
Chapter-6

Inliers estimation in generalized failure 

distributions

6.1 Introduction

Generalized distributions are not frequently used for modeling life data as the 

life testing distribution but they have the ability to mimic the attributes of other 

distributions such as the exponential, Weibull or lognormal, based on the values of 

the distribution's parameters. Generalized exponential distribution has a right 

skewed unimodai density function and monotone hazard function similar to the 

density functions and hazard functions of the gamma and Weibull distributions. It is 

observed that the bivariate generalized exponential distribution provides a better fit 

than the bivariate exponential distribution. While the generalized gamma 

distribution is not often used to model life data by itself, its ability to behave like 

other more commonly-used life distributions is sometimes used to determine which 

of those life distributions should be used to model a particular set of data. It is 

observed that it can be used quite effectively to analyze lifetime data in place of 

gamma, Weibull and log-normal distributions. The genesis of this model is different
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estimation procedures and their properties, estimation of the stress-strength 

parameter, closeness of this distribution to some of the well known distribution 

functions, etc will be studied in this chapter from the inlier observations perspective.

6.2 Instantaneous Failures

As usual to accommodate the possibility of instantaneous failures, the class 

of generalized failure time distribution (GFTD) 3={F(x,0),£?eft} is modified to a

new distribution § = {G(x,£?,p) = (l-p) + pF(x,#),Fe3,x>0,0<p<l} where 

/M) is of the form

}{x,e,p) =
(M)fi IVMl i.... f X*)T]

UJ K L 0 Jj , <p{x)>0,9,/}>Q (6.2.1)

One may refer to Johnson and Kotz, Johnson and Balakrishnan (1970) etc. for other 

version of generalized densities. The above density is studied by Chaturvedi and 

Usha (2008).

6.2.1 Maximum likelihood estimation in instantaneous failures

The modified general failure time density function is given as

g(x,p,0,fi) =
1 -P,

p (X*)Y [>(*)] f
[\fiUJ J>(x) exp

\ [UJ
0(x) = O 

^(x)>0

Let XltX2,..... Xn, be a random sample of size n from g e §.

L(x,p,0,fi) = Y[g(xi,p,0,j3)
i—1

Define

Z(x) 1, x = 0 
0, x>0

(6.2.2)
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Then the likelihood is given by

i(x;p,^^) = n(l-p)z(x'')[p/(x(.^^)]M*/)

=(i-p)
/ \-I'M

n
H f{x)^

Mx) exp
<p{x)

M*;)

It is possible to show that (6.2.2) is a member of three parameter exponential

are jointlyfamily with [ Xz(x/)'Z[1-2(x')]lnWxi))'S[1_z(x-)]{^(X')} 

v ;=i

complete sufficient for (p,/?,#), provided 0(x) is real valued and strictly increasing 

function of x with 0(O)=O and its inverse function exists.

The estimating equations are constructed from the log likelihood and are given by

dinL_ Ez(x/) , n~Zz(x.)_0
dp 1-p p

3lnL =-0-ZzM]
dir#)

dp
+ ln£? +S[1-z(x')],nWx')}=0

(6.2.3)

(6.2.4)

(6.2.5)

Since the equation (6.2.3) is independent of 6 and/?, one can solve and get

p = rLlLi if Vz(x;)=r. The estimates 0 and are obtained by solving (6.2.4) 
n ^

and (6.2.5) which are the conditional likelihood equations given (n-r) positive 

observations. One can also obtain the Fisher information as the expectation of 

second derivative of the likelihood equations above once the form of ^(x) is known.
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6.3 Early failures

To accommodate the possibility of instantaneous and early failures the class 

of generalized failure time distribution (GFTD) S={F(xt0),0e £2} is modified to

distribution Q]={G1(x1$,p) = (l-p) + pF(8,0) + pf(x,B),Fe 3,x>0,0<p<l}. The

failure tiros correspond to early failures which are reported as 0 which is very very 

small and hence the modified model will be a mixture in the proportion 1-p and p. 

The estimation procedure for the parameters involved in the model. The modified 

generalized failure time distribution is given by distribution function

ty[x,p,0)

0 x<8
• 1 -p+pF(8,0), x = S 

pf(x,0), x>8

(6.3.1)

which can be simplified as

g1{x,p,6) =
0

1 -p¥(S,0),

Pf{x,0),

x<5

x-5

x>S

(6.3.2)

6.3.2 Maximum likelihood estimation in early failures

On substituting the modified general failure time distribution is given as

g1(x,p,0,/3) =

1 -pF(8,0,P),

|V(*)
JA 0 J U(x)

r
exp

V

iKx)=5

${x)>8
(6.3.3)

letX1,X2,..... Xn, be a random sample of size n from

nL(x,p,0,p) = Y[Qi(xi>P'0>fi)
l
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then define

Z(x) = 1,

0,

x = S 
x>5

L(x,p,0^)=n(l-pF{^0^})^)[p/(x1.,0^)]1-z(x'')
i=i

-E'h)

nX:>5

{^(^))
l(V(x)

exp
V L

>00'

e

M*;)

Jy

Here again it is possible to show that (6.3.3) is a member of three parameter

exponential family with S^(x))'Z[1“z(x.)]ln{^(Jf-)}''S[1“z(x/)]{^(x/)} are
V/=i

jointly complete sufficient for (p,fi,9), provided ^(x) is real valued and'strictly 

increasing function of x with ^(J) = 0 and its inverse function exists. The estimating 

equations are constructed from the log likelihood and are given by

9lnl_ ; ”-]j>(xf)

dp (1 -p)F{8,d,p) p
(6.3.4)

9lni
pEz(x.) r y ((l-p)F(eW) dj3 L Z, l iJJ dj3

+in^+2[l-?(x|.)]ln{^(x,.)}=0 (6.3.5)

dlnl pEz(x/) ^{8,d,P) (3y nl
de (i~P)F{5,e,p) de eluK e

+^rZ[1-z(x.)}>(x;) = 0

Solving (6.3.4) one gets

nF(S,9,j3)

(6.3.6)

(6.3.7)
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Equation (6.3.5) and (6.3.6) have to be solved simultaneously using 

numerical iterative method to obtain the estimation of parameters under study .

6.4 Nearly instantaneous failure

Let F(x)and R(x) = 1-F(x)denote the cumulative distribution function 

and the survival function of the mixture, respectively. Fis continuous and its density 

be given by /(x)= F'(x).The component distribution functions and their survival

functions are Fj(x)and jR,.(x) = 1-F,(x) respectively, i=l,2. The hazard rate of a 

lifetime distribution is defined as h(x)=f(x)/R(x) provided the density exists. 

Instead of assuming an instant or an early failures to occur at a particular point, as in 

the original model as above, we now represent this model as a mixture of the 

generalized Dirac delta function and the generalized failure time. Thus the resulting 

modification gives rise to a density function:

/(x) = (1-p)^(x-x0)+1 (VMf f r#MT|
l 9 ) >(*) exp L * JJ

where
p + g=l, 0<p<l, ^(x)>0, /?>0. (6.4.1)

and

$,(*-*o x0<x<x0+d
otherwise

(6.4.2)

for sufficiently small d. Here p>o is the mixing proportion. Also note that

<S(x-x0) = lim <%(x-x0) (6.4.3)
d-+0

where <?(*) is the Dirac delta function as given in section (2.4) of chapter 2. Both the 

distribution and survival functions are continuous.

Writing
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(6.4.4)

fAx)=5Ax-xo)and A(x)= f ^(*)Y exp
(

l o ) i>{*) V L x JJ

Then (6.4.1) can be written as

/(x) = q/1(x) + p/2(x) where p + q = l, 0<p<l

so that
F(x) = qF1{x)+pF1(x) 

the corresponding survival function is

R(x) = l-F{x) = q + p-qF1{x)-pF1{x) = qR1{x) + pR2{x)

and the hazard function of the mixture distribution is

., qfiiA + Pfii*) (6.4.7)
qR1(x) + pRI(x)

Now using above results, in terms of density function of particular distribution, given 

in equation (6.2.2) one can obtain various characteristics.

6.4.1 Characteristics of the model

The life time models are generally characterised in terms of its hazard rate 

function, survival function and the mean residual life functions. Below we obtain 

these characteristics and obtain some useful relationship between them. The 

reliability (survival) functions of the respective component distributions are given by

/?,(*}=

1,
d + x0-x

d
undefined,

0 < x < x0 

x0 < x < x0 + d 

t>t0+d

and
R2(x) = F2(x)

(6.4.8)

(6.4.9)
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The hazard rates are, respectively,

0, 0<x<xn

M*} =
d + x0-x

x0<x<x0 + d

x>x0 + d

(6.4.10)

and

. ( x AW

'4W_Kw (6.4.11)

It can be shown (6.4.10) and (6.4.11) that for any mixture of two continuous 

distributions the hazard rate function can be expressed as

h[x) = = w(x)h1(x)+[l-w{x)]h2(x)
R[x)

(6.4.12)

where w(x)=qR1(x)//?(x) forall x>0. In our case,

w (x) =

q
R{t) ' 

qR^x)

R{x)

0,

o<x< x0

x0 < x < x0 + d

x > x0 + d

(6.4.13)

Establishing some interesting relationship between the survival function and hazard 

function through w{x) as follows:

Since
w(x) = qR1{x)/R{x)

„ X q[R,1(x)R{x)-R1(x)R'(x)] 
w (x)=-k—. -.. 2Mx)]

upon substituting the value of R{x) from above and simplifying, we get
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w■'(*)=
pq[R;(x)R2(x)-R1(x)R;(x)]

__

If the terms, are rearranged one gets

*/(*) =

"
pqR^xjR-^x)

Ki*)
Ri(x)

Ki*)
R2{x)

Now recall,

w(x) = qR^x)
R(x)

l-w(x)
pRz(x) 
m' hx[x)=-

<V(x)
^i(x)

and h2{x) = —
Ra'(x)
R2(x)

hence

w'(x) = w(x)[l-w(x)]{fj2(x) f)x(x)} (6.4.14)

in a similar way, one can show that

f),(x) = w'(x)/?1(x) + tv(x)/7;(x)-w,(x)/72(x)+[l--w(x)]h;(x) (6.4.15)

also, since fx(x) =-Rjx), one gets

w{x)hl{x) = q
Rt(x) fx{x) _qfAx) 
R(x) Rx(x) R(x)

which shows that, (6.4.12) is well defined for all x > 0. Thus the summarized 

expression for R(x), h(x) and m(x), are respectively, given as

R(x) = <

q+pF{x), 
q[d + x0-x] 

d
+ pf (x),

pF(x),

0<x < x0 

x0 < x < x0 + d 

x> x0 + d

(6.4.16)

-141 -



pF (*)£(*)
q + pF(x) j

U^pfM4w_
q(d - x) + dpF (x)

£(*)*

0<x<x0

x0<x<xa + d 

x>x0 + d

(6.4.17)

The mean residua! life (MRL) of a random variable X defined for all x as

I Rx(y)dy
mx{x) = E{X-x/X>x)=IS——

Hx\x)

This is the expected additional time to failure given survival to x, which can also be 

expressed in terms of mixture of two MRL's as

m(x) = qm1 (x)+pm2 (x)

where

m (x) =

0 < x < x„

X +d-x—-----------, x0<x<x0+d

0, x>x0 + d

and

m2(x)=

oo

jK(y)dy
y>d

(6.4.18)

(6.4.19)

(6.4.20)

6.4.2 Particular Case When (X0 = 0)

Consider a special case of model (6.4.1) whereby x0 = 0. The model may be 

called the model with "nearly instantaneous failure". In this case, (6.4.3) is simplified 

giving the hazard rate of the uniform distribution as
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0 <x<d 

x>d
(6.4.21)

and its survival rate function is given as

d-x
d '

0,

0<x<d

x>d
(6.4.22)

Thus the generalized model with "nearly instantaneous failure" occurring uniformly 

over [0, d] has the survival function

R(X):

q(d-x)
d

pK{*)'

+ pF2(x), 0<x<d

x>d

and the hazard function as

q+dpf2(x)
q(d-x)+dp’

0 <x<x0 +d 

x>x0 +d

(6.4.23)

(6.4.24)

One can study the above characteristics by plotting graphs, with various 

combinations of values of parameters.

6.5 Testing of hypothesis

Here the interest is to test the hypothesis, whether sample observations 

belong to inliers population against hypothesis that it belongs to target population. 

Refer equation (1.6.1), the hypothesis can be written as

H0:E,=fy versus H0:^*§. (6.5.1)

where % is the common population parameter under study. Below we discuss 

various computationally simple test procedures to detect inliers in a model.
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6.5.1 Sequential Probability Ratio Test (SPRT) to detect inliers in the model

SPRT to test the hypothesis whether a observation belongs to inlier population 

with p.d.f. g{x,(t>) against hypothesis that it belongs to target population with p.d.f.

f(x,0). i.e. equation (6.5.1).

The likelihood when Hi is true, is given by

k-hfM
/=i

and under Ho, it is

*o=n*M>
!=1

And likelihood ratio Xr is given by Xr =— or equivalently
^■n

I n __ Y1! f(x/'&) _ Y1
r 5 g{x„4>) w ( (6.5.2)

For deciding number of inliers we continue to take ordered observations one by one 

till we reject Ho- That is

if £z, < logB accept H0 and take the next observation.
/=i

and
r

if - log A reject H0 and stop.
i=l

The corresponding m represents the first observation from target observation and

Y l — yhence r-r~ 1 are the number of inliers. And B=-------, A —------- , where a
\-a a

represents probability of type I error and y represents probability of type II error. Now 

the SPRT procedure is investigated for following special cases.

Case 1: Testing for scale parameter when shape parameter f}0 = = b.
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To test: H0:8-80 against H1\8=91

8q and 6X are the scale parameters of inlier distribution and target distribution 

respectively.

The test statistics is

ln4> =<A[ln0o -|nfi'i] +
90 #a

Reject H0 when

^(x) - lM-rA[ln^o-|n^i]
/=i 1 1

(6.5.3)

(6.5.4)

Case 2: Testing for shape parameter when scale parameter 60 = 61 = d.

To test : H0\fi=fi0 against H1;{3=/31

fiQ and are the shape parameters of inliers distribution and target distributions 

respectively.

The test statistics is

ln/lriff = [r^0-r^1]|ln^-2]ln^(x)Ur[|n|^-,nfX] (6.5.5)

Reject H0 when

InA-r^Infj^-ln p1

'[A-A]
+inf? (6.5.6)

6.5.2 Most Powerful Test

For the hypothesis as defined in equation (6.5.1), the most powerful test to 

reject Ho is given by
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y/{x)
1,

0,

P»(*)
P0(x) > Ca

P(x)

P0{x) < Ca

(6.5.7)

Where P,(x) and P0(x) are likelihood functions under distribution of target 

population 3 and inlier population Q respectively Ca is such that test attains level

pi(*}
of the test when H0 is true. We reject H0for large values of the ratio ——.

Po\x)

Case 1: Testing for scale parameter when shape parameter fi0 = ft = b.

To test H0:8=80 against H1:6 -8^ where the parameters are as defined

before in section (6.5.1).

The most powerful test is given by

V{*) = f=l

0, otherwise.

Ca - rtfi [log 8C - log 9._ ]

8n 8L
(6.5.8)

Case 2: Testing for shape parameter when scale parameter 80=8l=8.

To test : H0 : =fi0 against H1\P=/51

The most powerful test is given by

Vi*)-
n

1, ]Tlog^(x):

0, otherwise.

-n|log[&-log[£j
+log 8 (6.5.9)

Ca is such that test attains level of the test when Ho is true. Once Ca is obtained we 

can find power function under alternative hypothesis.
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6.6 Information Criterion

Again three information criteria which are already discussed in section (2.5) are used 

such as Schwarz's Information criterion (5/0 -HnL(Q) + p In n), Schawarz's Bayesian 

Information criterion (B/O -InL(O) + 0.5( p in n)/n ) and Hannan-Quinn criterion 

[HQ= -lnL(0} + p ln[!n(n)] ) to detect number of inliers. L{0) represents the maximum 

likelihood function and p is the number of free parameters that need to be 

estimated under the model.

Below we develop the procedure for SIC scheme. We consider the model of 

no inliers as Model S/C(0), where all the observations are from target population. 

Model S/C(r) will denote r observations are inlier and remaining [n~r) observations 

are from target population. Our aim is to obtain number of inliers in the sample. For 

density in equation (6.2.2) the model with zero inlier is given by

„S/C(o)=2nySlln01-2(^1 -±)^\nj>{x!) + 2n\xJ\f31 + —^--------+2lnn (6.6.1)

and the model with r inliers is as

rSIC{r) = 2P0r\n9a-2{p0-l)Yj\t^{xi)+2n\n\fQ+-^------- + 2^(n - r)lndl

n 2IX*,-)

-2(^-1) ]>] ln^(x,-)+2(n-r)lnf^H————+4lnn (6.6.2)
l=r+1 @i

According to the procedure, the model(O) is selected with no inliers if 

S/C(o)< min SIC(r). And the model(r) is selected if S/C(0)> min SIC(r). Similarly

we can find criteria for BIC and HQ.

6.7 Estimation and test for specific distributions

One can obtain, life distribution, such as, exponential, gamma, Weibull and 

Rayleigh distribution by substituting appropriate form of the parameters.

-147-



6.7.1 Exponential model

If ^(x)=x and /? = 1 then (6.2.2) reduces to a one parameter exponential 

distribution with the MLE under instantaneous failure model for p and 9 is given as

n-r and 0:
I*.
x;>0

n-r
(6.7.1)

The MLE under early failure model for p and 9 is given as

2>,- n-r , s *:>s ~p =-------, and 9 = -----------5. (6.7.2)
n-r

ne
The test criteria to test H0 : There are no inliers in data set against a single inlier is 

present in the data from exponential distribution is given by 

Reject Ho

x
if <C

5>.
(6.7.3)

M

where C is to be chosen such that

Tx
w

<c -a,

where a is the size of the test.

6.7.2 Rayleigh model

If ^(x)=x2 and = l then (6.2.2) reduces to a one parameter Rayleigh 

distribution, and the MLE under instantaneous failure model for p and 9 is given as
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- n-r
P=-------

n

Z. X;>0
and 9 =-----

n-r
(6.7.4)

The MLE under early failure model for p and 6 is given as

z*?
p=

n-r x , p. Xj>s X2——e9 and 9------------ o
n n-r

(6.7.5)

To test H0 : all observations are from Rayleigh distribution with parameter 9 against 

a single inlier is present in the data, is given by 

Reject Ho

if (6.7.6)

where C is to be chosen such that we attain the size of the test under null 

hypothesis.

6.7.3 Weibull model

If 0(x) = xb and jS = l then (6.2.2) reduces to a two parameter Weibull 

distribution. The MLE under instantaneous failure model for p, b and 9 is given as

« n-r
P =------

n
and

n-r

and for the estimate of b one has to solve the following equation

(n~r)

b
+£,nx/

Xj>0

(n-r)5»*/
- = 0

S'

similarly the MLE under early failure model for p and 9 is given as

(6.7.7)

(6.7.8)
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„ n-r - p=-------e"

Z*
and 0=-

n-r
(6.7.9)

and for parameter b one has to solve the following equation

(n-r)<y-Ex,‘lnx, £lnx, 
-+±+&X;>$

(6.7.10)

X;>8

The test for presence of single inlier in Weibull family is derived in section

(6.7.4.1).

6.7.4 Gamma model

If 0(x) = x then (6.2.2) reduces to a two parameter Gamma distribution with 

the MLE under instantaneous failure model for p, /? and Misgiven as

^ and 0 = -'>O
(n-r)p

where for P one has to solve the equation

(n“r) .(n.r)fHp+,n£>+5:,nX|as0
p dp

The MLE under early failure model forp and 0 is given as 

« n-r
nF (8,e,P)

(6.7.11)

(6.7.12)

(6.7.13)

For getting the estimates of 9,p the following two equations are obtained, which 

are to be solved simultaneously

rp dF(S,9,P) , x9lnP) , „ Vl
1 -pF{8,9,p) dp K 1 dp fa ' (6.7.14)
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//

rp dF{S,0,p)
1-pF (S,0,P) d9

. !«■
p *>■>■r)— + —— '<9 6>2 (^1=:

where

F(S,9,P) = l /KrN))
ep rp

The test for single inlier in Gamma distribution is equivalent to that of exponential 

distribution.

6.7.4.1 Testing for one inlier in Weibull family

Consider the problem of H0:r = 0 (i.e. no inliers ) versus H0:r = l(i.e. one 

inlier) in data with Weibull distribution. The joint pdf under H0 is given by L0 and 

under Hj is given by Li. Hence

L -c<f)9”~ l exp
x 1*0

9

and

L =c9n exp

(6.7.12)

(6.7.13)

„ S*(i) „ X*(/>
We already know that 0 = —----  under H0 where as under Ht 9 = j^—- and

n (n-1)

<t> = xW

Substituting the above values in equations (6.7.12) and (6.7.13), one can obtain 

likelihood ratio test as
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k
k <c

f n Y'1
fi (>)

V'=2 V
^ n

l<>

V 1=1

<c (6.7.14)

( "
IV<= 1?A-> (i)

( « Y (1)
Z<,

x,,. <C

V >=i 7

(\ 0-1 

r -xfl x
W / !w

The test is to reject H0 if

<C where f = 2x(/)

-<C (6.7.15)

where Cis to be chosen such that

(V i 
-^<0 

T\ 7
= 4,

and or is the size of the test. For the simulated data from Weibull (0.02, 5) the 

values of C for various size of the test are obtained in table (6.7.1). Using these C 

values power of the test have been obtained in table (6.7.2). For computation of 

power the data is simulated from Weibull (0.001,1).
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Table 6.7.1. Values of C

a n

10 30 50 100

0.01 0.00065 0.00023 0.00015 7.64E-05

0.025 0.00095 0.00027 0.00016 8.14E-05

0.05 0.00149 0.00029 0.00017 8.44E-05

0.10 0.00290 0.00051 0.0002 9.09E-05

0.25 0.00670 0.00089 0.00038 0.0001

0.95 0.02343 0.00324 0.00119 0.00036

0.99 0.03555 • 0.00499 0.00189 0.00051

Table 6.7.2. Power of the test

n

10 30 50 100

0.004 0.005 0.007 0.008

0.036 0.035 0.046 0.047

0.083 0.073 0.095 0.098

0.197 0.234 0.242 0.245

0.423 0.467 0.492 0.494

0.888 0.934 0.945 0.947

0.978 0.991 0.989 0.99

The power in above table are found using C values obtained in table (6.7.1).

6.8 Application

The data, collected by Amutha and Porchelvan (2009), represents monthly 

rainfall (in mm) during year 2004 and 2006 for the estimation of surface runoff in
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Malattar Sub-watershed in Andhra Pradesh. The watershed experiences tropical 

monsoon climate with normal temperature, humidity and evaporation throughout 

the year. Runoff is one of the important hydrologic variables used in water resources 

applications and management planning. For gauged watershed accuracy of 

estimation of runoff on land surface and river requires much time and effort.

Set 1 (2004): 3.40,0.00,0.00,15.80, 232.80, 8.80,123.20,47.00,154.00,103.20, 

89.80 and 12.20.

Set 2 {2006}: 0.00,0.00,21.40, 60.20, 53.86, 93.20, 27.80,45.40,205.40,101.20, 

128.20 and 0.00.

Using Kolmogorov-Smirnov test, we have come to the conclusion that 

exponential distribution fits well to above set 1 and set 2. Hence the analysis for the 

data set 1 and 2 is conducted for Exponential and Rayleigh distribution. Estimates of 

parameters with their standard error are calculated for instantaneous failure, early 

failures and nearly instantaneous model shown in the tables below.

Table 6.8.1. Instantaneous Failures

Distribution Parameter

Set 1 Set 2

Estimates Standard Error Estimates Standard Error

P 0.83333 2.68328 0.75 0.012217

Exponential e 0.01265 0.00400 2.30941 0.003863

Rayleigh e 0.000166 5.24224E-05 0.000103011 3.43E-05
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Table 6.8.2. Early Failures
Set 1 Set 2

Distribution Parameter
8 = 20 5 = 30

Estimates Standard Error Estimates Standard Error

P 0.50000 2.00000 0.58333 2.02837

Exponential

P 0.09950 0.04062 0.04065 0.016595

e 0.00799 0.00325 0.010182 0.004157

Rayleigh

P 0.008205 0.00259 0.001624 0.001149

9 0.00010 3.170E-05 8.126E-05 3.071E-05

Table 6.8,3. Nearly Instantaneous Failures
Set 1 Set 2

Distribution Parameter
8=20 8=21.4

Estimates Standard Error Estimates Standard Error

Exponential 6 0.01481 0.00428 0.01583 0.00457

Rayleigh 9 0.000104 3.3E-05 0.000136 3.95E-05

From above table we can clearly observe that Rayleigh distribution fits better to 

above data sets.
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6.9 Future Prospects

We have considered the Bayesian approach to inliers problem only for 

exponential model in this chapter. Also considered in this chapter is the inlier 

estimation of mixture of two different distributions from exponential family. This is 

further extended for mixture of any two life testing distributions when inliers are 

encountered. Bayesian method for estimation of parameters of mixture distribution 

of inliers and target population, assuming distribution other than exponential is also 

explored. It is possible to have observations as inliers, target and outliers, thus 

leading to mixture of three densities. The estimation procedure for such a model is 

challenging. We will be pursuing this study in future.
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