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Appendix A

The estimation method due to Pearscn4 solves the Euler-
Lagrange equations (3.17) and (3.18) (with the boundary condi=-
tions in equations (3.19) and (3.20) ) in an iterative manner.
Let the equations (3.17) and (3.18) be represented respectivelyv

by the following general equations.
X(+1) = F (R@), M), 1] (a.1)
Mi-1) = 6 [®@), Mi), 1] (a.2)

These are to be solved simultanecusly satisfying the boundary

conditions
AM=-1) = O ’ (a.3)
MN) = O {(a.4)

Let the estimate of x(i) obtained from N observations {(called

st process) be denoted by %'(i) and that from (N+l) obser-

1
vations (called 27¢ process) be denoted by x"(i). The correspon-
ding trajectories for A are indicated by (i) and M*(i).

The trajectories §‘ (1), x*(1) and (i), (i) are shown in
Figures A.l and A.2 . ILet the deviation between x'(i) and

%" (i) and that between )'(i) and (i) be denoted by «ii)

and /5(i) such that

x* (1) = x'(1) + (i) {a.5)
and
N (L) = (L) + /A(i) (A.6)

The boundary conditions are then given by

ANi=1) = n#{-1) = 0 (a.7)

H
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and
X(N) = (N+l) = 0 (A.8)

Now, following equation (a.l) and (A.2), the dynamic equations

for the first and second processes are

go@+) = FlRo@), v, 1], T (a.9)
Fe(iel) = FE0(A), W), 1] a.10)
W(i-1) = e[X'(1), W), i) (a.11)
A*(i-1) = G [xv(1), W), 1 ] (a.12)

Substituting for x"(i) and °¥(i) from equations (A.5) and

(A.6) in equation (A.10), one obtains
) = P LER@E) , AT Wp) , 1] (a.13)
By Taylor's expansion, this becomes

¥ (141) > F[R@), MW , 1] + F. <) +F  pli)
x* (1) INYER

(neglecting other terms) (A.14)
Here, the sign " " (approximately equal to) is replaced by the

sign “ -" (equal to) when the dynamic equation (A.l) is linear.

e~

Use of equations (A.9) and (A.5) in equation (A.14) gives

A(i+l) = F_ (i) + F A1) (A.15)
x' (i) A(L)

Similarly, one can obtain

Ali-1) = 6 ={i) +¢6 3(1) (A.16)
x* (1) N (1)

Let o(i+l) and /‘3(1) be related by the equation

XLii+l) = P{i+l) ﬂ(i) (A.17)
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Therefore,
XK{i) = P(i) /3(5.-1) (a.18)

Substituting for (3(i-1) <from equation (A.16), this becomes
/

A{i) = P@) e K1) +P{)ec ALd) (A.19)
x*{i) (1) "
Rearranging the terms, this gives
=1
A1) = [T -pl)e. ] Pria)eG Bi) (A.20)
x* (1) At (1)
Substituting for « (i) in equation (a.15),
-1
o(i+l) = F I-P)G ] PG e (1) +
;:'(i)[ x' (i) ! (i)/?)
F B
At{i)
- -1
= [r, fT-Pwre Y oewe  +F  ]pW)
x'(i) x* (i) A L) N (1)
(a.21)
Comparing this w. r. t. équation (A.17)
P(i+l) = F {I - P(1) G_ \]” P{i) G (a.22)
x' (i) x'(1) N 1)
For i1 = N, eguation (A.6) beccmes
XN = M)+ AN (a.23)
Using equation (A.8), this gives
MN) = /3(N) (a.24)

Also writing i = N+1 in equation (A.11), one obtains

N ()

G [Ev(we1) , A" (1) , (N+1)]
= G[®"(+) , o, (1)) (a.25)

Comparison of equations (A.24) and (A.25) yields
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A = 6 [xv@w+) , 0, N1 (A.26)
Bguation (A.5), for i = N+l , bhecomes

' (N+1) = X (N+1) 4+ X(N+1) (a.27)
Using equation (A.S), this becomes

£ (N+1) PLROM) , N, N] o+ (1)

il

PIE'@M), © , N] +xX(¥) (A.28)
where o« (N+l) is given by (from equation (A.17) )
L{N+l) = P(N+1) /3(1\1) (2.29)

where FAN) is given by equation (A.26) and P(N+l) is given

by (from equation (a.22) ),

-1
)‘J P(N) G | {a.30)

P(N+l) = F [1 -7 6
At m)

x* (M)

-

x* (N
Thus equation (A.28) indicates that the estimate x*(N+l) from
(N+1) measurements can bé obtained by updating, by the amount
A(N+1), the extrapolated value (i.e. F[X'(N), 0, N]) of the esti-
mate X'(N) obtained from N measurements. This is essentially
a sequential estimation scheme.

The iteration equations for the solution of equations
(3.17) and (3.18) satisfying the boundary conditions in equations
(3.19) and (3.20) can be readily obtained by comparing these
with equations (A.l) to (A.4). For convenience, equations (3.17)

to (3.20) are written here again as follows.
x(i+l) = £ [x(i) , i] ' (a.31)

AMi-1) = £! M) + 2 BY @ [y(d) ~ H £(i)]) (A.32}
x(i)
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A1) = o0 ‘ (A.33)
A(N) = 0 (A034)

In view of these eguations, the equation (A.28) becomes
Z(N+1) = E[RTN), N] 4+ X (54d) (2.35)

where ®R(N+1) is given by equation (A.29) wherein pf{N) is
obtained by comparing equation (A.32) with equation (A.26) for

i1 =N+1 and )\"(N+l) = 0 and is given by
ﬁ(N) = 2 H'Q [y(m-a-l) - H x" (N+1)] (a.36)
Thus, the equation (A.35) becomes

RU(N+1) = £ [Xe(w), N] + 2 P(+1) H' @ [y(N4l) - H SE"(N-I-I)]
{2.37)

where P(N+l) is given by

-1
P(NH) = £ {I +PW) H' QE} PM) £ (a.38)
xt {N) =t ()

Since the term X" (N+%) appears on both sides bf equation {(A.37),
rearranging the terms and removing the superscripts(which are

now superflucus) with X , one obtains

R(N+e1) = £[xan, N] + CONH) H' @ [y (1) - B £&®W), M)
(a.39)

where 1

C(N#l) = |I +P(N#l) H' Q H] DP(NHL) (2.40)

where

P(N#L) = £ c(N) £ (a.41)

% (N) x (V)

The computational procedure is summarized as follows :

(a) Choose C(N) . ( N=0 in thebbeginning)
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(b) Compute the Jacobian £_ for the process descri-
x (M)
bed by equation (A.31) and then obtain P(N+l1) using
- equation (A.41).
{c) Oktain C(N+1) f£rom equation (2.40).
(d) Compute x(N+1) using equation (A.41). The initial
guess on X%(0) in the beginning im quite arbitrary.
This seguence is repeated to modify the estimates by incl-
uding new obseivations at the successive sampling instants. When

the dynamic noise is to be considered, the equation (3.2) is

medified as given by
x(+1l) = £ [x(i), i] + w(i) (a.42)

where w{i) accounts for the dynamic noise. In this context,

the performance index to be minimized is given by
N . ,.'

I = 5 {vy@) -uxW] olv@ -rxwl +
i=0

[+ - £&0), 1] 'R [RG4) - £{8@), i
(a.43)

The Euler-lagrange equations to be sétisfied for the minimiza-

tion of I are

x{i+1)

£[7(), il + R7EM4) ‘ (a.24)

£' 0 A1) + 2 ®' @ [y() - B X1)] (a.45)
x(1)
This when solved in the forgoing manner gives the same filter

Mi-1)

I

equation given by equations (A.39) and (A.40), wherein the term
P(N+1) is given by

1

]

£ c{N) £ + R™
x (M) % (N)

P(N+1) () (2. 46)
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The equations (A.39), (A.40) and (A.41) are to be used while
considering only the additive noise {(including measurement noise)
at the output. When both the dynamic and measurement noise are
considered, the filter eqguations to be used are (A.39), (a.40)
and (A.46).

A system having the transfer function given by equation
{4.51) and also described by differential equations (4.18),
(4.19) and (4.20) with xZ(O) = 0.4 and x3(0) = 2.0 was
simulated on the digital computer. The output was obtained with
a sampling interval of 0.125 sec. considering the actual input
measured on the turbo-alternator. The average order of magnitude
for this input was around 50 . The output thus obtained was added
with random numbers (generated by RRN} with their values within
the bounds = 1 . This measurement noise with the output was
considered as 2 %. The estimated trajectories il(i), iz(i) and
iB(i) from these input and output are obtained using equations
(A.39), (A.40) and (A.41) and are shown in Figures 2.3, A.4 and
A5 respectively. The estimated trajectories il(i), §2(i) and
§3(ij are also shown without considering measurement noise, for
comparasion. It can be seen from the figures that the convergence
of §2{O) and §3(05 towards their true values (0.4 and 2.0
respectively) is excellent without noise. However, they fail to
converge while considering noise. The noise level of X1 ,
though 2 % with respect to the magnitude of input, is guite
considerable as compared to the parameters to be estimated.
Moreover, the estimate of the present state depends only on the

correction, to the extrapolated value of the previous estimate,
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based on the current observation, the seguential estimator is
very sensitive to random disturbances in the observations. And
especially, when the variance of this random disturbances is
large as compared to the parameters, the filter equations fail

to converge as is evident from Figures A.4 and A.5.
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