-TASSER predicted models of threaded hSGLT2 structures with respective C-scores
and TM-scores. *NA: Not available
Table 3.7 Summary of H-bond occupancy between SGLT2 and SGLT2 complexes with
canagliflozin and swertisin