
Chapter 2

Inlier estimation in Pareto distribution

2.1 Introduction

Pareto distribution has recently been used as a model for file sizes on the 

internet, insurance losses, and financial behavior of the stock market as well as in 

telecommunication systems. Many of the empirical studies also use Pareto's law for 

representing long tail distributions. The proposed study is aimed to look further for the 

suitability of Pareto distributions in the context of life testing experiments where data 

involves instantaneous and early failures. The occurrence of instantaneous or early 

failures in life testing experiment is a phenomenon observed in electronic components 

as well as in clinical trials. These occurrences may be due to inferior quality or faulty 

construction or due to no response of the treatments. Such failures usually discard the 

assumption of a unimodal distribution and hence the usual method of modeling and 

inference procedures may not be accurate in practice. These situations can be handled 

by modifying used parametric model Pareto distribution. The modified model is then a 

non-standard mixture of distribution by mixing a singular distribution at zero to 

accommodate instantaneous failures.
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Consider a model 3 = {f(x;9),x >0,9e ft} where F(x,9j is a continuotefejlu/e' 

time distribution function (df) withF(0) = 0. To accommodate a real life situation, where 

instantaneous failures are observed at the origin, the model 3 is modified to Q = 

{G(x-,a,9) = (l-a) + af(x,9),0<a<l,Fe 3} by using a mixture in the proportion 1 -a

and a respectively of a singular random variable Z at zero and with a random variable X 

with df f g 3. The df corresponding to Gg § is given by

G (x,0,a) = (l-a) + af(x,9) (2.1.1)

Thus the modified failure time distribution will have its corresponding probability 

density function (pdf) as

g(x,9,a) = 1 - a, x sr 0 
a f(x,9), x > 0

(2.1.2)

The problem of inference about (ix,9\ has received considerable attention 

particularly when X is exponential with mean 9. Some of the early works are by Aitchison 

(1955), Kleyle and Dahiya (1975), Jayade and Prasad (1990), Vannman (1991), 

Muralidharan (1999, 2000), Kale and Muralidharan (2000) and references contained 

therein. Vannman (1995) and Muralidharan and Kale (2002) considered the case where F 

is a two parameter Gamma distribution with shape parameter and scale parameter 9 

and obtained confidence interval for <j)^afi9 assuming a known and unknown 

respectively.

To accommodate early failures, the family 3 is modified to = {Gi[x,9,ct\, x > 0, 

9eS2, 0 < a< 1} where the df corresponding to Gi€ Qi is given by

G;(x,ft a) = (] -a)H(x) + o.F(x, 9) (2.1.3)

where H{x) is a df with FI(S) = 1 for sufficiently small and assumed to be known and 

specified in advance. We also assume that the early failures are recorded as a class with 

notional failure time 8 so that the modified family Gi has a pdf with reference to
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measure //which is sum of Lebesgue measure on (S, °°) and a singular measure at 8. The 

corresponding pdf is then given by

0, x < S
g1{x,a,d) = 1 - a + aF{8,d), x-S 

a f{x,0), x > 8
(2.1.4)

Some of the references which treat early failure analysis with exponential 

distribution are Kale and Muralidharan (2000), Kale (2001), Kale and Muralidharan 

(2002), and Muralidharan and Lathika (2006), wherein they treat early failures as inliers 

using the sample configurations.

The objective is to consider the model 6 given by (2.1.1), Gx given by (2.1.3) and 

nearly instantaneous failures when F is Pareto and study the suitability of Pareto 

distribution in the context of life testing experiments. The Pareto distribution was 

originally derived in connection with studying income distribution. The Pareto 

distribution is a power-tailed distribution which is a special case of a heavy-tailed 

distribution whose tails go to zero more slowly than exponential. Many of the empirical 

studies also use Pareto's law for representing long tail distributions. The distribution also 

comes in various forms and types. Hence modeling differences between one parameter, 

two parameters and three parameters Pareto will be a point of interest. Fisher, Masi, 

Gross and Shortle (2005) have studied the modeling difference of such different forms of 

Pareto distribution in connection with queuing systems. A three parameter Pareto type 

family has the survival function

F(x)= —^— ,x>y,0>Q,fi>Q, y>0 
U+p~y)
( P Y (2.1.5)

or the more general form

F(x)=------—------r,x>r, d»0, 8>0, y>0V } fiHx-7)* (2.1.6)
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A two parameter Pareto can be easily obtained as a particular case of the above 

distributions for y = 0. The other forms of Pareto can be easily obtained for particular 

cases of /? and <f>.

We study two types of Pareto distribution in the context of instantaneous 

failures and early failures. From the point of view of estimating equations, Kale and 

Muralidharan (2000) have shown that Fisher information about 0 ignoring a in

the model G is less than/^0), the Fisher information about 8 in the original model 3. It

is also shown that the parameter a is orthogonal to 8 in the case of model (2.1.1), 

whereas, the parameter a is not orthogonal to 8 in the case of model (2.1.3). It is 

possible to show lgia)(8)< If(8) although Var(X|g) can be smaller than Var(X|f) in both

the models. In the subsequent sections, different types of Pareto distributions have 

been used with different parameters for analysis. The general theory of estimating 

equations and Fisher information's for instantaneous failures and early failures have 

been developed in the next two sections separately. We also discuss the importance of 

instantaneous and early failures in practical situations through a real life data set 

obtained by Vannman (1991).

2.2 Analysis for instantaneous failures

In this section we study inference regarding instantaneous failure. We have 

obtained UMVUE, Fishers information and MLE for the parameters of inlier and target 

population.

2.2.1 Fisher information

The pdf in (2.1.2) is with respect to the measure /u{x) which is the sum of 

Lebesgue measure over (Q,°o) and a singular measure at (0). If we assume as a

Cramer family, then In [g(x,8,dj] admits continuous partial derivatives with respect to 

(a,0) upto order two. Here 0can also be a vector of parameters. Further,
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jg(x,9,a)d/l = 1, can be differentiated twice under integral sign with respect to 

0
(a, 9)'. Hence G satisfies all the regularity conditions of Cramer (1966) and G is a 

Cramer family. Therefore from (2.1.2),

ding
da

-1

ta

x = 0

x>0

ding
~W

0,
dln/(x,0)

x = 0 

x>0

One can verify that E
ding
da

- 0 and E
ding
de

= 0. The element of the Fisher

information matrix, lg(a,9) are

ha ^

La-E

( d2lng^ 
da2

( d2lng^

V de1

a(l-a)

--a!s{6)

and

hx6 ~~ ha ~ E
dlngdlng^_ f din/

dp de S-{ 0!

(2.2.1)

(2.2.2)

(2.2.3)

Hence lg(a,6) = diag
\

parameters. Using the definition of Fisher information for # ignoring or in model ge Q 

as given by Liang (1983), denoted by lga){9), we have

—~—,alA9) , which shows that a and 9 are orthogonal a{l-a) f j

I (#)*9 -i i l
0a aa a6

= lgg = alf(9) as lae=ha= 0

(2.2.4)
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Since 0 <a< 1, lgla](0)< lf(0) and there is less information about 0 ignoring a in the 

model Q than that in the model 3.,

2.2.2 Maximum likelihood estimation.

Now let (Xl,X2,...,XII) be a random sample of size n from ge G and define

*00=

1, x = 0 
0, x>0

Then the likelihood function can be written as

L{x;a,0)=Y[9(xi’a>d)

Ml

=fl(l-afi)[af(xiM1"iXi)

X->0

If z(x,) = nQ, then the likelihood equations are given by
Ml

ainl = -n0 t n-n0 _Q 
da 1 -a a

and

3lnL

d0 = z
d\nf{xir0)

d0
= 0

(2.2.5)

(2.2.6)

(2.2.7)

then from (2.2.6), we have a- n-n„ and 0 will be the solution of (2.2.7). Using the

standard results on MLE, we have — / 1(a,0) - diag
ra(l-a) 1__ ^

n ' nalf (0) j
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The pdf of one parameter Pareto is defined as below

M=ir—7a'x>Q>P>Q
(1+x' 

xfi{\nxf
(1+xpf

r, u 1 (?T2-6)
!WX=J—

where the log likelihood is

lnt = rln(l-«r)+(n-r)[lnflr+ln^]+(/?-l)^lnx,. -2^ln (l+x/
X; >0 X ; > 0

and the Fisher information's are

a2,_,T «, = £ da1 a{l -a)

Lfi -1 fia ~ E
( 32ln^

v BcBfij
= 0

and

/«« = £’f a2lni]
a

1

+

i 3

9

The pdf for two parameter Pareto is as given below

./(*): J X>0, ^>0,/?>Q
JJ [l+(x/#]

For some computations below, we use the following formulas:

{1+(x/#}2

(x / <p)p ln(x/ f) 
{1 + (x/#}2

f(x)dx =

f(x)dx-

f(x)dx=-f-[ \n{fi/</>)]
bp
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and
r (x/^ln(x/$2 
II {1+{x/#}2 f[x)dx =

1 {tc1 -6) 

J32 18

The log likelihood is

lni. = rln(l-ar)+(n-r)[ln<2r+ln/?-/?ln0]+(/#-l)]rinx,.-2]rin
x,>0 x,>0

fi

and the Fisher information's are 

f 3’lnt'j 1

and

'«=*
a(l-a)

•»=E

( 92lnO
= 0

( d2\nO a \{(x2S)~

fi2 9

^/y/4 i A,

^AR — I i

(

v

( d2\n^

a _ a 
<j) 30

v
a^2

or/r 
'302

'£

The above computations for both criteria's are done for Vannman's example given in 

section (2.8).

2.2.3 Uniformly Minimum Variance Unbiased Estimator (UMVUE)

One can obtain UMVUE of mixture density of instantaneous and positive 

observation taken from Pareto distribution using the method discussed in Singh (2007). 

Based on above families we define a new family of df 

3={F(x;0,a):x>O,0€ O,0<a<l} such that
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f{x;0,a)
l-a+af(x;0), x = 0 

af(x;0), x>0

Hence the pdf of mixture family is obtained as

f(x;0,a) = (l-a)pa{1-p) 1 0 
(l+x)(i+x)9

/ 1 

^1+x

(i-/>)ln(i+x) 1 -ay

a0 j

a0,

(2.2.8)

which is a member of exponential family with cf(x):
1+x

, h(0) = exp(-0),

g(0)=— and d(x)=ln(l+x).We have z = 2](l-p)ln(l+x) and n-r = '^jpj which
0 x>0 x>0

are jointly complete sufficient statistics for (0,p). Since ln(l+x) has exponential 

distribution with parameter 0.

The UMVUE of mixture density is given by

Cx(*'r>n) =

B(z,r,n-l) _n-r
B{z,r,n) n

B(z-d(x),r-l,n-l)
r(x)

B(z,r,n)

x = 0, r = 0,1,2....n-1 

x>0, z>d(x), r-l,2....n

where

8(z,r,n)
|”Je(z|r), z-r,r+1.... ; r = l,2....n

1, z=0, r = 0

and B(z|r) is such that

[b{0)-a(O)J = j|8(z\r)0r, r = l,2,....n.
z-r
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The above expression simplifies to

(2.2.9)

nzx z

which is UMVUE of mixture density of instantaneous failure and positive observation 

taken from Pareto distribution.

2.3 Analysis for early failures

If early failures are nominally reported as X = S then the df of the modified 

model Gi is given as

0, x < 8
G^x.a.9) = 1 - a + aF{8,9), x = 8 

1 -a + aF{x,9), x>S

(2.3.1)

The corresponding pdf is given as

0, x<8
g1(x,a,9) = l l-a + aF(8,9), x = 8 

af{x,9), x>8

(2.3.2)

The Fisher informations can be obtained as

1 ~F(8,9) (2.3.3)
m a[l-a + aF{8,9)]

(2.3.4)

and

(2.3.5)
[l -a+aF(8,9)]
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where l}{9) is the Fisher information about 9 in the original pdf f(x,9). Again using 

(2.3.4), we get the Fisher information about 9 ignoring a as

a
31n/'' 
3 9

f(x,9)dx-
'd F(S,9)

v 3 9

1 ~a+aF(S, 9) [l - F(S, 6>)]
(2.3.6)

FI ere one can see that the parameters a and 9 are not orthogonal. Also as 

0 < a< 1, lg w(9)<lf(9). If the n observations X1,X2,...,Xn are from gt€ (#u then the

likelihood is

L(x,a,9) = [l- a + aF{S,9)]n° a"~"a fj f(x,,9).
x<>$

Then the ML estimates are the solutions of the following likelihood equations:

3lnL -n0[l-F{S,9)} ^ n-nQ _Q 

3 a l-a+aF{S,9) a

and
33)nL_'n°MF{S,e) | y 3lnf(xi,9)_Q 

3 9 1 -F(S,9) 3 9

Equation (2.3.8) does not depend on a and hence one can obtain 9 from (2.3.8). Using 

this 9 in (2.3.7) we can obtains. Again,

L{xfa,9) = [l-a+aF{S,9)]"Q (a[l-F{S,9)])" "0

That is, the likelihood of the sample under g,e§, is the product of the 

likelihoods of n0 and the conditional likelihood of the sample given n0 which is same as 

the likelihood of (n-n0) observations coming from the truncated version of fe3 or 

(0ie £,) restricted to {<$<»). Now n0 is binomial with probability of success given by 

l-a+aF(S,9j. For fixed 9 and a e [0,1] this binomial family is complete. Therefore, the 

optimal estimating equation for 9 ignoring a is the conditional score function given n0

(2.3.7)

(2.3.8)
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or nV = 0 where i = FT . Hence optimal estimating equation for 9d9 ' yi-f(<5,0)

3lni.n
ignoring cr is given by (2.3.8). Thus -r-5- or 9 is same as the estimator given by

o9

optimal estimating equation for 9 ignoring a.

For some computations of one parameter Pareto family defined in section (2.1), 

we have the following formulas:

■ rf x^lnx2
|_{1+xpf

The log likelihood of early failure in one parameter Pareto model is

f(x)dx:
l+3u + (l+lnu)(2lnu + 6ulnu) ^

12(1+ u)3

lnL= rln a -(n-r)[lnor+ln^] + (^-l)^lnx(.-2^ln(l+x(/)
X;>5 (:>S

and the Fisher Information's are

' a2lnl" 
, da2 , a(l-a+u)

I ap ~ I fia~E
( 32 In/. ^ 
V 'docdpj

uln 8
(l+u){l-a+u)

and

( 32lnl^j a 1 1+3u + (1+lnu)(21nu+6ulnu))

1 W2 ) 1+u 1 l 6(1+uf J_

----- auVnS?...—[(1+u)(l- a+u) - u(2+2u - a],
(1+u) (l-a+u)L

where u = 8?.

For two parameters Pareto family as defined in section (2.1) we have to use the 

following formulas:
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f (*/#
J[{l + (x/#}2 f{x)dx = - 1

---- :----r +3[l+v]3
1

2[l+v]2 ’

l (x/02j?
{1 + (x/#}2

f(x)dx- 1
{1 + v}

1 1 
[1 + v]2 + 3[l+v]3 '

and

'(x/0fwx/<?>f f(x)dx = ~^~r v(l + v) + v(3+v)lnv . .--------—4—!—+ln 1 + vL a+(x/#}2 J 6jB L (i+v)3 J

where v = (S/ .

The log likelihood of early failures in two parameters Pareto model is

In L= rln a
1+(<W

+ (n-r)[lna+ln/?-/?ln^]+(/?-l)^lnx;

-2£ln[l+(x(./#]
<:>5

X;>S

Then Fisher information equations corresponding to two parameters Pareto models are 

as given below

/
= E

3zln/.N

da1 j
1

ar(l-a+v)

'afl ' -ba=E a2 Inf. 
ddd/3

vln (S j <[>)
(l + v)(l-a+v)

f a2lnl1 1 1 fl+3v + (l+lnv)(2lnv + 6vlnv)l
,w~t l “ p 1+v ' [ 6(1+v)3 J

—ocv\\r\{S / <f>)\—[(i+v-a)(i+v)-v(2+2v-a)] 
(1+v)3 (1 + v — nr)1' J
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A92lnl
dad</>) ^(1 + v)2

32lnLX| 1 v(l + v + v(3 + v)lnv) 3(2v2 + 3v +1) , , ,—L_-------.—t_|n(i + u)l dpdp)
3</> (1+vf (1 + v)3 J

av[{X + v-a)(l + v){\ + p\n[S ! </>)}- pv\n(8 / <t>)[2+2v-a)\ 1
^(l + v-«)(l + v)3 </){! +v)

and

/
/ = f

v

d2ln L) p

dtp1 J <p
1 (2 + v)Qff + l) t 2(3(1+ v2) + 5v}

(l + v) + 6(1 + vf 3(1 +v)3

2aPv{{l + v - g)(l + u)(l + P) - /?y(2 + 2v - «) 
<p2{l + v-a)(l+vf

where v-(S!4>f.

The above information is used in illustration given in section (2.8) with comparative 

study of instantaneous failures and early failures are presented for different situations.

2.4 Nearly instantaneous model

As already discussed in chapter 1 nearly instantaneous model incorporates inliers 

in better way than the above two models.

2.4.1 Representation of the model

Let F(x) and F(x) = /-F(x) denote the cumulative distribution function and the 

survival function of the mixture, respectively. We assume that F is continuous and its 

density be given by/(x) = F'(x). The component distribution functions and their survival

functions are Ft (x) and ^(x) = 7-/;;(x) respectively, i=l, 2. The failure rate of a lifetime 

distribution is defined as A(x)=f(x)/R{x) provided the density exists.
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We now represent this model as a mixture of the generalized Dirac delta function 

and the 2-parameter Pareto as opposed to a mixture of a singular distribution with

Pareto, as

f(x)=pdd(x-x0) + qajB~axa 1 1+ ,p+q = l,Q<p<l ,x>0 (2.4.1)

,a>0,fi>0

where

x0 <x<x0+d
(2.4.2)

0, otherwise

for sufficiently small d. Here p > 0 is the mixing proportion. Also note that

*(*-*b) = lim$,(x-x0) (2.4.3)

where £(•) is the Dirac delta function. We may view the Dirac delta function as 

approximately normal distribution having a zero mean and standard deviation that tends 

to 1. For fixed value of d, equation (2.4.2) denotes a uniform distribution over an interval 

[xo, x0+ cf] so the modified model is now effectively a mixture of a Pareto with a uniform 

distribution. Instead of including a possible instantaneous failure in the model (2.4.2) is 

allowed for a possible "nearly instantaneous" failure to occur uniformly over a very small 

time interval. Note that the case x0 = 0 corresponds to instantaneous failures, whereas 

x0 ^0 (but small) corresponds to the case with early failures. Noting from (2.4.1) and 

(2.4.2), we see that the mixture density function is not continuous at Xo and x0+ d. 

However, both the distribution and survival functions are continuous. Writing

can be written as

f(x) = pf1(x)+qf2(x) wherep+q = l, 0<p<l (2.4.4)

So
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F(x) = pF1(x)+qF2(x) (2.4.5)

and

R(x) = l-F(x) = p+q-[pF1{x)+qF2{x)] = pR1{x)+qR2{x) (2.4.6)

Thus, the failure (hazard) rate function of the mixture distribution is 

p«i(x)+g/?2(x)
(2.4.7)

A mixture distribution involving two 2-parameter Weibull distribution has been 

thoroughly studied by Lai, Khoo, Murlidharan (2007). The mixture considered was more 

complex in the sense that one of the mixing distributions has a finite range which poses 

some challenges. Simulated observations from this model are made by generating 

uniform variates and Pareto variates with proportions p and q = 1-p respectively.

2.4.2 Survival function, failure rate and mean residual life function of the nearly 
instantaneous model

Recently, failure rates of mixtures are discussed quite extensively. The Reliability 

(survival) functions of the respective component distributions are given by

and

R,(x) =

1,
d+xn

0,

0<x<x0 

x0 <x<x„ + d 

x>x0+d

R2{x) l

1+
a

The failure rates are, respectively,

(2.4.8)

(2.4.9)
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(2.4.10)

and

0,

M*)=' i
d + x0 -x '

0<x<x0 

x0 <x< xB +d 

x > x0 + d

h2(x) = afi axa „a-l i+ x, (2.4.11)

It can be shown (2.4.4) and (2.4.6) that for any mixture of two continuous 

distributions the failure rate function can be expressed as

h(x) m
R(x)

= w{x)f^{xHtt-Mxflh^x) (2.4.12)

where w(x)=pR1(x)/R(x) for all x>0. In our case,

w (x) = ‘

P
R{x) ' 

Pfti(x) 

R(x)

0 < X < x0

x0 < x < x0 + d 

x > x0 + d

(2.4.13)

with

w'(x) = w(x)[l - w (x)]{/)2 (x) - ftj (x)} (2.4.14)

Also a simple differentiation shows that

h'(x) - w'(x)hx (x) + w(x)/?' (x) - w'(x)h2 (x) + [l - w(x)]b' (x) (2.4.15)

Now w(x)h.(x) = pRl}X^ , so (2.4.12) is well defined for all x > 0.
v ; lV ; R(x) R^x) R(x)

Summarized expression for R(x),h(x) and m(x)are, respectively, given as

R(x) = pR1{x) + qR2(x)
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R(X)--

p+q 1+
'x'*

u
p[d + x0-x]

4~q 1+
'V*

kPj

i+
/ \« X '
kPj

0 < x < xn

, x0 < x < x0+d

x> x0 +d

Recall that h{x) is discontinuous at both x = x0and x = x0 +d.

h{x) =

r*Yl -1
<7 1+uJ.

p+q 1 +
\a

fi.

afi-axa 1+
( \a 

x , 0<x<x0

a 1p+dqafi~ax 1 +
\P J

p(d-x) + dq 

ap-axa-x 1+

1 +
(xT

UJ
x0 <x<xn+d

UJ
x>x0+d

Then the Mean residual life of an r.v. X is defined for all x as

oo
lRx{y)dy

mx(x) = E(X-x/ X > x) = * ^

This is the expected additional time to failure given survival to x. 

m(x) = pmj(x) + qm2(x)

where

(2.4.16)

(2.4.17)

(2.4.18)
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m1 (x)“■ x0 + d - x 
____

0,

0 < x < x0

x0 < x < x0 + d 

x > x0 + d

(2.4.19)

y>x0+d (2.4.20)

2.4.3 Nearly instantaneous failure case (x0=0)

Consider a special case of model (2.4.1) whereby xg=0. The model may be 

called the Pareto with "nearly instantaneous failure" model. In this case, (2.4.10) is 

simplified giving the failure rate of the uniform distribution as

h1(x) =
1

d-x' o<x<d

x>d

and corresponding to (2.4.8) its survival rate function is given as

(2.4.21)

«i(*) =
d-x 

d ' 

0,

o<x<d

x>d
(2.4.22)

The Pareto model with "nearly instantaneous failure" occurring uniformly over [0, cf] has

and

R{x)--

p{d-x)
+ q 1+ fi)

fx^S
1+

A

(ft)

0 <x<d

x>d

(2.4.23)
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/?(x) = <

p+dqa/}axu 1 1 +
kP ,

a

p(d-x) + dq 1 +
(x' a -/

a/rax“
( x~) a

i+ A

Ifi)

0 <x<x0 + d

x>x0+d

(2.4.24)

We now present some graphical plots of Survival, Density and Failure Rate 

Functions. Graphical plots are important for ageing distributions. Some graphs are 

plotted to identify whether the model is useful for specific datasets for which empirical 

plots are available. All plots are done when x0 = 0, the Pareto with "nearly" 

instantaneous failure model. A plot of density function, Survival function and MRL 

functions for various values of p are given below.

Fig. 2.4.1. Density function f(x): p =3, a =2, d = 0.5, x0 = 0.

Failure Rate Functions. The failure rate function is given in fig. (2.4.7). Clearly, its shape 

is the same as the Pareto distribution after d. Thus we focus on the segment from 0 to d. 

The following four figures show that h(x) can be increasing, decreasing, or bathtub 

shaped for 0 < x < d. From the plots, it can be seen that the failure rate function of the 

model gives rise to several different shapes and bumps; this is expected as mixing with a 

component distribution that has a finite range often cause some problems. Although the
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second part can be either increasing or decreasing, the first segment can achieve various 

shapes. This finding agrees with Block (2003).

Figure 2.4.2 Density function f(x): 6 = 1,a =2, d = 0.2, x0 = 0.

Figure 2.4.3 Reliability function R(x): 6 =3, a =2,d = 0.5, x0 = 0
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Fig, 2.4.4. Reliability function R(x): 6 =1, a=2,d = 0.5, x0 = 0

Fig. 2.4.5. Plot of mean residual m(x): =1, a=2,d = 0.5, x0 = 0

Fig. 2.4.6. Plot of mean residual m(x): =3,a =2, d = 0.5,10 = 0.
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Figure (2.4.6) represents failure rate h{x) for different combinations of a, p, p and d.

(b) a=1.2, 6=1, p=0.08, d=0.5

Fig. 2.4.7. Failure rate

2.5 Inlier estimation using Lk and Mk models

In this section we consider the situation where instantaneous (i.e. X = 0) failures 

can also occur by mixing a singular distribution at X = 0 with the above model of inliers. 

Assuming that the data is usually consisting of r0 instantaneous failures, q early failures 

as indicated by sample configuration and the rest n-rg-q observations belong to the 

target population.
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2.5.1 Inlier estimation for labeled slippage (£*) models

For this model consider observations from inlier with pdf

g{x) =----—--~,x>0, #>0
(1+ x)#+1

and those from target population with pdf

m=Tr^>x>0'd>0
(1+x)

Then the likelihood of the sample from population with observations from inliers with 
pdf g{x(t),0) and target pdf f(x{i),&)

ri0(x('i^)n (2-51)/=1 i-r^+l

where <pr(G,F) is defined as

pAG>F) =p(xw< X(r+1!IG, f)

\roJ
(1 -af a ~!« rj(n

<pr^{G,F)

= l[G(u)Y(n-r)[l-F{u)rr-1dF{u) (2.5.2)

The likelihood function in (2.5.1) assumes that between the experiments when

units are placed on test we do not know which of the units fail instantaneously.

Equivalently X. =0, X, =0, ...X, =0 which fail early i.e. those units whose failure 
*1 *2 V0

time distribution is g{x(i),0) with failure rate much larger than that of the failure time 

distribution of the target population whose failure rate is considerably smaller. The log 

likelihood of the model is

\r\L = r0\n(l-a) + (n-r0)lrux-\ntpf (^,<9)+r1In^-(^+l)^Tln(l+xm)

+{n-ro-/i)ln0-(0+l) £ ln(l+*w)
#ss«j+l

and the likelihood equations are
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9ln L = —r0 [(n~r0) 
dor (l-a) a

(2.5.3)

and

3lnf
d0

In 9rx{^‘0)+ h
<P

(2.5.4)

3lnf
de

”-In^(#^) + —
9

n /2>(1 + x(0 (2.5.5)

Here (2.5.3) can be solved to get the estimate of a as a=(n-r0)/n. Solving (2.5.4) and 

(2.5.5) simultaneously we get the estimate of </> and 6. The parameter a is orthogonal 

to {<p,9). The second order derivatives are

92lnL d2 , r.

de2 de1 Vr'Kf ’ e2
and

32 Inf
d$0 dfi>0 In <PAW)

(2.5.6)

(2.5.7)

(2.5.8)

where

9,;(f>^) = (fl-r0-'l)j 1-
(l+xY (i+xy

6
{1 + *)

-dx

{n-ro-*i)8
r. +1,

(n-r0 — rx)6

(n-r0-ri)0
r(r1+i)r

(n-ro-rjff

((n-ro-r^d
Hrf^ +1

(2.5.9)

Taking log on both sides we get

\n<p (^,^)=C+ln^-ln^+lnr{z)-lnr((z+r1 + l))
ri
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where

and

z ={(n-r0-ri)6>}/^

—Inf, +-^-lnFz-|^—~lnr(z+r1 +l)—
1 > a(j> dp dp a#

-\j/(z)-ys(z+r1+1)]
(n-r0-rj)^

where
yf(z)=-~~rz andTz = ]x2 le^dx

The second derivative of the likelihood functions are

a2ln %{<p,e) i r -{2{n-rQ-r^a^
-=-ir+\y/{A-¥{^h+

df f

[— rV"---[/(z) - v'{z+ri+1)] (n-'b-'i)*

a2ln^(^,0) i r ,, , .
------^------ =-~~-+[yr(z)-y/{z + r1+l)] ---------3-------

a^ p

\n
-H

(n-r0~rj# \2
[5/(z)-^'(z+r1+l)]

0where i/(z)=—z-InFz
a^

now
m=^*h'"rz^~ie,"r(z+ri+1) 3z

a#

<?
+[f'(z)-f'(z+r1+l)]

(n-'i-O

a2ln^(^0)

a#2
-^r+[V(z)-«/(*+*+!)] in~ro~ri)
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yin 9h{t,$)

d$d9
= [^(z)-^(z + r1+1)] (n-r0-r,)

(n-f'-rje [r'W-f'(z+'i+i)]

Using results from Abramovitz and Stegun (1965) we get

ri ^[yr (z)-yr (z + r, +1)] = -£ ——
j=i 2 + J

[y'(2)-v'{2 + ^+i)\ = ^ (z+j)2

Using the above results, we obtain the likelihood equations as

-£ln(l+x?)=:0
d]nL = 0^ -ri+1 0(n~ro-ri)

* f
1 1E-7Zz+J

MnL (n-r0-ri-i) | (n-ro-ri)
do e $

1 1y—

mZ + J

(2.5.10)

(2.5.11)

(2.5.12)

- ]hn(l+x,.)=0 (2.5.13)

The above equations may be solved simultaneously to get estimates for $ and d. 

The Fisher information's are obtained as

’*=E
-32inl +1

1

__
1

i__
i i

f £z + J_

-32lnl
dO1

1 7 j *\2

_.n-ro-fi~l , [(n-fo~ri)l y 1
y 1 j hiz+jf

and

~a2ln L 0{n~ro-rif /i, 1y 1
,Hn-ro

d$0 U{z+j)2 J l f J j£(z+j)

The graph of (pr{G,F) to detect inlier is represented on graph (2.5.2).
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2.5.2 Identified Inliers Model (Mk model)

Here we assume that the failure times (X1,X2>..... Xn) of n units put on test are

such that {n-r) of them are i.i.d. with FTD belonging to 3 characterizing target 

population and remaining r are i.i.d. with FTD from Q causing inlier observations where

dG
G £ Q and F € 3 are such that — is decreasing in X. As the indexing set v and the

oF

number of inliers are known we can relate (X2,X2,......Xr) i.i.d. as G 6 § are

independently distributed of (Xr+1,Xr+2,..... X„)from F € 3. Then the likelihood of the

sample is given by

The MLE of parameter of G and F is a straight forward two sample problem. 

Suppose that the target population has FTD given by pareto distribution parameter 6 

and the inliers are given by pareto distribution with parameter <f> where <j»9 and the 

likelihood in the identified inlier model is given by

For each r =1, 2,...n we find maximum likelihood using equation (2.5.15), and then 

consider inlier f being that value of r for which likelihood is maximum.

2.5.3 Simulation study

To illustrate the method of identifying inliers model we have generated 15 

independent random samples, where five of them are coming from Pareto with 

parameter ^=20 and remaining ten observations from Pareto distribution with 

parameter 9 = 0.8. The samples are 0.01339, 0.02679, 0.03442, 0.05519, 0.09459, 

0.32854, 0.64367, 1.19427, 3.00276, 3.14612, 3.15643, 3.94635, 5.17659, 9.79405 and 

12.52736. The model under illustration is identified inliers model. The identification is

r n

L(x I e,v, r) = Jls (x) n f"(x)
(2.5.14)

(2.5.15)

-47-



done as follows to evaluate for each fixed r the maximum likelihood equation Lr and

then consider r being that value of r for which likelihood is maximum. The estimates 

have been presented in table (2.5.1).

failure number

It is interesting to note that the maximum likelihood corresponds to r = 5, which 

was expected. The corresponding estimates of the parameters are ^ = 22.96948 and

9 =0.704261. The graphical representations of the likelihood plot are given in figure 

(2.5.1).

Table 2.5.1. The Likelihood and parameter estimates
*

r 9 K
1 75.18149 0.971976 8.46574E-12
2 50.32893 0.904208 1.14685E-10
3 40.77225 0.836623 1.33608E-09
4 31.42176 0.769788 9.1914E-09
5 22.96948 0.704261 3.21716E-08
6 12.06675 0.646565 1.02195E-G8
7 7.041070 0.596001 2.28998E-09
8 4.494340 0.553932 4.46583E-10
9 2.841800 0.533335 4.66372E-11
10 2.179040 0.508762 1.37914E-11
11 1.829110 0.476013 6.59953E-12
12 1.576350 0.440886 3.38237E-12
13 1.378100 0.401308 1.74583E-12

Fig. 2.5.1. Likelihood plot

lik
el

ih
oo

d
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failure nos.

Figure 2.5.2. The graph of <pr{G,F)= P\X(j) < X(i+1)]

Clearly the above graph also indicates the number of inliers is 5.

2.6 Inliers detection using information criterion

The most important use of information criterion is, that it helps us in model 

selection, from the set of different models which all fit the data. These criteria are 

suitable when the underlying distribution and inlier distribution are available. It is an 

exploratory data analysis approach as no formal statistical inference is performed. Here 

three information criteria are discussed, to detect number of inliers in the data set, such 

as Schwarz's Information criterion {SIC = 2lnL(0) +plnn), Schawarz's Bayesian

Information criterion (BIC - -InL(6>)+ ■■■■'—■—)and Hannan-Quinn criterion :
n

HQ=-In L(0) + pin (in (n)) where L(0) the maximum likelihood function and p is the

number of free parameters that need to be estimated under the model. Below we 

develop the procedure for SIC scheme:

Denoting the parameter of X by a„ i=l,2,...n. The following model of no inliers 

where X is from one parameter Pareto distribution with pdf

m-
d

(1 + x),0+1

,x>G, Q>0.

in

C
0h»<D

Lf)*'frC
0C

\jT-O
ddddddodps

i f
un

ct
io

n
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Now let

Model(O) :£*;.=# i = 1,2,.... p , (2.6.1)

And the model with r inliers as

. . \$, 1 </<rModel(r):or, =<
]#, r+l</'<n (2.6.2)

where inliers have pdf g(x)- -, x > 0, <j> > 0 and r is such that 1 < r < n, is the
d+xr'

unknown index of the inliers. Model(O) may also be interpreted as having all 

observations from the target distribution F with common parameter .

Suppose that the life times of Xl,X2,...,Xn is sequence of independent random 

variables with Pareto distribution having unknown parameter#. Our aim is to detect 

those information's(inliers) from the n models given by equation (2.6.2).

According to the procedure, the mo^lel(O) is selected with no inliers if 

S/C(0)< min SlC(r). And the model(r) is selected if S/C(0)> min SIC(r). For Pareto

distribution, the model with 0 inlier is given by

n
S/C(o) = -2nln#+2(#+l)^]ln(l-f-x,.)+plnn (2.6.3)

and

S/C{r)=-2rln^-2(n-r)ln#+2(^+l)2n(l+x,.)+2(#+l) J]ln(l+x;)+plnn (2.6.4)

where

Eln(1+x-)
/=!

and 8-
(n-r)

E!n(i+^)
(2.6.5)

The estimate of inliers say r is such thatS/C(r) = minS/C(r). The illustration uses this

method with the simulated example discussed in the previous section (2.5.1) and Table 

(2.6.1) presents the parameter estimates and the information criterion values.
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Table 2.6.1. Parameter estimates and the information criterion values'

r 0 0 SIC(r) BIC{r) HQ(r)

0 1.040442 60.3520 29.82228 58.64077917
1 0.971976 75.18149 53.6980 26.49499 51.98621518
2 0.904208 50.32893 48.4857 23.88883 46.77389739
3 0.836623 40.77225 43.5751 21.43353 41.86328438
4 0.769788 31.42176 39.7180 19.50500 38.00622349
5 0.704261 22.96948 37.2124 18.25218 35.50059008
6 0.646565 12.06675 39.50599 19.39897 37.79417263
7 0.596001 7.041079 42.4975 20.89472 40.78567634
8 0.553932 4.494343 45.7668 22.52940 44.05502113
9 0.533335 2.841807 50.2853 24.78862 48.57347388
10 0.508762 2.179042 52.7220 26.00698 51.01018362
11 0.476013 1.829118 54.1960 26.74402 52.48427275
12 0.440886 1.576359 55.5329 27.41245 53.82112047
13 0.401308 1.378105 56.8556 28.07379 55.14380810

Clearly SIC(O) = 60.3526 >SIC(5) = minSIC(r) = 37.21241. A similar conclusion can be
1 <r<n

drawn in the case of other information criterions:

BIC(O) = 29.82228 > 6/C(5) = min BIC{r) = 18.25218
l<r<n

HQ( 0) = 58.64077917 >HQ(5) = min HQ(r) = 35.50059008.
l<r<n

Above table clearly indicates r = 5and the corresponding estimates for the parameters 

are 0 = 22.96948 and 9 =0.704261.

Next, we carried out an experiment with 1000 samples each of size 15 and 

number of inliers as 3,4,5 and 6 each with 9= 0.8 and 0 = 4,2,1.0,1.33. The following

table entitled power of SIC procedure presents the number of times the SIC procedure 

correctly identified the number of inliers in proportion to total number of samples. The 

values clearly indicate the effectiveness of the method in detecting the inliers. One of 

the important problem while detecting the inliers is the masking effect, where masking 

effect is defined as the loss of power due to wrong detection of more than one inlier.
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Table 2.6.2. Power of SIC procedure
0.2 0.4 0.6 0.8 .

3 0.055 0.083 0.098 0.103
4 0.084 0.116 0.136 0.128
5 0.102 0.153 0.158 0.157
6 0.128 0.168 0.170 0.175

2.7 Inlier estimation through Sequential Probability Ratio Test {SPRT)

To test the hypothesis whether an observation belongs to iniiers population 

against hypothesis that it belongs to target population. The SPRT test is given as follows:

Under the pdf and likelihood function is given by

f{x,d) = d/{l+xf+1 

and

e
(l + x)0+1

Undergo the pdf and likelihood function is given by

i+x)*1

and

ml (l+x)f+1

The likelihood ratio Xm is given by Xm = or equivalently

ln4, = Zln:_/..' I\=Zz0) m = 1'2'"n
'=1 g (xw^) ,= (2.7.1)

For deciding number of iniiers r we continue to take additional observations till we 

reject H0. That is,

m
if ^ InS accept W0and take the next observation.

/=1
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and
<77

if ]Tz(/) > InA reject H0 and stop. The corresponding m represents the first
/=i

observation from and number of inliersr = m-l.

B=
P

l-a (2.7.2)

where a represents probability of type I error and f5 represents probability of type II 
error. Hence

f\xln,0) m
ln4=Eln~T~TT=m(ln^~ln^ + £ln(1+x«)^“^)

w g
(2.7.3)

;=i

Arrange X(1) < X(2) <..... Xln) and apply SPRT process till the hypothesis H0 is rejected.(«)

Test criteria for rejection of H0 is

, „ . / \ in>H — miln4>lnA = 2>(1 + *W)>------^
nA-m(ln^-ln^)

-<*)
(2.7.4)

Corresponding value of m for which H0 was accepted last becomes number of inliers r. 

The above test is conducted for the example in next section.

2.8 Illustrative Example

The main reason for detecting early failures is that the inclusion of these 

observations will result in underestimating life expectancy or the reliability of the item 

or system. This in turn may underestimate the true quality of the product. But there are 

situations in which instantaneous or early failures may be desirable. For example, 

consider the following experiment carried by Vannman (1991). A batch of wooden 

boards is dried by a particular chemical process and the object of the experiment is to 

compare two processes as regards the extent of deformation of boards due to checking.

Id
The measure of damage to the board is the checking area x defined as x = -—-100,

hl0

where / is the length of the check, d is the mean depth of the check, h is the thickness
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of the board area and Z0 is the length of the board. Thus x is the check area measured as 

percentage of the board area. The boards are dried at the same time under different 

schedule and under some climatic conditions. When drying boards not all of them will 

get the checks and a typical sample of wood contain several observations with xr.= 0 or 

> 0 but relatively small compared to the rest of the checks. These observations will 

correspond to instantaneous failures or early failures. Note that the larger the number 

of instantaneous failures better is the process. Below is the reproduced data of Schedule 

1 and 2 of Experiment 3 conducted by Vannman (1991). In both the case n-37. For data 

refer appendix.

First of all, we justify the Pareto model for the above data using the technique 

given in Meeker and Escobar{1998) and plotted log[-log(l-p)], p= F(x-J against log(xJ 

and obtained the one parameter Pareto plot and two parameter Pareto plot separately 

for Schedule 2. For early failure analysis, we assumed <S=0.2. With this the observation 

0.08 of Schedule 1 becomes an early failure and the observations 0.02 to 0.09 (total of 5) 

items of Schedule 2 become early failures.

-2-1012
logxi

Fig. 2.8.1. One parameter Pareto plot for Schedule-2

The plots are given in figure (2.8.1) and (2.8.2) for one parameter and two 

parameters Pareto plot respectively for Schedule-2 of experiment 3.
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Fig. 2.8.2. Two parameter Pareto plot for Schedule-2

Table 2.8.1. Estimates of one parameter Pareto distribution
Model Parameter Estimates

Schedule-1 Schedule-2
Q a 0.64865 0.54054

(instantaneous (0.006159) (0.006712)
failures) P 1.00541 0.803645

(0.029455) (0.022583)

% a 0.86603 0.65394
(early failures) (0.012723) (0.017035)

P 0.577342 0.305469
(0.011761) (0.003649)

Table 2.8.2. Estimates of two parameter Pareto distribution
Model Parameter Estimates

Schedule-1 Schedule-2
§ a 0.64865 0.54054

(instantaneous (0.006160) (0.0067123)
failures) P 1.25299 0.800943

(0.421699) (0.139438)
* 2.77164 0.823577

(5.638073) (0.393020)
a 0.652919 0.43217

(early failures) (0.007057) (0.007451)

P 1.22408 1.23621
(0.034035) {0.036314)

2.30727 1.79431
(0.226172) (0.130620)

Note: the values in the parenthesis represents variances of the estimates



The above analysis shows that the results differ in the models § and <£?. In even if 

we keep £=0.1 or any value in between 0.1 to 0.2 the results are similar. Further, if we 

ignore the value of a then the information loss of p are 0.064116 for Schedule 1 and 

0.048048 for Schedule 2 correspond to the one parameter Pareto' distribution. Similarly 

the information loss for two parameter distributions is 0.0036226 for and 0.00015074 

for ^in Schedule 1 and 0.0023976 for/?and 0.0004433 for <f>\n Schedule 2, respectively. 

Thus to retain the complete information the presence of a and 8 are very much 

required. Moreover, from Tables 1 and 2 it is observed that the variance of the 

estimators of the parameters corresponds to early failures is less than the corresponding 

variance of instantaneous failures. Also the presence of more parameters makes the 

model more flexible to use. If in equation (2.1.3), the individual life times xt. e (0,8) are 

available and are not reported as 8, the problem becomes more complex.

Tab e 2.8.3. Estimates for instantaneous failures
Schedule P a P

1 Estimates 0.351351 1.25299 2.77164

Standard Error 2.094713 0.508146 0.154711

II Estimates 0.459459 0.800943 0.823577

Standard Error 2.006607 1.02006 0.380592

ble 2.8.4. Uniform spread of "nearly instantaneous" failure time
Schedule P a P

1 Estimates 0.378378 1.3949 3.10361

Standard Error 2.06793 0.527328 0.159483

II Estimates 0.567568 1.23692 1.80127

Standard Error 2.018516 0.728331 0.298683

If we fit above data to one- parameter Pareto distribution, taking (5=1, we get 

following estimates for the two schedules:
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Table:2.8.5. Estimates for instantaneous and nearly instantaneous failure when ft=l
Schedule P a

1 Instantaneous 0.351351 (2.094713) 0.922071 (0.768719)

Nearly 0.378378 (2.06193) 0.969036 (0.759074)

II Instantaneous 0.459459 (2.0006607) 0.703233 (1.152618)

Nearly 0.567568 (2.018516) 1.14447 (1.069799)

Note: Figures in the bracket represents the standard error of the estimates.

Table 2.8.6. Estimates of parameters and r.
r 9 * K S/C(r) Z«

1 0.654913 12.99359 1.5045E-29 135.9111 0.076961
2 0.63143 5.640273 2.51883E-29 134.8804 0.354593
3 0.608352 4.433435 4.99947E-29 133.5093 0.676676
4 0.585805 3.791064 9.15284E-29 132.2999 1.055113
5 0.5654 3.141481 1.17998E-28 131.7918 1.591606
6 0.54536 2.739172 1.50475E-28 131.3056 2.190443
7 0.527292 2.368137 1.5387E-28 131.2609 2.878949
8 0.508935 2.128842 1.67179E-28 131.095 3.403319
9 0.490793 1.942426 1.77838E-28 130.9714 3.956704
10 0.479839 1.661219 1.07411E-28 131.9798 4.964562
11 0.468734 1.47416 7.37023E-29 132.7331
12 0.459438 1.321979 4.93023E-29 133.5372
13 0.449527 1.212013 3.60868E-29 134.1613
14 0.441077 1.117822 2.593E-29 134.8224
15 0.43224 1.043523 1.95208E-29 135.3902
16 0.424204 0.979354 1.46919E-29 135.9586
17 0.416518 0.924409 1.11832E-29 136.5043
18 0.410398 0.874798 8.41417E-30 137.0733
19 0.403448 0.833225 6.52924E-30 137.5806
20 0.394893 0.797868 5.19969E-30 138.036
21 0.385706 0.765915 4.14956E-30 138.4872
22 0.372682 0.737522 3.35093E-30 138.9147

For inliers detection based on section (2.5) and (2.6) we have used only schedule 1 

data which are shown in table (2.8.6).CIearly, SiC(O) = 139.9487 > SIC(9) = min SIC(r) = 

130.9714. Also the likelihood is maximum for r = 9. The corresponding estimates of the
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parameter are ^ = 1.942426 and B =0.490793. Using SPRT of section (2.7) the hypothesis 

Ho:0 = 2 against H0:0 = 0.5 is also tested, for which a = 0.005, /? = 0.065. Hence In A

= -13.4417 and In B = -2.72836 and H0 is rejected when Z(j) =^ln|l + xw) = 4.964562
i=i

lr\A-m(\r\0~\n0)

(e-t)
-=4.340185. SPRT also gives number of inliers as r = 9.

The Pareto distribution has been used in many reliability fields. However one 

often finds that it does not fit well in the early part of lifespan for various reasons. In 

particular, in the cases where initial defects are present causing early failures, the Pareto 

distribution is found inadequate to model such phenomenon. The proposed model of a 

modified Pareto mixing with Uniform distribution to model the first phase of lifespan 

should provide a useful alternative.
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