
Chapter 4

Inliers estimation in Weibull models

4.1 Introduction

One of the most important and widely used distributions to study lifetime of 

any component is Weibull distribution. The Weibull distribution is appropriate to 

describe the variation in the lifetimes of many different types of components. It has 

been used as model of lifetimes with diverse types of items such as Vacuum tubes, 

ball bearings and electrical insulation. In survival analysis, the Weibull distribution is 

better suited than the Gaussian distribution, because, it is defined only for positive 

time (engines fail after assembly), the mathematical operations particular to 

reliability theory are simpler (e.g. the function is easy to integrate analytically) and 

the shape of the function is more flexible, it ranges from a close Gaussian 

resemblance, to a skewed Gaussian, to a pure exponential distribution. It is also 

widely used in biomedical applications for e.g. in studies on time to occurrence of 

tumors in human population or in laboratory animals etc. It includes exponential 

distribution as special case. Also exponential distribution has been widely used as 

model in areas ranging from studies on the lifetimes of manufactured items to
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research involving survival or remission times in chronic diseases. In all the above 

examples we can get inliers and target observations as discussed in chapter 1.

As discussed in the previous chapters, here also our objective is to study the 

inliers and their detection procedure in Weibull distributions. This chapter deals with 

competition between two Weibull mixture models representing inliers and the 

target distribution.

If we denote X=(X1,X2....Xn) as realizations of a life test, then 

X = (X,UXr) where X, is set of inlier observations (instantaneous and early 

failures) and Xr is set of observations coming from a target population. Since failure 

pattern of this situations usually discard the assumption of unimodal distribution, 

the usual method of modeling and inference procedures may not be accurate in 

practice. The prior objective in such situations is to decide how many inliers are 

present in the underlying model, and then study their inferences.

This article is organized as follows: In section (4.2) and (4.3), discussion of the 

UMVUE and identified inliers model, assuming both inlier distribution and target 

distribution as Weibull distribution is considered. The inference procedures when 

some of the parameters are known and unknown are considered. Section (4.3.3) 

deals with the inlier detection for labeled slippage model. The detection using 

information criterion, goodness of fit and data analysis are given in the subsequent 

sections.

4.2 Uniformly minimum variance unbiased estimator (UMVUE)

The UMVUE of mixture density of instantaneous and positive observation 

taken from Weibull distribution is obtained in this section. Based on above families a 

new family of df 3={F(x;0,p):x>O,#e £2,0<p<l} is defined, such that
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Hence the pdf of mixture family of instantaneous and Weibull distribution is 

obtained as

f{x;9,p)^{l-p)S p{1~s) J39X13-1 e0x‘ (i-*)

^ [exp(-0)](1 S)‘ (1-P)T
p9

_1_

p9

(4.2.1)

which is a member of exponential family with a(x)- fixp~x, h(9) = exp(-9),

= A and d{x)-xp. We have z = 2(l“^)x^an<^ n_r = X‘^ w^ich are 
9 x>0 x>0

jointly complete sufficient statistics for (9, p). Since xp has exponential distribution

with parameter 9. The UMVUE of mixture density given by Singh (2007) is defined as

<Px(z>r’n)

B(z,r,n-l) n~r 

nB(z,r,n)

B(z-d(x),r-l,n-l) 

B(z,r,n)
o(x)

x = 0, r = 0,1,2....n-1 

x>0, z>d(x),r = 1,2...:n

which simplifies in Weibull as

fx{z'r'n)-

n-r

r(r-l)/?xfi-1

nz z

x = 0

Q<xp <z,r\>l
(4.2.2)

If p = \ in equation (4.2.2) one gets UMVUE of mixture density of 

instantaneous and positive observation from exponential distribution as

<Px(z>r'n) =

n-r
n

r(r-l)

nz
1-*

x = 0

0<x<z, n>l

(4.2.3)
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4.3 Weibull identified inliers model

Weibull distribution is used medical studies dealing with fatal diseases, where 

one is interested in the survival time of individual with the disease, measured either 

from the date of diagnosis or some other starting point It is possible that patient 

dies without getting treatment or has smaller survival rate than target group which 

has on average longer survival rate. The inlier detection is done for the following two 

models:

Model-1: Shape parameter is same for both inliers and target distribution. 

Model-2: Scale parameter 6 is same for both inliers and target distribution.

4.3.1 Inlier detection when the shape parameter is identical

If we take the distribution function of inliers as

G(x) = l-exp(-^x'8), x>0, ^>0, /?>0. (4.3.1)

and the distribution of target population is

F(x) = l-exp(-#x^), x>0,#>0, /?>0. (4.3.2)

Then the likelihood of model can be written as

/«1 /=r+1

The estimates of the parameters are found by solving the following likelihood 

equations:

and

3lnt

Int
dd

n-r
___ i~r+l

= 0 k
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ainL = o=>^Zx/lnx/ + 0E x/lnx/ = 0
°P 1=1 , /=r+1 A (=1

As discussed earlier, the instantaneous failures are already identified and 

hence the proportion of such observations is not considered in the model. Using 

Newton Raphson method the estimates of 6 and /? can be found.

4.3.2 Inlier detection when the scale parameters are identical

Here we consider the detection of inliers when shape parameters of both 

inlier and target distribution as same. The failure distribution for inliers is assumed to 

be

G(x)=l-exp{-x^#), x>0, 9>Q,f3>0.

and the distribution of target population is

F(x) = l-exp(~x0), x>0 ,0>Q.

The likelihood estimates in this case are the solutions of 

dint 0=>--YV+Yx,=0
~\s} n l—i * L—i >

& /=1 /ar+l

and

(4.3.3)

(4.3.4)

3ln£ g. t—— = 0^£x/|nx/---£lnxi = °
/=! p i=i

Since all the likelihood equations are non linear, they may be solved using Newton 

Raphson method, to get estimates of 6 and f}.

4.3.3 Labeled slippage inliers model for Model-1

With g(x) and /(x) as described above, the likelihood under labeled 

slippage model referring to section (2.5) and substituting in equation (2.5.1), gives
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lnt = /'0ln(l-p)+(/7-r0)inp-ln^i(^6')+r1l^+{^-l)^iogx(()-^2]x^

+{n-ro-r1))n0-0^j x?

and the corresponding likelihood equations are

din-r0 1(n-r0)_o
dp (1-p) p

(4.3.5)

9lnL 3
d0

9ln L
d0 do

infl, ((^)+~r-iv.
d<f> "i 

9

V)

In<pri(0,0)+n r° ~1 ~ £ xj
C' »=r_ +1

and

(4.3.6)

(4.3.7)

3lnl = O=>0Yjxi/!\nxi + d'£4 x? In x; - ~ - 2] Inx, — 0
up /=l <=r+1 Z3 1=1

(4.3.8)

Here (4.3.5) can be solved to get the estimate of p as p={n-r0)/n. The equations

(4.3.6) to (4.3.8) contains gamma and digamma functions. Solving (4.3.6) and (4.3.7) 

simultaneously we get the estimate of ^ and 6. The parameter p is orthogonal to

i,0) .Now

Vr^f. - (n - r0 - *) Jfl - e~*f |>A "1 fi0xf~'dx

(n~ro~ri)0
-P

(n-ro-rt)0

<i+1/-

r^+ijr
(n-^-r^O

(n-r0 ~ri)&
<!>

+ rj + l

and
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Inq> (^^^C+ln^-ln^+Inr^-lnF^z + rj +1))

where

hence

z = ([n-r0-ri]e)/<t>.

2=-—+[ys{z)-y/(z + r1 +1)]

and

^W9)=-i+±,„rW^-±,„r(I+t+i)^

(n-'i-'i)

0
+[r(*)-Hz+'i+1)]

where

5«r(z) = —lnr(z) and r(z)=?xz-1e_,fc/x.
M i

The result from Abramovitz and Stegun (1965) is

i=i z-r J

Using the above results, one obtain the likelihood equations as

3lnl ra + l
3^ 0

and

3lnt (n-r0-rt-l) (n-r,-^)

3(9 0 $
ri 1 
j=l Z -T J

-X*?=o
*=^+1

rl 1y~ -5>/

(4.3.9)

(4.3.10)

(4.3.11)
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Now (4.3.8), (4.3.10) and (4.3.11) can be solved using Newton-Raphson method to 

get the estimates of (f>, 6 and .

4.4 Inliers detection using information criterion

Here three information criteria are used to detect inliers, which are already 

discussed in chapters 2, section (2.5) such as Schawarz's Information criterion 

(S/C=-2lnl(@)+plnn), the Schawarz's Bayesian information criterion

(e/C = -lnt(©)+0.5 BJUJL) and the Hannan-Quinn criterion defined as 

n
(HQ=-lnL(0) + p /n[/n(n)] ). Here 1(0) the maximum likelihood function and p is

the number of free parameters that need to be estimated under the model. Below 

we develop the procedure for SIC scheme. The following model of no inliers for 

Model-1 is given by

SIC(O)=-2n\n0-2n\n^+20^x^~2{fi-l)^\nx{i)+2\nn (4.4.1)
/=i i

and the corresponding model with r inliers is

S/C(r)=-2rln^-2(n-r)ln0-2nln^+2^x^+20^^-2(/?-l)Xlnx(i)+3lnn (4.4.2)
>’*1 /=r+l 1

Similarly, for Model-2, the model with no inliers is

S/C(O)=-2nln0+2^x(i)+lnn (4.4.3)
1

and corresponding model with r inliers is

S/C(r) = -2nin0-2rln/?-2(/?-l)^lnx((.) +20£xg + 26>^x(;) +2ln n (4.4.4)
1 X r+1

The estimate of inliers say r is such that S/C(r) = minS/C(r), where r,l<r<n-l, 

is the unknown index of the inliers. According to the procedure, the Model with no
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inlier is selected if SIC(0)< min SIC(r). And the Model with r inlier is selected if
l<r<n-l '

stc(0)> min SIC(r),
1 ir<n-l

4.4.1 Simulation study

To illustrate the method of identifying inliers model the random samples of 

size 15 have been generated from Weibull distribution. The data under two models 

are as follows:

Model-1: Five observations are generated from Weibull with parameter ^ = 0.50 

and/?=l.l and remaining ten observations from Weibull distribution with 

parameter 0 = 0.25 and /f=1.1. The ordered observations are 0.1475, 0.4076, 

0.5435, 0.676,1.0885, 2.662, 2.662, 2.7381, 2.9781, 3.1589, 4.1746, 4.3598, 4.8724, 

9.5612 and 10.2065.

Model-2: Here five observations are generated from Weibull with parameter 0 = 0.1 

and fi = 3. The remaining ten observations from exponential distribution with 

parameter 0 = 0.1. The ordered observations are 0.7418, 1.3926, 1.4866, 1.5082, 

1.5279, 2.1699, 3.0111, 3.1058, 3.4249, 5.6212, 6.5393, 9.1629, 10.2165, 22.0727 

and 32.1888.

The identification is done as follows we evaluate for each fixed r the 

maximum likelihood equation Lr, and then consider r being that value of r for which 

likelihood is maximum. The estimates are presented in table( 4.4.1) and (4.4.2) for 

model-1 and model-2 respectively. The 5/C(0) under Model-1 and Model-2 are 

74.22128 and 93.55538 respectively. BIC and HQ are also found for both the models 

with the following values.

-92-



Table 4.4.1. The Likelihood, parameter estimates and information criterion for
Model-1.

r # 0 P L SIC BIC HQ

1 11.9537 0.171279 1.29631 -30.204 68.53215 30.47481 33.19269
2 5.92071 0.123884 1.441 -28.4621 65.04835 28.73291 31.45079
3 4.63278 0.081892 1.62678 -26.5204 61.16495 26.79121 29.50909
4 3.87879 0.050043 1.84369 -24.4484 57.02095 24.71921 27.43709
5 2.31486 0.039079 1.92499 -23.6473 55.41875 23,91811 26.63599
6 0.864944 0.074318 1.55034 -26.8847 61.89355 27.15551 29.87339
7 0.615074 0.070581 1.53585 -27.5234 63.17095 27.79421 30.51209
8 0.48757 0.061317 1.56115 -27.6898 63.50375 27.96061 30.67849
9 0.400866 0.052183 1.58932 -27.7814 63.68695 28.05221 30.77009
10 0.336613 0.042551 1.62689 -27.7629 63.64995 28.03371 30.75159
11 0.293833 0.042395 1.56627 -28.4133 64.95075 28.68411 31.40199
12 0.260573 0.03771 1.53975 -28.8061 65.73635 29.07691 31.79479
13 0.235881 0.031794 1.50512 -29.215 66.55415 29.48581 32.20369

Table 4.4.2. The Likelihood, parameter estimates and information criterion for
Modei-2.

r P 0 L SIC BIC HQ

2 6.25818 0.136196 -41.0662 87.5485 41.15647 42.06243
3 6.25055 0.12443 -38.5097 82.4355 38.59997 39.50593
4 6.32895 0.112701 -35.8889 77.1939 35.97917 36.88513
5 6.44645 0.101003 -33.1883 71.7927 33.27857 34.18453
6 4.47787 0.099347 -33.5527 72.5215 33.64297 34.54893
7 3.25159 0.096469 -34.7522 74.9205 34.84247 35.74843
8 3.03171 0.086918 -34.0851 73.5863 34.17537 35.08133
9 2.8828 0.07774 -33.4219 72.2599 33.51217 34.41813
10 2.28964 0.078485 -35.5625 76.5411 35.65277 36.55873
11 2.06388 0.073388 -36.518 78.4521 36.60827 37.51423
12 1.80399 0.072127 -38.2551 81.9263 38.34537 39.25133
13 1.68415 0.067832 -39.2468 83.9097 39.33707 40.24303

One can observe that the likelihood is maximum and min BIC(r)
lSr<n-l '

min S/C(r) = S/C{5)<S/C(0), and min HQ(r) corresponds to r = 5, which was
l<r<n-l l<fSn-l

expected. The corresponding estimates of the parameters are shown in the tables 

(4.4.1) and (4.4.2). The graphical representations of the likelihood plot are given in 

figure (4.4.1) and (4.4.2).
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Fig. 4.4.1. The likelihood plot for Model-1

Fig. 4.4.2. The likelihood plot for Model-2

4.5 Data Example:

The example is based on Vanmann's (1991) data on drying of woods under 

different experiments and schedules. It is the example given in appendix, numbered 

E-3 S-l.
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Under model-1 : The computed value SIC(0) = 133.2468 > S/C(9) = min SIC (r) = 

98.46836. Also the likelihood is maximum for r = 9. The corresponding estimates of 

the parameters are <j> =1.40087, p = 1.96982 and 6 = 0.015968 as given in the 

table (4.5.1) below.

Under Model-2: The computed value 5/C(0) = 130.3241 and > SIC (13) = min SIC (r) = 

125.7627. Hence value of r= 13. Similarly other information criteria and likelihood 

function gives us the same result. The estimates of the parameters are given in table 

(4.5.2).

Table 4.5.1. Estimates of parameters, likelihood, information criterion under Mi.

r 0 - e P L SIC BIC HQ

1 17.0411 0.15391 1.1227 -58.6091 126.7524 58.67531 59.76537
2 6.62578 0.125022 1.20295 -56.8636 123.2614 56.92981 58.01987
3 5.61105 0.092835 1.32332 -54.588 118.7102 54.65421 55.74427
4 5.13406 0.06591 1.46092 -52.1563 113.8468 52.22251 53.31257
5 3.87184 0.050274 1.5623 -50.4173 110.3688 50.48351 51.57357
6 3.14867 0.036469 1.68353 -48.5128 106.5598 48.57901 49.66907
7 2.24189 0.029789 1.74933 -47.4397 104.4136 47.50591 48.59597
8 1.77073 0.021963 1.85802 -45.9382 101.4106 46.00441 47.09447
9 1.40087 0.015968 1.96982 -44.4671 98.46836 44.53331 45.62337
10 0.789435 0.029368 1.67797 -47.7531 105.0404 47.81931 48.90937
11 0.583143 0.032049 1.61366 -49.0733 107.6808 49.13951 50.22957
12 0.458334 0.036603 1.53082 -50.6362 110.8066 50.70241 51.79247
13 0.383572 0.037393 1.49579 -51.5492 112.6326 51.61541 52.70547
14 0.332632 0.040501 1.43709 -52.7273 114.9888 52.79351 53.88357
15 0.296617 0.041975 1.39664 -53.6335 116.8012 53.69971 54.78977
16 0.271311 0.04458 1.34706 -54.6304 118.795 54.69661 55.78667
17 0.252993 0.047369 1.29805 -55.6037 120.7416 55.66991 56.75997
18 0.240966 0.051993 1.23932 -56.7067 122.9476 56.77291 57.86297
19 0.230694 0.054786 1.19563 -57.6047 124.7436 57.67091 58.76097
20 0.221885 0.055836 1.16131 -58.3575 126.2492 58.42371 59.51377
21 0.215411 0.05678 1.12541 -59.1278 127.7898 59.19401 60.28407
22 0.210003 0.055551 1.09305 -59.8413 129.2168 59.90751 60.99757
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Table 4.5.2. Estimates of parameters, likelihood, information criterion under M2.

r P e L SIC BIC HQ

2 2.45514 4.85387 -65.4516 137.2593 65.51781 67.76414
3 2.14020 4.84449 -64.8678 136.0917 64.93401 67.18034
4 1.94013 4.83674 -64.2642 134.8845 64.33041 66.57674
5 1.84068 4.83136 -63.5878 133.5317 63.65401 65.90034
6 1.76655 4.82876 -62.9371 132.2303 63.00331 65.24964
7 1.73299 4.83517 -62.2321 130.8203 62.29831 64.54464
8 1.70401 4.84410 -61.5473 129.4507 61.61351 63.85984
9 1.68347 4.85958 -60.8549 128.0659 60.92111 63.16744
10 1.60145 4.97633 -60.3106 126.9773 60.37681 62.62314
11 1.53127 '5.07469 -59.8869 126.1299 59.95311 62.19944
12 1.43583 5.16651 -59.7701 125.8963 59.83631 62.08264
13 1.36456 5.22507 -59.7033 125.7627 59.76951 62.01584
14 1.28113 5.24744 -59.9096 126.1753 59.97581 62.22214
15 1.21049 5.23142 -60.1883 126.7327 60.25451 62.50084
16 1.13620 5.16086 -60.6704 127.6969 60.73661 62.98294
17 1.06222 5.02958 -61.3154 128.9869 61.38161 63.62794
19 0.90209 4.52081 -63.2469 132.8499 63.31311 65.55944
20 0.82158 4.16407 -64.5197 135.3955 64.58591 66.83224
21 0.72684 3.69465 -66.283 138.9221 66.34921 68.59554
22 0.61228 3.11046 -68.9122 144.1805 68.97841 71.22474

We can observe that, for mixture of two different distributions, we do not 

get same number of inliers. Now the next problem is to decide which of the model 

discussed above is better ?
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4.6 Inlier detection using conditional distribution of total lives

This test makes use of basic properties of Poisson process, if one observes 

Poisson process for a fixed time T and if say n events occur in [0,7^ at times 

0<x(1)<x(2).... < x^ <T then these times can be considered as ordered observation

on a random variable uniformly distributed over [0,T]. Let x^ = life time of ith 

ordered unit. Then

P x^j < < x(1) + AXj1( ,x(?) < X^2) < x(2) + AXj2) . ■XW^X(n^\)+^(n)

jn events occur (0,T) ] =

JL'e-vfl____^____

it([Xr]'e~*/n\)

=^-riAx(0' ....sxw (4-6-i)
• /=i

For large value of n, x is approximately normal with mean — and variance
2

T2
----- . It can be used to test, for large sample, whether or not the data is drawn from
12n

Poisson process. One can also show that if one observes a Poisson Process until 

exactly n events occur, then (n-1) r.v. can be considered as uniformly distributed

over (o,x{n)).

In context of life testing if the failed items are not placed then all we need to

do is to use total lives Sj where S, and Dj =(n~/ + l)
7-1

x(/) - x(; i) |. Here D,s

are known as normalized spacing. If Si is the total life observed in getting the i:th

failure then Sx < S2......< Sn.

r = 1'2.... n- (4.6.3)
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Here also one can show that the total lives 5^5.,..... ,Sn can be considered as

being drawn from a density function which is uniform over (0,7). If the life test

ends as soon as the first n failures occur, then the (n-1) r.v. ..... ,5^ can be

considered as being drawn from a density function which is uniform over (0,Sn).

The fact that the conditional distribution of total lives is uniform over suitable 

interval makes it quiet evident that one has a good tool for detecting whether the 

failure rate is indeed constant. Thus the contamination of a purely exponential 

distribution by early failure would manifest itself in the pronounced tendency to get 

too many clustering together in the early part of total life thus violating uniformity. If 

the failure rate changes, for example, it increases with time then this should result in 

a tendency for failures to cluster together as time goes on, again violating 

uniformity. If the amount of failure data observed is quiet small, then we can expect 

large changes from exponentiality. Otherwise one can use a chi-square to detect 

whether the conditional distribution of times to failure or total lives deviate 

excessively from being normal.

4.6.1 A test for abnormally early failures (inliers)

Suppose that x^^x^j..... -%) are the n ordered failures. If all the x^ are

drawn from a common exponential then Sx the total life in 0,x^J and 5n -S1( the

total life in x(i )'XM
25are distributed independently of each other, where Z(2)

2(S -S.)
and  ——~~X[2[n-i}) degrees of freedom each. Hence the ratio

R-
5 -S, (2,2n-2)‘ (4.6.4)

If the ratio is too small then we assert that x^ is abnormally small. More precisely if 

a is the level of significance, we will say x(i) is an inlier if
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(4.6.5)
(n-l)S.

R = ±------—<F,
S -5, (2,2ii-1),a ’

Suppose one wants to detect x^ and are inliers and if all the are 

drawn from a common exponential then 52,the total life in 0,x^J and Sn~S2, 

the total life in x(n) are distributed independently of each other.

f(4,4n-4) |4'6'61

If this ratio R is too small then we can conclude and x^ are inliers. One

can continue in similar manner, to detect whether x(1^x^2).... x^are inliers, where

r = 3,4,.... n till we get first ratio which is greater than tabulated value. Hence at

this point one can conclude r observations, till which the hypothesis is accepted, are 

inliers and rest of the observations are from target population.

4.7 Predictive approach to inlier model detection

The use of predictive distributions has been recognized as the correct 

Bayesian approach to model determination. In particular, Box(1980) notes the 

complementary roles of posterior and predictive distributions stating that posterior 

is used for the "estimation of parameters conditional on the adequacy of the 

model" whereas the predictive distribution is used for "criticism of the entertained 

model in the light of the current data". In examining two models, it is clear that the 

predictive distributions will be comparable whereas the posterior will not.

In this case there are n models, such as model with number of inliers r = 0,1, 

2....n-l. Mx is considered model with 0 inliers. M2 can be considered model with r 

inliers and (n-r) target observations. The procedure is as follows:
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Let model Mi assume that the data X are samples from independent random 

variables having a target exponential distribution with density

f(x\6) = de-e\ 9>0, x>0. (4.7.1)

The model M2 assume that there are two distinct labels so that data X=(X1/X2) where 

Xi and X2 are sampled from independent random variables having inliers and target 

exponential distribution, having n 1= rand n2= (n-r) observations respectively, with 

density function as

f(x\0,) = 9,e~8'*, 9j >0 , x>0, / = 1,2. (4.7.2)

where 91=(/) the parameter of inliers distribution and 62=9 the parameter of 

target distribution. If assumption regarding the vague prior density of the form

under Mi is g(9)<x 1
9

The likelihood under model Mi is as follows

L{X,M1) = l\f{xi\9,M1)
/=i

-e I«, 
= 9ne «

Then predictive density of observation x under Mi is given by

f(x\X,M1) = Ji.{x,9,M1)L(X,9tM1)g(9)d9 
jL(X,9,M1)g(9)d9 (4.7.3)

The model M2 assume that there are two distinct labels so that data 

X-{Xh X2) where Xj are sampled from independent random variables having a distinct 

exponential distribution with density

f{x\9!) = 9ie~0‘*, i = 1,2, 9t>0,x>0. (4.7.4)

The vague prior densities of the form g( Ot) oc 9i 1 for both the parameters are 

assumed, then the respective predictive densities under Mi and M2 are

- 100-



where

f(x\X,M1) = n(nx)" /(nx + x)"*1

f(x|X,M2) = nfnfxf' /(n,x, + x)" a, / = 1,2 (4.7.6)

x=n1(n1x1 + n2x2) and / = 1,2. (4.7.7)

The prior density yields the optimal estimate of the density, in the frequency 

sense, among all estimates that are invariant with regards to transformation of 

scale using Kullback- Leibter measure of divergence.

The Predictive sample reuse (PSR) quasi-bayes criterion chooses the Larger of

;=1 y=i for x( > 0
nx

and

^=nn
2 JX, (n, -1) (n x, - x„
-mt >\ it— jor x >q

=1 7=1 {nix,)

(4.7.8)

(4.7.9)

The Predictive sample reuse (PSR) quasi-bayes criterion used by Geisser and Eddy 

(1979) chooses the model with Larger of

» tWt (n~1)

^firP.— "P
(n-l)x,j

for x. > 0

and

- rrrT (n/-~1)

^nn-1—~expi=l ji(n,x(-xs)n' 1 1. {nixi~xij)

(n,-l);
for xf. > 0

(4.7.10)

(4.7.11)
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Above mentioned both the criterions are asymptotically equivalent to Akaike's 

criterion. One can use any of the above given criteria to obtain number of inliers in a 

given set of data.

4.8 Numerical illustration

The data represents ozone concentration in ppb monitored from morning 8 

a.m. to evening 8 p.m. at express highway of Anand in the month of July on hourly 

basis. The data is collected by Dr. Sukalyan Chakraborty as a part of air pollution 

status monitoring of Anand district for his research. The observations arranged in 

increasing order of their magnitude are 14.00, 14.50, 15.00, 15.00, 17.00, 17.00, 

19.00, 21.00, 21.80, 22.30, 23.00, 23.20 and 24.00. In table (4.8.1), r represents 

number of inliers observations to be considered. Level of significance is taken as 2.5 

%.

Table 4.8.1. Inlier detection using Likelihood and Conditional method

r Likelihood 4

For Conditional Method

ConclusionD, Si Ratio F-tab

1 -51.2223 182 182.0 1.5888 4.318725 Accept

2 -51.1812 5.7383E-23 174 356.0 1.6308 3.066233 Accept

3 -51.1434 5.9886E-23 165 521.0 1.6769 2.589498 Accept

4 -51.0982 6.3160E-23 150 671.0 1.7047 2.327027 Accept

5 -51.0853 6.3908E-23 153 824.0 1.7996 2.157011 Accept

6 -51.0636 6.5672E-23 136 960.0 1.8773 2.036182 Accept

7 -51.0712 6.5008E-23 133 1093.0 2.0208 1.944986 Reject

8 -51.1041 6.2351E-23 126 1219.0 2.2567 1.873191

9 -51.1387 5.9862E-23 109 1328.0 2.5818 1.814874

10 -51.1712 5.7747E-23 89.2 1417.2 3.0499 1.766351

11 -51.2051 5.5642E-23 69.0 1486.2 3.8383 1.725199

12 -51.2345 3.5233E-21 46.4 1532.6 5.3215 1.689750

13 -52.2672 24.0 1556.6
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For conditional method null hypothesis is rejected when r = 7 implies that 

number of inlier in the data set is 6 as shown in table (4.8.1). The likelihood is also

maximum at r = 6. Using Predictive Method we have obtained =5.21825E-23 

and maximum Lj =6.5672E—23 corresponds to r= 6.

4.9 Goodness of fit

The problem of testing of goodness of fit to test whether the sample data is 

taken from modified mixture Weibuil distribution against they are taken from single 

exponential or Weibuil distribution is discussed in this section.

4.9.1 To test whether target observations are from Exponential

Our first test is

H0: the sample is from single population with exponential distribution \.e.f(x,0) 

Hx: the sample is from population with Modified Weibuil distribution,

In terms of the MLE, the likelihood ratio test statistics for testing H0 against H{ is

L{d\ ff„)
L{+,0,p\Hx)

(4.9.1)

lnA = nln0-0^x(.j -r[ln^+ln/?o]-(n-r)[ln0+ln$]-

(fio"i)Xlnx«-OZMi)+0E 4 (4-9-2>

Under null hypothesis YL =-2In(A) ~ $. Reject H0 for appropriate value of level 

of significance when Yt > %^a.
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4.9,2 To test whether all observations are from single Weibuil against they 
are from mixture of two (iniiers and target) Weibuil distributions.

Our second test is

H0:p = l the sample is from single (target) population from Weibuil distribution 

with parameters 1 and 0>O.

Hx:p< 1 the population distribution is Modified Weibuil with parameters /S*\, 

d>> 0 and 6> 0.

In terms of the MLE, the likelihood ratio test statistics for testing H0 against H], as 

used in test 1, is

lnA = n[ln# + ln/?] + (y9-l) -^Z^ -r[ln0+ln/?o]-(n-r)[ln0+ln/l?,]
ml

- (A “ !) z In *(i) - (A -!) Zln x(/)+ ^Z 4) +6IZ 4i=i i=! i=r+l

(4.9.3)

Under null hypothesis YL =—21n(A) ~ Xz > then reject HQ for appropriate 

value of level of significance when Yt > %^a.

4.9.3 Sequential Probability ratio test (SPRT)

SPRT is used to find number of iniiers in given data set for both the models as 

shown in the following sub sections.

Case 1: SPRT for model-1

To test whether iniiers and target population is from single Weibuil 

distribtion against they are from two different Weibuil population, i.e with 

reference to section (1.5). The SPRT test is given as follows

H0: Sample observations are taken from inlier population with interest parameter
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Sample observations are taken from target population with interest parameter

£ = 6..

and likelihood ratio Xm is given by Xm ^SL- or equivalently 
Lq„,

m
ta4=Zln

f=i

m m m= m( ln^+ln^-ln^-ln^o) + [^-^o]£lnx(()-0£4 m = l,2,....n
i=1 /*[ #«I

(4.9.5)

For deciding number of inliers r, first arrange the observations in ascending 

order and then continue to take likelihood ratio for m = 1, 2.... by including 

observations one by ope till we reject Ho- That is

mif < In B accept Ho and take the next observation, 

and
mif > In A reject H0 and stop.

(=1

The corresponding m represents the first observation from f[x^, f?) and number 

of inliers r = m-1. Also

B=-?— A-—Z- (4.9.6)
1 -a a

where a represents probability of type I error and y represents probability of type

II error. Arrange <. ....X(n) and apply SPRT process till the hypothesis H0 is

rejected.

Case 2: SPRT for model-2

To test whether observations follow Weibull distribution against they follow 

exponential distribution. The SPRT test is given as follows:
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H0: Inlier observations are taken from Weibuli population

Hx: Inlier observations from Weibuil and target from exponential population

where m = l,2,....» (4.9.7)

For deciding number of inliers r, first arrange the observations in ascending 

order and then we continue to take likelihood ratio for m= 1, 2....n by including 

observations one by one till we reject H0. Arrange < Xj2j < ...—X^ and apply 

SPRT process till the hypothesis H0 is rejected.

Test criteria for rejection of H0, using ln/lra as defined for case 1 and case 2 

in equations (4.9.6) and (4.9.7) is to reject H0, if

Corresponding value of m for which Ho was accepted last becomes number of inliers

4.10 Conclusion

The Akaike information criterion is a measure of the relative goodness of fit 

of a statistical model.. It can be said to describe the tradeoff between bias and 

variance in model construction, or loosely speaking between accuracy and 

complexity of the model.

Given a data set, several candidate models may be ranked according to their 

AIC values. From the AIC values one may also infer that e.g. the top two models are 

roughly in a tie and the rest are far worse. Thus, AIC provides a means for 

comparison among models—a tool for model selection. In general AIC = 2k -2 In L,

In Am >lnA (4.9.8)

r.
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where k is the number of parameters in the statistical model, and L is the maximized 

value of the likelihood function for the estimated model. Given a set of candidate 

models for the data, the preferred model is the one with the minimum AIC value. 

Hence AIC not only rewards goodness of fit, but also includes a penalty that is an 

increasing function of the number of estimated parameters.

To compare above two models, defined in section (4.3.1) and (4.3.2), obtained 

value of AIC for Model-1 is 94.9342 and for Model-2 is 123.4066. Clearly we can 

observe Model-1 is better than Model-2, i.e. Model representing inliers and target 

observations as Weibull distribution with different scale parameters is better. For 

same example discussed in section (4.5), the Pareto distribution had also been 

applied in chapter 2. Hence comparing Weibull against Pareto model, it was noted 

that AIC for Weibull distribution is 127.7126 > AIC for Pareto distribution is 59.174S5. 

Hence one can conclude for that example Pareto model is better than Weibull 

model. The Pareto distribution is a power-tailed distribution which is a special case 

of a heavy-tailed distribution whose tails go to zero more slowly than exponential. In 

particular, in the cases where initial defects are present causing early failures, the 

Pareto distribution is found adequate to model such phenomenon.

Above result is supported by Jian-ming Mo and Zong-Fang (2008) who 

compared the sensitivity of aggregate operational value-at-risk in the Pareto 

distribution with that in the Weibull distribution to select an optimal model from the 

loss severity distributions of approximate goodness-of-fit. After the aggregate 

operational value-at-risk is obtained, the sensitivities of aggregate operational value- 

at-risk are compared when the loss severity distribution are respectively the Pareto 

and Weibull. The authors have shown that the sensitivity of aggregate operational 

value-at-risk with the Pareto distribution is far better than that with the Weibull 

distribution.

Another paper that discussed the comparision of Pareto and Weibull model 

was by Li-Hua Lai, Khoo, Murlidharan and Xie (2007) and Pei-Hsuan Wu (2008) and 

Wo-Chiang Lee (2009) have shown that using extreme value theory, generalized
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Pareto distribution (GPD} fits the heavy-tailed distribution better than the lognormal, 

gamma, Weibull and normal distributions. In an empirical study, they determine the 

thresholds of GPD through mean excess plot and Hill plot.
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