
Chapter 5

Inliers estimation in complete mixtures

5.1 Introduction

Finite mixtures distributions have provided a mathematical-based approach 

to the statistical modeling of a wide variety of random phenomena. Because of their 

usefulness as an extremely flexible method of modeling, finite mixture models have 

continued to receive increasing attention over the years, from both practical and 

theoretical points of view. Indeed, in the past decade the extent and the potential of 

applications of finite mixture models have widened considerably. Fields in which 

mixture models have been successfully applied include astronomy, biology, genetics, 

medicine, psychiatry, economics, engineering, and marketing, among many other 

fields in the biological, physical and social sciences.

Mixture distributions have been extensively used in a wide variety of 

important practical situations where data can be viewed as arising from two or more 

populations mixed in varying proportions. Mixture of distributions refers to the 

situation in which /'th distribution out of k underlying distribution is chosen with 

probability p,-, i=l,2,....k. Mixture distribution having k=2 components are extensively
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studied in literature. For example a probability model for the life of an electronic 

product can be described as the mixture of two uni-model distribution, one 

representing the life of inliers and other for target observations. A mixture model is 

able to model quite complex distributions through an appropriate choice of its 

components to represent accurately the local areas of support of the true 

distribution. The problem of central interest arises when data are not available for 

each distribution separately, but only for the overall mixture distribution. Often such 

situations arise because it is impossible to observe some underlying variable which 

splits the observations into groups then only the combined distribution can be 

studied. In these circumstances, interest often focuses on estimating the mixing 

proportions and on estimation of the parameters in the conditional distributions. 

There is a remarkable variety of estimation methods that have been applied to finite 

mixture problems such as graphical methods, the method of moments, maximum 

likelihood, minimum chi-square, least squares approaches and Bayesian approaches.

Decomposing a finite mixture of a distribution is a very difficult problem as it 

can be observed looking at the solution based on method of moments put forward 

by Karl Pearson (1894) in the case of a mixture of two univariate normal distributions 

with unequal variances. However, Tan and Chang (1972) have shown that the 

method of moments is inferior to likelihood estimation for this problem.

Finite mixture models have been broadly developed and widely applied to 

classification, clustering, density estimation and pattern recognition problems, as 

shown by Titterington, Smith and Markov (1985), Mclachlan and Basord (1988), 

Lindsay (1995), B' ohning (1999) and Peel (2000), and the references therein. With 

the growing advances of computational methods, especially for the development of 

Markov chain Monte Carlo (MCMC) techniques, many works are also devoted to 

Bayesian mixture modeling issues, including and Dieboit and Robert (1994), Escobar 

and West(1995), Richardson and Green (1997) and Stephens (2000), among others.

Because of their usefulness as an extremely flexible method of modeling, 

finite mixture models have continued to receive increasing attention over the years,
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both from a practical and theoretical point of view. For multivariate data of a 

continuous nature, attention has been focused on the use of multivariate normal 

components because of their computational convenience. They can be easily fitted 

iteratively by maximum likelihood (ML) via the expectation maximization (EM) 

algorithm of Dempster, Lai, Khoo, Murlidharan and Xierd and Rubin (1977) and 

McLachian and Krishnan (1997). By adopting some parametric form for the density 

function in each underlying group, likelihood can be formed in terms of mixture 

distribution and unknown parameter estimated by consideration of the likelihood. 

The likelihood approach to fitting of mixture models in particular normal mixtures 

has been utilized by several authors, Dick and Bowden (1973) and O'Neill (1978).

In the last two decades, the skew normal distribution has been shown 

beneficial in dealing with asymmetric data in various theoretic and applied problems. 

Authors took up the problem of analyzing a mixture of skew normal distributions 

from the likelihood-based and Bayesian perspectives, respectively. Computational 

techniques using EM-type algorithms are employed for iteratively computing 

maximum likelihood estimates done by Lin, Lee and Yens (2007).

Andersen(1996) introduced a modification of the mixture of distributions 

model based on microstructure arguments. Based on a small sample of five stocks, 

he infers that this modified mixture of distributions (MMD) model adequately 

captures the joint behavior of trading volume and volatility. He re-examine this cLai, 

Khoo, Murlidharan and Xiem using a larger sample of twenty-two stocks and two 

sample periods.

Chen and Kalbfleisch (2005) and Chen et al. (2001, 2002) suggest a 

modification of the likelihood by incorporating a penalty term that forces certain 

estimates away from the boundary of the parameter space. The likelihood ratio 

statistic based on the modified estimators is shown, in many instances, to yield 

relatively simpler limiting distributions and hence simpler tests.

Finite mixture models belong to a class of non-regular models and, as a 

consequence, many classical asymptotic results do not apply. Many researchers have 

tried to understand the large sample properties related to the analysis of finite
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mixture models. Hartigan (1985) first demonstrated the peculiar behavior of the 

likelihood ratio statistic for mixture models. Ghosh and Sen (1985) obtained the 

limiting distribution under a separation condition. The separation condition turned 

out to be unnecessary, which was shown by Chernoff and Lander (1995) for binomial 

mixtures, and in general by Chen and Chen (2001, 2002), Dacunha and Gassiat (1999) 

and others. Even though the large sample behavior of the likelihood ratio statistic 

under a mixture model is now better understood, its implementation still poses a 

challenge. The main difficulty involves deternhining the critical value based on a 

limiting distribution that involves the supremum of a Gaussian process. Techniques 

given in Adler (1990) and Sun (1993) may be useful in this respect. An alternative, 

discussed in McLachlan (1987), Chen (1998), Chen and Chen (2001) and elsewhere, 

is to use re-sampling methods. Bayesian methods can also be applied in this context 

as done by Richardson and Green (1997). Additional recent work can be found in 

McLachlan and Peel(2000), Lo et al. (2001), Garel (2001) and Garel and Goussanou 

(2002).

A popular way to account for unobserved heterogeneity is to assume that the 

data are drawn from a finite mixture distribution. A barrier to using finite mixture 

models is that parameters that could previously be estimated in stages must be 

estimated jointly because using mixture distributions destroys any additive 

separability of the log-likelihood function. Arcidiacono and Jones(2002) show, 

however, that an extension of the EM algorithm reintroduces additive separability, 

thus allowing one to estimate parameters sequentially during each maximization 

step. In establishing this result, the author developed a broad class of estimators for 

mixture models. Returning to the likelihood problem, relative to full information 

maximum likelihood, the sequential estimator can generate large computational 

savings with little loss of efficiency.

Mixture models, in which a probability distribution is represented as a linear 

superposition of component distributions, are widely used in statistical modeling and 

pattern recognition. One of the key tasks in the application of mixture models is the 

determination of a suitable number of components. Conventional approaches based
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on cross-validation are computationally expensive, are wasteful of data, and give 

noisy estimates for the optimal number of components. A fully Bayesian treatment, 

based on Markov chain Monte Carlo methods for instance, will return a posterior 

distribution over the number of components. However, in practical applications it is 

generally convenient, or even computationally essential, to select a single, most 

appropriate model. Recently it has been shown, in the context of linear latent 

variable models, that the use of hierarchical priors governed by continuous hyper

parameters whose values are set by type-ll maximum likelihood, can be used to 

optimize model complexity. Author extends a framework to mixture distributions by 

considering the classical task of density estimation using mixtures of Gaussians. They 

show that, by setting the mixing coefficients to maximize the marginal log-likelihood, 

unwanted components can be suppressed, and the appropriate number of 

components for the mixture can be determined in a single training run without 

recourse to cross,validation. Their approach uses a variational treatment based on a 

factorized approximation to the posterior distribution by Corduneanu and Bishop 

(2001).

Bayesian predictive density functions, which are necessary to obtain bounds 

for predictive intervals of future order statistics, are obtained when the population 

density is a finite mixture of general components. Such components include, among 

others, the Weibull (exponential and Rayleigh as special cases), compound Weibull 

(three-parameter Burr type XII), Pareto, beta, Gompertz and compound Gompertz 

distributions. The prior belief of the experimenter is measured by a general 

distribution that was suggested by AL-Hussaini (2003). Applications to finite mixtures 

of Weibull and Burr type XII components are illustrated and comparison is made, in 

the special cases of the exponential and Pareto type II components, with previous 

results.

Everitt and Bullmore (1999) report on a novel method of identifying brain 

regions activated by periodic experimental design in functional magnetic resonance 

imaging data. This involves fitting a mixture distribution with two components to a 

test statistic estimated at each voxel in an image. The two parameters of this
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distribution, the proportion of nonactivated voxels (inliers) and the effect size can be 

estimated using maximum likelihood methods. Standard errors of the parameters 

can also be estimated. The fitted distribution can be used to derive brain activation 

maps and two examples are described, one involving a visual stimulation task, the 

other an auditory stimulation task. The method appears to have some advantages 

over direct use of the P-values corresponding to each voxel's value of the test 

statistic.

The merits and limitations of parametric and nonparametric methods and the 

value of historical floods and palaeoflood information are reviewed and discussed. A 

mixture density estimation procedure based on the Gumbel (EV1) distribution kernel 

is introduced and a modified maximum likelihood criteria is developed for estimation 

of model parameters by Guo Shen Lian (2009). Using the recorded data and pre

gauging floods in China and a limited number of simulation experiments, the flood 

quantiles estimated by the proposed model are compared with those estimated by 

parametric and nonparametric methods. It is found that the mixture density 

estimation method can fit real data points more closely than its parametric 

counterparts, and that it is competitive with the other considered candidates.

5.2 Inliers as mixture model

An inlier in a set of data is an observation or subset of observations not 

necessarily all zeros, which appears to be inconsistent with the remaining data set. 

Consider an example where the weights of new born 17 babies (in pounds) in a 

hospital is noted as 0,0,1.2,1.4, 2,3.5,3.8, 4.2,4.6, 5.5, 5.5, 5.8, 6, 6.2, 6.6, 6.6 and 

7. Observation 0 can be considered as child born dead. As we have already seen in 

chapter 1, by specifying S — 4, first 6 observations can treated as inliers. The 

observations which are identified as instantaneous and early failures together are 

called inliers, introduced first time by Muraiidharan and Kale (2002).

Apart from the examples discussed in introduction chapter (chapter 1) the 

following examples also gives us the idea of inlier generation as a complete mixtures.
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1. To study the growth in dog's population, one may observe age of dogs. We can 

observe there are some puppies with no life, some with short life span while rest of 

them live the average target life. The observations of no life or short life span can be 

considered as inliers.

2. In the production of electronic components of air conditioner, some components 

may fail on installation and therefore have zero life lengths. A component that does 

not fail on installation will have a life length that is a positive random variable whose 

distribution may take different forms. We can take component which fail 

instantaneously or early as inliers. Thus, the overall distribution of lifetimes is a 

nonstandard mixture.

3. Consider profit earned on a share during a long term. There will be times when 

we get no profit and times when profit is continuous distribution of positive value. 

The observation with zero profit and small values of profit can be considered to be 

as inliers.

4. In a clinical trial laboratory a particular drug is designed and given to certain 

species of 100 hens so that the new chicks have weight greater than usual. The 

possible observations may be combination of inliers (i.e. no gain or negligible gain of 

weight than usual) and target gain in weight.

Inliers can be classified into discordant observations {those which appear 

"surprising or discrepant" very small to investigator) and contaminants mixture 

model of the form

h(x)=(l-p)g(x)+pf(x)

Here one can consider /(x) as our target density function {pdf of interest) 

and g(x) as inlier density function. The objective is to estimate the proportion 

(l—p)of observation coming from g(x) which is very small as compared to the
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observations of /(x). This can be achieved by carrying out a test procedure for 

H0:p = 1 against H1:p< 1 and decide whether samples are from g(x) or /(x).

o

5.3 Methods to detect inliers

Over the past years, a variety of methods have been developed for 

estimating the parameters in finite mixture models. Four of them are widely used in 

practice and cited in the literature, they are graphical method, method of moments, 

minimum-distance method, maximum likelihood method and Bayesian method. The 

method of moments is the earliest method for estimating the parameters in finite 

mixture models. The estimation procedures for inlier observations are present in the 

model given below.

5.3.1 Graphical methods based on probability model

It is the easiest vyay to find whether data is from mixed population. The two

most common graphs which can give us idea whether the sample observations are 
6 •

from single population or are they taken from population which is mixture of two 

populations (one of them represents inliers and other is continuous life time 

distribution). One can easily identify presence of mixture of two distributions, just 

looking at the graph.

a. Density function graph

The graph represents mixture of two normal distributions. The graph (5.3.1) 

represents inlier and target observations taken from A/(7,9)and A/{27,9),

respectively. From the graph we can identify two symmetrical curves such that first 

curve has mean remarkably less than second curve which can be considered as 

inlier distribution. Similarly we can have graph representing mixture of more than 

two distributions. From the graph (5.3.1) one can get rough idea about number of

- 116-



components with approximate mean. The density graph of mixture of inliers and 

target population for distribution other than normal is discussed in section (5.5).

b. Cumulative distribution function

It is also known normal quantile quantile (Q-Q) plot. This plot can be described 

as plot of an estimate of F~l(p) against <p~l{p), where F(-) is the cumulative

distribution function of the mixture distribution and <p{ ) is that of standard normal.

A sample from single normal distribution should produce a linear plot. Refer graph 

(5.3.2) which indicates the presence of mixture of two distributions (data used is 

same as above section).

Fig. 5.3.1. Density function of mixture distribution

The graph (5.3.2) indicates deviation from linearity which is the characteristic of 

certain type of mixture of two populations.
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Fig. 5.3.2. Quantile-Quantile plot

5.3.2 Method of moments

Suppose we have data set with n independent observations from a 

population whose probability model depends on v unknown parameter, Let

ju{£) denote vector of v functionally independent moments and that m denotes the 

corresponding set of sample moments. The method of moments estimator is the £. 

which satisfies

If £ denotes the mean of mixture distribution of inliers and target 

distribution, then we will get sample mean which will be a value approximately the

There are many problems in using moment estimators, such as

a. Explicit solution of (5.3.1) may not be easy or even possible.

b. The solution to (5.3.1) may not be unique.

c. They may not be asymptotically efficient.

To answer these questions, we proceed with other estimation procedure.

(5.3.1)

average of the above two groups.
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5.3.3 Method of maximum likelihood

The data in the random sample are of the form X1=x1,X2=x1,...Xn=xn, 

where the distribution of each X is described by a parametric finite mixture density. 

Most statistical methods will then take their starting point the likelihood function as

^(#)=np(^l^)=ri[(1-p)g(xi) + P/k)] (5-3.2)
/=1 i=l

Maximization of fo(£) wit*1 respect to £, for given data X, yields the maximum 

likelihood estimates of parameter £. Normally the quantity maximized is log- 

likelihood ^(^)=ln^(^).

Even in mixture models, maximum likelihood approach is very popular because

a. It fits into the philosophy of likelihood-based inference.

b. The existence of attractive asymptotic theory.

c. The estimates are often easy to compute.

d. They are also useful for calculating Bayesian posterior modes.

For inliers mixture model many times the asymptotic theory and 

computational aspects are not so straight forward. In such case one has to use 

iterative methods to obtain the estimates of the parameters of inliers mixture 

distribution.

5.3.4 Minimum-distance method

Another general method for estimating the mixing distribution in finite 

mixture model is to minimize the distance between the empirical distribution and 

the mixture distribution or the distance between the kernel density estimation and 

the mixture density. Titterington et al. (1985) gave a detailed review of the 

minimum-distance estimators. Maximum likelihood estimator can also be viewed as 

a special case of minimum-distance estimators, simply because it minimizes the 

Kullback-Leibler (1951) distance between the empirical distribution and the mixture
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distribution. Due to the rapid improvement in computing power, finding numerical 

solutions of a likelihood equation becomes feasible. Likelihood-based inference has 

enjoyed fast development and plays an important role in the scope of finite mixture 

models.

5.3.5 Bayesian method

One of the methods for estimating- parameter of mixture distribution is the 

Bayesian method. Let ln(x1,x2,....xn\0) be the likelihood function of 0. In the 

framework of the Bayesian approach, one needs to assume that a prior distribution 

P(0) when 0 is available. Using Bayes' theorem, we can obtain the posterior

density P(^|x1,x2,....xn) which is given by

P(0\x1,x2,....xn) a ln(x1,x2,....xn\0)P(0) (5.3.3)

There are two main reasons why people may be interested in using the 

Bayesian method in finite mixture models. Firstly, including a suitable prior 

distribution for 0 in the framework of the Bayesian approach may avoid spurious 

modes when maximizing the log-likelihood function. Secondly, when the posterior 

distribution for the unknown parameters is available, the Bayesian method can yield 

valid inference without relying on the asymptotic normality. As warned by 

McLachlan and Peel (2000), the asymptotic theoi^ of the MLE can apply only when 

the sample size n is very large. Hence the second advantage of the Bayesian method 

become obvious when the sample size n is small.

The iterative methods used for estimation of parameters in above method 

are discussed in next sub section. There are three well known iterative procedure to 

estimate the values of parameter of mixture distribution
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5.3.6 Expectation Maximization (EM)

EM algorithm is an iterative method to obtain estimates of parameters which 

are not in an explicit form. EM algorithm works as follows:

Suppose we have to find £ = | to maximize the likelihood

L{%) = f{x 15), (5.3.4)

where x is set of "inlier" data. Let y denote a typical "complete" version of x and let 

y(x) denote the set of all possible such y. In inlier mixture context of equation (5.3.4) 

the likelihood of y be denoted by g(y|E,). The EM algorithm generates, from some

initial approximation, a sequence of estimates. Each iteration consists of

the following double step:

Estep: Evaluate f[ln{g(y|§)}|x,^m)J=Q(^,^(n,)).

M step: Find ^ to maximize

The Expectation-Maximization algorithm for the finite mixture problem 

proposed by Dempster, Lai, Khoo, Murlidharan and Xie (2007), and Rubin (1977), 

popularly known as the EM algorithm, is a broadly applicable approach to the 

iterative computation of MLE's, useful in a variety of incomplete-data problems, 

where algorithms such as the Newton-type methods may turn out to be more 

complicated.

5.3.6.1 Inlier detection in normal distribution using EM algorithm

Let X=(xlrx2, xn) be a sample of n independent observations from mixture

of two inlier and target normal distributions and let Z=(zx,z2,.... zn)be latent

variables that determines component from which observation originates. 

X,|(zf=l) follows A/f/z^crJ and Xf|(z;=2) follows A/(/4,cr2), where

P(z, =l)=p1 and The aim is to estimate the unknown parameters representing the 

"mixing" values of $=(p,/l1,/iL,cr1,<T2).
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The likelihood function is given by

L{0,x,z) = P(x,z 10) = =j)[p1g(xi)+p2f{xl)]

/=i

where I is an indicator function.

E- step

JO/(x-,fif,af )

Thus E-step result in the function

i ;=i

1 {Xj-Mif
2 erf

iln(2zr)

and

M-step

The quadratic form q(<9| means that determining the maximizing

values of 0 is relatively straight forward. Firstly note that p,(/z1,(T1)&(/^,cr2) may 

be all maximized independently of each other since they all appear in separate linear 

terms. The estimates of 9 are as follows:

P),(»+!) .
YA
i=l

(t)

Y{^)+TA
(0 y = l,2

1=1

and of+1) =

(5.3.5)

(5.3.6)
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and

i~ 1

and cr.
.(t«) .

(5.3.7)

5.3.6.2 Numerical Example:

We have generated the 20 observations from A/(4,9) and rest 20 

observations from A/(20,9), We arranged all 40 observations in ascending order and 

then applied usual method and EM algorithm to estimate MLE of different 

parameters belonging to

The, proportions for inliers are considered as 0.2 and 0.8 taking other 

random samples. Random numbers for inliers and target are generated from 

A/(l0,9) and A/{16,9) for p = 0.2 whereas for p = 0.8 random numbers are

generated from A/(20,9) and the estimates for the same are presented in the table 

(5.3.1).

Table 5.3.1. Estimates of parameters using usual method and EM algorithm
Parameter Usual EM Usual EM Usual EM

P 0.20 0.247891 0.5 0.51753 0.8 0.801655

Ai 10.3983 10.0831 5.114591 5.07216 20.7588 20.7477

*i 2.1596 1.72969 2.542373 2.45262 2.04267 1.77783

Mi 16.7081 16.4453 19.93911 19.8436 30.3582 30.3412

0.66221 0.74314 3.500136 3.53658 2.3719 2.32364

From above table the estimate of number of inliers r =/?(l-p). We observe that

estimates of usual method to obtain MLE and EM algorithm are very close for all 

values of p.
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5.3.7 Newton Raphson {NR}

The purpose of NR method is same as that of EM method. This method 

usually requires less iteration than EM method. For NR the iterative step can be 

written as

^i) =^H m = 0,1........ (5.3.8)

The estimation of parameters for mixture distribution is done by Newton raphson 

method in all chapters 2,3 and 4 of this thesis.

5.3.8 Method of Scoring (MS)

For MS the iterative steps to obtain estimates of parameters of mixture 

distribution can be written as

-(m)

+a„
l($m))V DL($m)), m = 0,1.,

(5.3.9)

In above two cases, the non-negative constant am has been introduced to provide a 

slight increase in generality. Usually <xm=l, j denotes Fisher information matrix 

and D and D2 represent differentiation, once and twice, with respectively, £,.

We now carry out some tests of hypothesis to ascertain the model validity in 

the presence of inliers. We now carry out some tests of hypothesis to ascertain the 

model validity in the presence of inliers.

5.4 Testing of hypothesis

Goodness of fit is required to test whether the proportion of inliers and target 

observations considered for the model really fits in the data. Various tests are 

discussed in following subsections.
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5.4.1 Locally most powerful test

For testing the hypothesis as defined in equation (1.4.3) we have 

H0:p = 1 against : p< 1

Let X1,X2,..... Xn be a i.i.d. fandom variables having mixture distribution then

likelihood is

0> P) = ni(1 -P)sixi) + Pf (x)}

Then LMP test critical region is given by

dL(x,0,0,p)

dp
Hn <C

where C is such that

9 L{x,4,0,p)
if I I **0dp

<C> = a (5.4.1)

Solving for C we get

9lnL{x,0,0,p) /(■*,) 9 (■*!•)

dp t?(l-p)g(x;) + p/(x,)

d\nL(x,0,0,p)Ho) ^/(x,)-g(x,)
dp it fix)

11=1 1- dix)
fix)

= n- £/l(x,)

on simplification we get reject H0 if
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x|^A(x(.)>C'

where C' is such that

= a.

5.4.2 Large sample test

To test H0:p>p0 against H0:p<p0 for specified p0, the proportion of target 

observations. Test statistics is given by

Wo

and we reject H0 if Zcal <Za .

5.5 Graphs representing mixture of inliers and target distributions

In figure (5.5.1) and figure (5.5.2) we represent the graphs of density function 

and survival functions of mixture of two exponential distributions respectively. Here 

the target arid inliers distribution both are exponential distribution.
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Fig. 5.5.2. Survival function of inliers and target in exponential distribution

For both the graphs we generated random sample from inliers and target population 

in different proportion. Here p = 0.2,0.5 and 0.8 represents the proportion of sample 

from target population.

In figure (5.5.3) and (5.5.4) we have considered a random sample from a single 

exponential population with mean 10. Then we arranged these observations in 

ascending order of the magnitude. Hence we divided the observations in two parts 

i.e. inliers and target in different proportion and obtained the following graphs 

(5.5.3), (5.5.4) and estimates of the parameters with their confidence intervals in 

table (5.5.1).

Fig. 5.5.3. Density function of exponential inliers and target distribution
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Fig. 5.5.4. Survival function of exponential inliers and target distribution

Table 5.5.1, Estimates of the parameters

p * 0 confidence interval of ^ confidence interval of 0
0.2 1.23823 14.67034 (1.123822,1.287276) (13.95386,15.38681)
0.5 3.649312 20.77614 (3.569648, 3.709192) (20.54426, 21.01385)
0.8 7.014626 31.04246 (6.908973, 7.096944) (30.89754, 31.62216)

Fig. 5.5.5. Density function of Weibull inliers and target distribution
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In figure (5.5.5) and (5.5.6) we have considered generated random samples of inliers 

and target population from Weibull distribution. It is clear from survival function 

graph (5.5.2) and (5.5.6) that exponential graph has greater survival rate for target 

population than Weibull. Survival rate decreases more rapidly in case of Weibull 

distribution.

Fig. 5.5.7. Density function of Weibull inliers and target distribution
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Fig. 5.5.8. Survival function of Weibull inliers and target distribution

Table 5.5.2. Estimates of the parameters(Weibull distribution)

p A 0 A 6
0.2 1.22271 13.4815 3.07561 27153.6
0.5 1.43788 8.49143 1.95866 372.093
0.8 1.68314 3.25269 1.38857 43.6578

Rayleigh distribution for inliers and exponential for target population is 

considered in remaining graphs. The objective was to see how the mixture of two 

different distribution work. For Figure [5.5.9] and [5.5.10] the random sample of 

different proportion of inliers with different parameters and target observations 

with same parameter.

For figures [5.5.11] and [5.5.12] we have drawn two samples from Rayleigh 

i.e Weibull{l,2) and exponential distribution i.e exp[l). Then we took all the 

observation together and divided in two parts inliers and target values. From these 

we estimated the parameters $,6 and their confidence interval for p = 0.0, 0.5 and 

1.0.
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Fig. 5.5.9. Density function of Rayleigh iniiers and exponential target population

Fig. 5.5.10. Survival function of Rayleigh iniiers and exponential target population

The estimates are

Table 5.5.3. Estimates of parameters

p * 0 Confidence interval for^ Confidence interval for 0

0.0 1.673036 {1.645404,1.700668)

0.5 0.167334 1,479144 (0.155571, 0.179097) (1.416527,1.541762)

1.0 0.973552 (0.94592,0.94592)
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Fig. 5.5.11. Density function of Rayleigh iniiers and exponential target population

Fig. 5.5.12. Survival function of Rayleigh iniiers and exponential target

Conclusion:

The discussion of mixture of two same distribution with different parameters 

has been studied extensively. One can also think of mixtures of two totally different 

distributions for iniiers and target population. For example the combination of 

Pareto-Weibull or Normal - exponential etc., for iniiers and target population, 

respectively.
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