
CHAPTER IV

ESTIMATION OF THE OPEN-LOOP TRANSFER
FUNCTION OF THE TURBO-ALTERNATOR
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This chapter deals with the estimation of the open-loop 
(i.e. the feedback loop employing governor is disconnected) 
transfer function of a turho-altemator of an inter-connected 
power system from the normal operating input-output data. The 
state variable formulation of the open-loop plant is first 
obtained and using the basic theory developed in Chapter III, 
a suitable algorithm for numerical computation to seek the 
minima of the performance index is developed using input-output 
of a simulated system. The same technique is then employed to 
estimate the parameters (of transfer function) of the plant 
using the actual operating data. The effect of dynamic noise, 
not considered in the basic formulation of the estimation probl­
em in Chapter III, is overcome by digital filtering.

4.1 Description of the Plant

The basic equations obtained for the dynamic performance
98of a synchronous alternator are nonlinear . However, if these

equations are linearized by considering small perturbations
about the normal operating level, it is possible to represent

90the dynamic behaviour of the turbo-alternator by the block 
diagram depicted in Fig. 4.1. ^he input and output of the plant 
are respectively the power demand fluctions &p (per unit value) 
and the corresponding frequency variations (cycles per second). 
The frequency of a.c. output from the turbo-alternator has to be 
maintained within permissible limits about the declared frequency. 
The variations infrequency are therefore normally counteracted 
by a feedback loop employing governor which regulates the flow
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of steam to the turbine to even out the power load fluctuations * 
It is required to estimate the parameters of turbo-alternator 
transfer functions when

(a) the feedback loop employing governor is kept open - 
which is termed Mopen-loop“ plant# and

(b) the feedback loop is closed as normal - which is 
termed “closed-loop“ plant.

The input-output data was therefore made available for both the 
cases.

The open-loop plant is assumed to be of first order, with 
the open-loop gain and one time constant to be estimated from 
the given input-output record for the open-loop plant. In fact, 
this is the subject matter of this chapter.

While considering the estimation of closed-loop plant 
from the corresponding input-output data, the feedback loop 
employing governor is assumed to be

(i) of first order which involves the estimation of
ifeedback loop gain and one time constant,and 

alternatively,
(ii) of second order which requires the estimation of 

feedback loop gain and two time constants.
The representation of the feed-back loop by two time-constants 
is more typical. The estimation of closed-loop transfer function 
involves constants of forward loop and feedback loop. Thus the 
closed-loop systems corresponding to cases (i) and (ii) above 
are of second and third order respectively. These are dealt with 
in Chapter V and VI respectively.
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In view of the above discussion, the transfer function of 
the open-loop plant(shown in Fig. 4.1) is given by

D(1 + ^s) (4.1)AQ. (s) _
A P(s) “

where *s* is the Laplace Transform variable and &5l{s) and 
AF<s) are the Laplace Transforms of A<*5(t) and Ap(t) res­
pectively. The random disturbances with hc5(t) and Ap(t) are 
ignored for the validity of equality sign in equation (4.1). The 
parameter D is the composite rotor damping coefficient in per
unit/cycles per second and ‘tf is the time-constant in secondsm
of the alternator. Alternatively, 1/D represents the open-loop
gain. The coefficients K and t are the gain and time-constant
for the feedback loop. The four coefficients, viz. D, Y t K and

90'T were estimated by Stanton using power spectra analysis and 
their estimated values are

D m 0.055 p.u./ c/s (4.2)

r = 2.5m secs. (4.3)

K = 0.35 p.u./ c/s (4.4)

r = 2.5 S©€2£3 © (4.5)g
Since the quantities Ap and were found to be very small, they

4were amplified for convenience by a factor of 1200 and 10 respe­
ctively before they were measured. The amplified or measured values 
are given by

AcS m ' 1200 (4.6)
Ap* « 104 Ap (4.7)

The open-loop transfer function in terms of the amplified values
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is given by

_ 1200 ASl(s)AP'(s) io4 AP(s) (4.8)

Using equation (4.1), this becomes

D* (1 + ?a) m
1 (4.9)

where
(4.10)

Thus# if one uses the amplified data# the open-loop gain is 
obtained as 1/D* . The value of D* according to Stanton's esti­
mate is readily obtained by using equations (4.2) and (4.10) as

The problem to be considered in this chapter is to estimate the 
values of D* and ^ in equation (4.9) using the same input- 

output data (amplified) as used by Stanton employing the techni­
que developed in Chapter III. The technique requires the plant 
dynamics to be represented in terms of state variables as will 
be discussed in the following section.

4.2 State Variable Formulation

As an intermediate step towards obtaining the state variable 
99formulation # let the open-loop plant transfer function of equa­

tion (4.9) be transformed into a differential equation given by

D* w 0.458 p.u./ c/s (4.11)

d_
dt AP (4.12)

Using the usual notations# let
(4.13)
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and
U a /ip' (4.14)
where x^ =* x^ (t) is the true state (ignoring disturbances in

the output for the time-being) of the system. Substituting
these in equation (4.12), one obtains

(4.15)+ __^__
¥ 1 v D’ •/m A 4m u

In order to apply directly the method developed in Chapter III
, let

(4.16)

for estimation of constant parameters Of and D*

2

and

1/Vmm

I/D' (4.17)

Thus the differential equations representing the dynamics of 
the plant become

x.

x.

x.

x2 + x2 x3 u

0

0

(4.18)

(4.19)

(4.20)

Equations (4.19) and (4.20) imply that x2 and x^ are constants<

These three equations can be brought into the vector form of 
equation (3.1) by writing

x(t) col [x, (t) , X2 (t) , X3(t) J (4.21)

The true state Xj ignores the random disturbances and repress-
tnts the theoretical output . However, the observed values

iof Xj or Aare corrupted with random disturbances
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including measurement noise as well as dynamic noise of the 
system. Thus the discretely measured output y(i) is given by

y(i) = xx(i) + n(i) i ■ 0, 1, . . . ,N <4.22)

where n(i) represents the additive noise (at the output) and 
includes measurement noise and other random disturbances but 
not the correlated dynamic noise. Since only one state is 
observable, y(i) is a scalar quantity* Comparison of equation 
(4.22) with equation (3.3) gives

H a (1, 0, 0) (4.23)
which is a row vector, and
x(i) » col [x^ (i), x2<i), x3(i)j (4.24)

represents the state vector of the plant at an instant i •

The problem is to estimate the initial states x^(0), 

x2(0) and x^ (0) from the observations of the input u(i) 

(power demand fluctuations ap*) and the output y(i) (frequency
Ifluctuations && ) for i = 0 to N.

4.3 Estimation Scheme

The best estimate of Xj(0), x2<0), x3<0) is obtained

by minimizing the performance index 1 given by
_N 2X ~ > Q |y(i) - x. (i)J (4.25)i=0 1

which is obtained by substituting for H from equation (4.23) 
in equation (3.11). Here, Xj (i) is the nominal trajectory

fi.e. computed output y(i) of the dynamic model of the system
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simulated on the digital computer) and is obtained by solving 
the differential equations of the dynamic model given by

*1 ss «. il *2 * *2 ^3 U (4.26)

•
*2 ■ 0 (4.27)
•i3 « 0 (4.28)

for sane initial conditions Xj(0), x2(0) and 5^(0) and the

same input as that of the system whose parameters are to be 
estimated. It should be noted that Q is scalar in the equation 
(4.25). The above three equations are represented by the general 
vector differential equation (3.41). The minimization of I in 
equation (4.25) must satisfy the Euler-Lagrange difference equa­
tions and the natural boundary conditions given by equations 
(3.17) to 0.20). splitting these into scalar difference equations 
(noting that the state vector under consideration is 3-dimension-
al), one obtains

x^(i+1) = x2(i), x3(i)# i j (4.29)

x2 <1+1) ss f 2 <u# x2(i), x3(i) * (4.30)

ss x2(i) (4.31)

x3 (itl) = f3 <** • x2(i)» x3(i) # i J (4.32)

= x3 (i) (4.33)

and
X (i-1) s f11 X (i) + f21 ><,(!) + f31 A,(i)
1 x(i) 1 x(i) 2 x(i) 3

+ 2 Q [y (i) - Xj (i)] (4.34)
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Vi-D

£12 >VD + *22 *,d) + f32 ^-(i) 
x(i) A x(i) 4 x(i) 4 (4.35)

£13 a. d) + f23 Vi> + f33 
xd) x(i) x(i)

(4.36)

with the following boundary conditions
\<-l) « 0 7 k « 1, 2, 3 (4.37)

^k(N) * 0 ? k = 1, 2, 3 (4.38)

Equations (4*29), (4.31) and (4*33) are discrete-time version of 
equations (4.26) to (4.28) and are not available in the closed 
form when the values x^d)# x2(i) and x^ (i) are obtained by 
numerical integration of equations (4.26) to (4.28). Equations 
(4.31) and (4.33) imply that x2(i) and x^(i) are constants•
The Jacobian matrix elements f^k required in equations

5(i)
(4.34) to (4.36) are to be computed by solving equation (3.46).
The matrix corresponding to equations (4.26), (4.27) and

x
(4.28) is given by

X

x2 - % + x3 u x2 U

0 0 0
0 0 0

(4.39)

The state transition matrix <$(A+1, i) of equation (3.46) is a
44|i3x3 matrix in the present case and its (j, k) element is

written as <jf>"^(i+l, i) • Substituting for From equation
x

(4.39) in equation (3.46) and then performing the vector multi­
plication, one obtains a scalar equation for each element of
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<$(i+l, i)i as follows.
» 1 1 (i+1. i) = - ,11- 3?2 cp

— — 21(i+1, i) + (“Xj + XjU) (i+1. i)

+ x2«^31(i+l, i) i <£U(i,i) = 1 (4.40)

012(i+l, i) s - ,13Xg <(>
- - 22(i+1, i) + (»x^ + x^n) ep (i+1, i)

+ x2u <f>32(i+l, i) } 4>12(i,i) » 0 (4.41)

<f>13(i+l, i) as “ ,13- x2 (i+1, i) + (-Xj + x3u) 4>23(i+l, i)

t x2u #33(i+l, i) ? 4?l3(i,i) « 0 (4.42)

i21 (i+1, i) s= 0 4>21(i#i) = 0 (4.43)

4>22(i+l, i) « 0 ; <£>22(i,i) » 1 (4.44)

i23 (i+i. i) eg 0 ? <p23(i,i) * 0 (4.45)
<p31(i+l. i) ss 0 f c^31(i,i) * 0 (4.46)

(f? (i+1. i) S3 0 ; 4>32(i,i) * 0 (4.47)

<J33(i+l, i) S 0 ? Cf333(i,i) « 1 (4.48)

The state transition matrix represents the Jacobian matrix by 
vitae of equation (3.47). The dynamic equations (4.26) to (4.28) 
and the equations from (4.40) to (4.48) together can be Integr­
ated simultaneously between the successive sampling instants 
(to obtain the nominal trajectory and the Jacobian matrix resp­
ectively) by using AMRK100 subroutine. The AMRK subroutine has 

been specially programmed to solve n first order simultaneous 
differential equations. However, the equations (4.43) to (4.48)
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21 22 23imply that the Jacobian matrix elements f , f , £ *x(i) ' x(i) x(i)
31 32 33f # f # £ are constants and are respectively 0, ltx(i) x(i) xCi)

0, 0, 0, 1 i This is obvious from equations (4.31) and (4.33) 
which also suggest that equations (4.27) and (4.28) need not be 

integrated since x2 CD * x2(0) and x^ (i) * x^CO) for i = 1,
2, . • ,(K+l). The equations (4.27), (4.28) and (4.43) to
(4.48) may therefore be excluded from the AMRK subroutine to save 
computer time.

The entire computations1 procedure is outlined as follows s
1. Make an Initial guess on the initial conditions 

Xj (0), x2 (0) and x^ (0).

2. Integrate (numerically using AMRK) equation (4.26) to
obtain 3^(1) and equations (4.40) to (4.42) to obtain

11 12 13the Jacobian matrix elements f , f and f tx(i) x (i) x (i)
i * 0 to N. ^he values of x2 (i)• 5^(1) and other 
elements of Jacobian matrix are known as discussed before.

3. Compute the performance index I using equation (4.25)• 
The value of Q is taken to be 100.

4a. If the current value of 1 is less than the previous 
value of I, compute ^(-1), -^(-1) from

equations (4.34) to (4.36) starting with ^(N) ■ 12(N)

® ^3<N) = 0.

Then modify that values of initial conditions by the 
following rule as per equation (3.48).
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new x. CO) « old SL CO) + [---&&—
4. .1 ^

>• ^-i. (~i)
(4.49)

new x2 (0) » old x2(0) + L «II «

new XjCO) * old £^(0) + I ]>3<-l>
(4.51)

(4.50)
II

The step-siae A A is chosen to be 0.1 to start with. 

Go back to step (2) above and repeat the sequence. 

This procedure is followed until I bbecomes minimum in 
which case the initial states x^(0), £g(0) and x3(0) are

expected to have converged to their true values.

The above computational procedure will be first shown to 

work successfully with the input-output data obtained from a 

computer-simulated system as discussed in the following section.

4.4 Estimation from Input-Output Record of a Computer-Simulated

System Similar to Open-loop Plant

While working on an estimation problem under actual oper­

ating conditions# one has to make sure that the values of states 

and parameters estimated are close to their true values. The 

assurance of correct estimation depends upon the confidence one 

has gained in the estimation technique used. To ensure feasibility 

of the technique# it must be first tried out for estimation from 

input-output data obtained for a computer-simulated system in 
which case one is in a position to compare estimated values with 

the known true values. A transfer function of the form



which is somewhat similar to the open-loop plant transfer fun­
ction (estimated by Stanton) and which gives rise to differential 
equations (4.16), (4.19) and (4.20) with x2(0) = 0.4 and 
x^(0) * 2.0 , was simulated on the digital computer. The output 

was obtained with a sampling interval of 0.125 sec., consider­
ing sinusoidal input and the intlal condition x^(0) = 0.2 •

The sampling period was chosen to be the same as that for input 
of the experimental data. This output combined with or without 
additive noise (generated by using RRN ) and the sinusoidal 

input were then used to perform several experiments aimed at 
getting suitable algorithm for best estimate of initial states 
Xj^CO) , x2 (0) and x^ (0). The RRN subroutine generates random

numbers with a rectangular distribution.
During the early stages of experimentation (without con­

sidering noise) it was realized that increasing the number of 

measurements of input-output speeded up the rate of convergence 
and also resulted in better estimates of the initial states. It 
was also c oncluded that too small a value of the step-size A A 
slowed down the convergence whereas with large values of iA , 
the convergence was faster in the beginning but kept on fluct­
uating around the minima in the later stages. It was found most 

expedient to let AA *• 0.1 in the beginning and then halving 
it whenever the value of performance index I of the current 
equation exceeded that of the previous iteration. This gave 
faster convergence• If the difference between two successive
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values of I is very small, inspite of considerable changes in 
variables x^iQ) and x3(0) on each iteration, the

computer program run stops at such a stage giving an impression 
of a minima* This situation is known as the plateau problem*
This deceptive situation was avoided by taking large steps along 
the gradient. Large steps helped in jumping over the plateau 
region. Thus a suitable computational algorithm was developed.
As such the step (4) of the computational procedure on page 85 
is supplemented by the following instruction.

4b. If the current value of I is greater than its previous 
value, go back to previous iteration and reduce step- 
size A A to AA/2 and modify x^(0), XgCO) and x3(0)

using stored previous values of Aj (-1), t-l) and

A^(-l) in equations (4.49), (4.50) and (4.51). And go 
back to step (2).

4c. If the current value of I is almost equal to the
previous value of I, modify x^ (0), x^G) and x3(0)

by taking large value of A A along the gradient. If 
this fails to locate I lower than the previous one, 
stop computation.

Several computer runs were made considering different 
conditions of noise and these experiments have been catagorized 
into the following two cases with subcases for each.

Estimation of initial states Xj (0), Xj(0), x3(0) from 

measurements of x^(i) (a) without additive noise.

CASE I
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(b) with the noise having zero mean, (c) with the noise 
having nonzero mean.

The true state x1(i) for i = 0 to 94 was computed using 
equations (4.18), (4.19) and (4.20) for x^ (0) * 0.2 , Xj(0) **

0.4 , x^(0) “ 2.0 and sinusoidal input u(i) « 1 x sin(0.125 i)

with a sampling interval of 0.125 seconds. The output y(i) may 
be of three catagories:

(a) Without Additive Noise t The output y(i) without 
additive noise was obtained as y(i) = x1(i) , i «
0 to 94 (i.e. 95 measurements).

(b) With the Additive Noise Having Zero Mean s Ninty five 
random numbers representing hoise were generated by 
using RRN subroutine and stored separately. The values 
of these numbers were kept within the bounds ± 0.05. 
Comparing this magnitude with the unity amplitude of 
sinusoidal input, the noise level is termed as 5 % . 
This had a nonzero mean. The mean of these 95 numbers 
was computed and deducted from each of them. The new 
set of random numbers has zero mean. These numbers 
were then added to x^(i)*s to obtain the output
y(i) with additive noise having zero mean. This noise 
includes all random disturbances (including measurem­
ent noise), appearing additively at the output. It does 
not represent dynamic noise of the system.

(c) With the Additive Noise Having Nonzero Mean s The 
output y(1) having nonzero mean is obtained by adding
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to Xj{±) the random numbers generated by RRM.
The input and output of each of the above three cases were 

used for estimation of (0), x^(0) and x^(0) following the

computational procedure discussed earlier• Figures 4?. 2, 4.3 and 
4.4 show the convergence of 1^(0), x^CO) and x^(0) respect­
ively towards their true values for the three different conditi­
ons of output as discussed in (a), (b) and (c) above. The initial 
guess in each case were x^(0) » y (0), x2(0) * 0, x^CO) * 0. The 
estimated values are shown in Table 4.1.

Table 4.1 Estimated Values of Initial States for a Computer-
Simulated System Similar to the Open-loop Plant. I

Xj (0) x2(0) x3(0)

Cl) True Values 0.2 0.4 2.0
Estimated Values for

(2) No Noise 0.214 0.403 1.947
(3) Noise having zero mean 0.216 0.406 1.982
(4) Noise having nonzero mean 0.193 0.466 1.759

Mean of Noise « » 0.058

These results indicate that better estimates are obtained only 
when there is either no noise or when the noise has zero mean. 
When the noise does not have zero mean, the estimated values of 
x2(0) and Xg(0) are far off from their true values. This is 
also evident from the following analytical proof.

The true state x^Ci) is observed in the output as per 
equation (4.22), i.e.
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y(i) ■* x^ (±) + n(i) i * 0, 1, . . ,N (4.52)

The best estimate of the initial state x(0) is obtained by
fitting the nominal trajectory XjU) on y (i) in the least
squares sense. Thus the performance criterion to be minimized
(equation (4.25)) is

N _ 2
X * Q i y (i) - x. (i)j t Q >0 (4.53)i=0 “ 1

Differentiating 
zero for minima,

E- 2 Q fy(i) -
i=0

I w.r.t. x^ <i) 
this becomes

51 (i)'] « 0

and equating the result to

(4.54)

Additing and subtracting x^ (i) within the brackets and dividing 
by 2Q(N+1) on either side of equation (4.54) and rearranging the 
terms, this becomes

N+l * N+l [y<i) -

The mean or expectation of noise n(i) , i = 0, 1, . 
given by

1 N
% = jpj ZI n(i)1—0

(4.55) 

,N is

(4.56)

Using this in equation (4.55), one obtains

1+1 1^0 * *l{i)l = "to (4.57)

Equation (4.57) indicates that, if the noise has zero mean, the 
best fit (i) on y(i) is almost the same as the true traj­
ectory x^(i). This is shown ill Fig. 4.5 • Since x^ (i) depends 

on (0), x-2 (0) and x^(0), the best x^ (i) also gives the 
best estimate of these initial conditions• The equation (4.57)
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also evidences that if the noise does not have zero mean, the 
estimated trajectory (i.e. best (i) ) will be away from the 
true one by the amount equal to the mean of noise. Thus the 
estimation is in error. This is depicted in Fig. 4.6.

To overcome the difficulty posed by nonzero mean of noise, 
several experiments were made and they are discussed in case II.

-------- Estimation of Initial States x^(0), x2(0) and x3(0)
From Measurements of x^(i) Computed with Noise (Having 
Nonzero Mean} Considering the Mean of Noise Separately 
in Three Different Ways.

The general estimation procedure followed for this case 
was more or less the same as that of case I. The output y(i), 
i » 0 to 94 with the additive noise having nonzero mean for 
the sinusoidal input was obtained for the same system as descr­
ibed in case 1. ..The nonzero mean of noise which gave wrong 
estimates is tackled by three different methods.
Method (a)

After having computed the nominal trajectory
the initial guesses x^(0) =» y(0)„ x2(0) * 0, x3(0)
mean of residual error em was computed as 

1 N
em “ SiT [*<*> ~

(i) from 
* 0# the

(4.58)

The performance index I to be minimized was then modified to

I
N
ri=0 Q[y(i> - % (±) - em] (4.59)

Consequently the equation (4.34) had to be changed as followss
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, (±~1) *= f11 A, Ci) + f21 a (1) + f31 7i (i)
1 x(i) 1 x(i) ^ 5{i) 4

+ 20 jV(i) - XjU) + em] (4.60)
The equations for ^(-^ and (i) remained unchanged. The 
estimated values for x^O), x2 (0) and x3(0) shown in Figures 
4.7, 4.8 and 4.9 are better than corresponding values of Case I. 
The mean em of residual errors finally converges to the mean nm 
of noise. The estimated values are given in Table 4.2.
Method (b)

A fourth state variable x^ was introduced to take care 
of the mean of noise# i.e.

x, » n (4.61)4 m
Thus a fourth equation given by

x^ = 0 (4.62)

is added to the three differential equations (4.18), (4.19) 
and (4.20). The state . x^ (i) was observed (equation (4.22) ) 
as
y(i) * XjU) + n(i) i - 0, 1, . . . ,N (4.63)

■^he noise n(i) has nonzero mean in this case. It can be 
written as
n (i) = n' (i) + n^

«* n* (i) + x^(i) (4.64)

where n'(i) is the noise with zero mean. Therefore 

y (i) * Xj (i) + x^d) + n* (i) (4.65)

One more differential equation in addition to equations (4.26),
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(4.27) and (4.28) required for generating the nominal trajectory 

is given hy

x4 « 0 (4.66)

Therefore, the state vector x(i) became 4-dimensional and is 

given by

x(i) = colfxjCi), x2(i), %(i), 5 <i>] (4.67)

The performance index to be minimized became 
N 2I = E Q fy(i) - x. (i) - x4(i)J (4.68)
i=0 A *

Consequently, the equations (4.34), (4.35), (4.36) for (i)*s 

were replaced by the following equations.

\ (i-1)

>2(i«l)

X3(i-1)

\(i-l)

f11 X (i) + f21 A,(i) + f31 A3(i) 
x(i) 1 x(i) 2 5U) 4

+ 2 Q jy(i) =» x^Ci) - x4(i)]

f12 A. (i) + f22 A,{i) + f32 A,(i> 
x(i) 1 x(i) z x(i) 4

f13 A. (i) + f23 A* (i) + f33 Ao(i) 
x(i) 1 x(i) 2 x(i) 4

fl4 A,(i) + f?4 A2(i) + f34 A (i) x(i) x(i) x(i)

+ f41 A. (i) 
x(i)

(4.69)

+ f42 A.(i) 
x(i) 4

(4.70)
+ f43 A. (i) 

x(i) 4
(4.71)

+ f44 A,(!)
5(i) 4

+ 2 Q Jy(i) - Xj(i) - x4(i)] (4.72)

The nominal trajectory x,(i) and the Jacobian f were1 x(i)
computed by numerical integration from the relevant equations• 

The input-output data used here was the same as that for method 

(a). Only the formulation of the problem was changed. The same 

computational algorithm was followed for estimation and the
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.estimates of . x^(0),
Figures 4.7, 4.8 and 4.9 and Table 4.2. The results obtained 
by this method are also better than those of case I.
Method (c)

This method also involves the fourth state variable to 
represent the mean of noise but the plant equations are written 
in a different manner to improve convergence during estimation 
procedure•

Let a new variable x|(i) be defined as

x£(i) * Xj^Ci) + x4(i) (4.73)

where x^(i) is the true state and x^(i) is the mean of noise 
as discussed earlier. It was seen in case I for noise having 
nonzero mean that the best fit of x^ (i) on y(i) is away from 
the true trajectory XjCl) by the amount equal to the mean 
x^(i) of noise. In other words, the estimate of x^(i) was 
found to be x£(i) giving an incorrect estimate. It was intui­
tively felt that if one attempted to obtain the estimate of 
trajectory x£(i), better results could be obtained. Equation 
(4.73) is written in continuous-time as

xl * xi + x4 (4.74)

Substituting for x^(i) from equation (4.73) in equation (4.18), 
one obtains

“ X1 x2 + x4 x2 + x2 x3 (4.75)

This equation, augmented by the equations (4.19), (4.20) and 
(4.62) complete the set of equations to describe the plant 
dynamics• Use of equation (4.73) in equation (4.65) gives

x2 (0), x3(0) and x^(0) are shown in
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y (i) * x|(i) + n*(i) (4.76)

In this context, the performance index is written as 
NI - 21 Q
isO

where xj[ (i) is the nominal trajectory obtained by numerical 

integration of the equation

|_y (i) - xJ (i)J (4.77)

x{ » x2 + x4 x2 + x2 x3 u (4.78)

supplemented by equations (4.27), (4.28) and (4.66). The 
equations (4.34), (4.35) and (4.36) for A(i)*s were replaced 

by the following equations.

\(i-l) f11 \ (i) + f21 A (i) + f31 A_(i) + f41 A - (i) 
x(i) x(i) x(i) x(i)
+ 2 Q [y(i) T xj[<i>3 (4.79)

f12 A. (i) + f22 >,(i) + f32 A,(i) + f42 A,(i) 
x(i) x(i) ̂ x(i) 4 x(i)

(4.80)
f13 A,(i) + f23 A, (i) + f33 A3(i) t f43 A, (i) 
x (i) x(i) x(i) x (i)

(4.81)
fi4 A. (i) + f24 \(i) + f34 A,(i) + f44 /\,(i) 
x(i) x(!) x(i) x(i)

(4.82)

were obtained using

X2(i-1>

A3(i~i)

(1-1)

The elements of Jacobian matrix f
x(i)

equation (3.46) wherein the matrix g_ is obtained from equat»
x

ions (4.78), (4.27), (4.28) and (4.66). The same computational 
algorithm was used again. As expected, the results obtained by
this method are slightly better than those obtained by methods 
(a) and (b) of case II as is evident from Figures 4.7, 4.8 and
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4.9 and Table 4.2

Table 4.2 Estimated Values of Initial States for a Computer-
Simulated System Similar to the Open-loop Plant -
CASE II.

Xj (0) x2(0) x^ (0) X4(0> or 
n

(1) True Values 0.2 0.4 2.0 - 0.058
•m mm

Estimated Values
mm mm- mm mo mm mm vm mm mm

(2) Method (a) 0.196 0.427 1.914 - 0.046
(3) Method (b) 0.187 0.426 1.916 - 0.045
(4) Method (c),x£(0) ■ 0.155 0.416 1.922 - 0.046

xx(0) * x£(0) “ X4(0)
- 0.155 + 0.046
= 0.202

It can be seen that method of case II^c) gave results
slightly better than those in case XX(a)• But case 11(c) involved
more computational time in computing the Jacobian £ on

x(i)
account of the additional state variable x^(i). In view of this, 
method II (a) was preferred for the estimation of parameters from 
the actual operating input-output data as is discussed in the 
following section. The time required on IBM 7094 for each of 
these programs was about 2 to 3 minutes.

It was also observed that the computational algorithm dev­
eloped here worked equally well for estimation of any first order 
plant (i.e. plant having ANY gain and time constant other than 
those assumed here).
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4.5 Estimation from actual Operating Data of the Open-loop
Plant

Having ensured the feasibility of our estimation method 
with a suitable computational algorithm with input-output data 
of a computer--simulater system, the method was then applied to 
the turbo-alternator data. The actual data was obtained for 10 
minutes giving 4800 samples of input &p* (i.e. power load 
fluctuations) at the rate of 8 samples/second and 1200 samples 
of output is id* (i.e. frequency fluctuations) with a sampling 
period of 0.5 seconds• Since the open-loop plant acts like a 
low pass filter (on account of large moment of inertia of the 
turbo-alternator rotor), high frequency fluctuations in &p* 
do not reflect in the output Ad* . The sampling interval for 

£s(d* was therefore chosen longer than that for Ap* . This also 
reduces measurement labour and cost. The average operating levels 
were removed from both input and output data because the varia­
tions othervise were very small as compared to the operating 
levels. This was necessary to obtain better correspondence bet­
ween variations in input and output.

Early experiments using AMRK or other simpler subroutines 
for integration over the entire 10 minutes span of data per every 
iteration shewed that it took a long time even for few iterations. 
A need for faster subroutine for integration was felt. The diff­
erential equations fc.26}, (U27)and &.28)werejtransfonned into diff­

erence equations considering linear interpolation between succe­
ssive samples for input. The difference equations thus obtained 
for the nonminal trajectory are
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Xj (i+1)
-X- (i)T^e * (i) + Xgti) u(i+l) e

-X2 (i )T

x2 (i)T x2(i)T •J
+ x3(i) u(i)

x2<i)T
-x*Ci)T -5L<i)T - e 2 - e 2

x„(i)T
i ® 0* 1| • « & (4.83)

s2(i> i - o» 1, • . ,N (4.84)

x3 (i) i * 0, if « « fist (4.85)

x2(i+l) 

x3 (i+1)

where *T* is the sampling period* Equations (4,83) to (4*85)
were used in generating the nominal trajectory x^ (i) staring
with the initial guess on XjtO), x2(0) and x3(0). It is
easy to obtain Jacobian f from these difference equations,x(i)
Thus by virtue of equation (3.15), one obtains 
11 -I2(i)T
x(i)
12
x(i)

(4.86)
-x„(i)T

- T e x,
(i) + SL(i) (u(i+1) - u(i)]

£
«2 (i)T

52(i)T
»x2(i)T-i

x2 (i)

22<i)T
-x^(i)T+ x3(i) u(i) T e *

f
13
x(i)

p2l
x(i)
.22

u (i+1) _ Jx.(LtUzl4iVJ “52(i>T] (4.87)
-x2(i)T

= f

a f

23
x(i)
33

f31
*(i)

x2(i)T

=32f m 0x(i)

u (i)
(4.88)
(4.89)

(4.90)
x{i) ac(i)

Equations (4.86) to (4.90) were used in computing the Jacobian
matrix required for estimation procedure. Since the rate of

t

sampling of input data was 4 times that of the output data* the
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subroutine using the above equations with T ** 0.125 secs, was 
required to be CALLed four times to reach the next sample of 
nominal trajectory (i) to compare the observed output y(i) 
at the corresponding sampling instant. This increased the compu­
tation time 4 times. The computation time could be reduced by 
either of the following two types of high frequency filtering.

(1) High frequency filtering by modifying the input data Ap* 
(i.e. u(i) ) by taking average over four samples, i.e.

filtered u(i) = I z. u (i+k-1) 
* k?*i 0, 4# 8, . ,H

(4.91)
This gave the modified input data with a sampling interval of
0.5 sec. and reduced the number of samples to 1200, the same
as that for the observed output Atii*, i.e. y(i) « This amounted

21to high frequency (h.f.) filtering of the input data with a 
cut-off frequency of 2.0 c/s as shown below.

Filter function F(f) ** 1
k+1 _ i^At sm|.y } (4.92)

where

f * frequency in c/s
k+1 » Humber of data points averaged (4 in the present case)
At ** Sampling period (0.125 in the present case)
F(f) = gain of the filter at frequency f, which is maximum at

f®0 and becomes zero at f=*£„,, the cut-off frequency. 
The cut-off frequency for the filter can be easily computed as 
2.0 c/s by equating to zero, the numberator of the right hand 
side of equation (4.92).
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(2) High frequency filtering by modifying the input data u(i) 
by taking average over eight samples and modifying the output 
data y(i) by taking average over two samples, i.e.

1 8* 21 u(i-ric-l) ? i * 0, 8, 16, . .a k=l (4.93)

2'x 51 y(j+k»l) ; j = 0, 2, 4, . .* k=l (4.94)
This gave the filtered input and output data with a sampling
interval of 1.0 second and reduced the number of samples to 600
for both. Substituting for k+1 » 8 and 6t * 0.125 sec. for input
data and k+1 = 2 and At = 0.5 for the output data in equation
(4.92), the cut-off frequency can be obtained as 1.0 c/s for both.

goThe open-loop plant has a time»constant of about 2.5 secs, 
which gives the corner frequency <3 » 0.5 rad/sec or f « 0.08

C G
c/s. Therefore, no appreciable information was lost by using h.f.
filtered data having f equal to either 2.0 or 1.0 c/s. Indeed,c
some experiments did show that the estimator without or with h.f. 
filtering (f » 2.0 c/s), using the same length of time of data,

G
gave the same results• The results obtained using h.f. filter with 
f * 1.0 c/s gave results little different but the computer time
w

taken was the least because the number of measurements were reduced 
to 600. However, considering better accuracy, the h.f. filtering 
with f_ « 2.0 c/s and 1200 filtered data points was considered 
suitable.

The method used for estimation with actual data was the same 
as Method (a) of case II in section 4.4 with the only difference 
that the simulated data was replaced by the actual one. The

filtered u(i) = 

and
filtered y(i) =
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initial guesses for the initial conditions were 5^(0) = y(0) ; 
Kg(0) = 0.1 ; x^(0) « -0.1 . Since the increase in power load 
would result in decrease in frequency, the gain of open-loop 
plant transfer function was expected to have negative value.
The initial guess for x^Co) was taken as -0.1 so that it would 
converge in the right direction in the very early stages instead 
of talcing a different course in the beginning and then turning 
back in the right direction, thus saving computation time. The 
following five experiments were made for estimating the gain and 
the time-constant for the open-loop plant from normal operating 
data.
(1) Estimation using High Frequency Filtered Data (f =2.0 c/s) 
with Means Deducted.

6The mans for both input and output were computed and sub­
tracted from their respective data. This removed the average op­
erating levels leaving only the variations. The convergence of 
Xj (0), ^(O) and Xj (0) staging from initial guesses are shown 
by curves marked "(l)** in Figures 4.10, 4.11 and 4.12 respecti­
vely. The estimated values are also shown in Table 4.3. The 
estimated values Xj(0) = 0.445 and Xg(0) = -0.465 were found 
to be different (particularly (0) ) from their expected values
x0(0) = 1/v = 0.4, x, (0) = 1/D* = 2.19 c/s / p.u. obtained
* *» w QA

earlier by power spectral analysis. An unaccounted l.f. source 
was suspected to be present in the form of dynamic noise which 
could not be measured at the input. However, its effect appeared 
in the output measurements and this gave different estimated 
values. The estimation method developed in chapter III is equipp­
ed to take care of only the addfcive noise at the output and not 
,the dynamic noise generated within the system. The dynamic noise 
is usually correlated and can not be tackled as easily as the 
additive noise at the output, in the general formulation of 
estimation scheme of chapter III. Had the dynamic noise been in 
the h.f. range, it would have disappeared with h.f. filtering.
Thus digital l.f. filtering of both input and output data was 
necessary to remove this l.f. dynamic noise. The following four
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experiments were performed to show the' effect of different l.f« 
filters.
(2) Using First differences for Wide Band Low Frequency Filt­
ering.

21A very wide band l.f. filtering was first tried on the
b.f. filtered (f =2.0 c/s) data using the first differences#c
i *e«
filtered u(i) 
and
filtered y(i)

u(i+l) - u(i)

y(i+l) - y(i)

(4.95)

(4.96)
This gave the estimate of Xj(0) and x3(0) to be 0.209 and 
-2.130 respectively (depicted in Figures 4.10, 4.11 and 4.12 
and Table 4.3).
(3) .21 with f = 0.025 c/s.

Q
Using Low Frequency filtering 
This was obtained by applying the following treatment to 

the h.f. filtered data
filtered u(i) * u(i) 
and
filtered y(i) = y(i)

80
“\80 &

80
1 ZL80 k=l

u(i+k-l)

y (i+k-1)

The corresponding filter gain function is

F<f) Q ^, wmJmmmk

k+1 am as At L

(4.97)

(4.98)

(4.99)

Here k+1 = 80 and At = 0.5 sec. The l.f. filter response is 
plotted in Fig. 4.13. The estimated values as can be seen from 
Figures 4.10, 4.11 and 4.12 and Table 4.3 are x3 (0) « 0.345 
and x3(0) = -1.254 .
(4) Using Low Frequency Filtering with fQ = 0.05 c/s.

This was accomplished by using the formulas



u(i+k-l) (4.100)filtered u(i) = u(i) 

and
filtered y(i) « y(i)

1
40

140
40

k-1
y(i+k-1) (4.101)

The cut-off frequency f can be easily found from equationC
(4.99) by substituting k+1 * 40 and At * 0.5 sec. The filter 
response is shown in Pig. 4.13. As a result of this filtering, 
the estimated values were changed to x2 (0) ** 0.250 and x^ (0) 
as -2.158. (Figures 4.10, 4.11, 4.12 and Table 4.3).
(5) Using Low Frequency filtering with f ® 0.1 c/s.

This was done by modifying the h.f. filtered data in the 
following way.

1 .20filtered u(i) «* u(i) - *sr 2— u(i+k«*l) (4.102)^ k=l
and

i 20
filtered y(i) = y(i) - “Sr* 2- y(i+lk-1) (4.103)

k=l
The filter gain is plotted in Pig. 4.13 by taking k+1 ® 20 and 
At « 0.5 sec. in equation (4.99). The estimated values ape 
depicted in Figures 4.10, 4.11 and 4.12 and Table 4.3 are x^(0) 
* 0.234 and x3(0) « -2.617.

Table 4.3 Comparative Statement of Estimated Values of x2(0) 
and x3(0) Obtained by Different Low Frequency 
Filterings•

Hext Page
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Type of Filtering
Estimated

flk ME3 MS. ofr CM KS& MM MM MM

x2(0) x3(0)

(1) With means deducted 0.445 -0.465
(2) Using first differences 0.209 -2.130
(3) Using l.f. filtering, fQ * * 0.025 c/s 0.345 -1.254
(4) Using l.f. filtering, f » 0.05 c/s 0.250 -2.158
(5) Using l.f. filtering, f * 0.1 c/s 0.234 -2.617

It was concluded that l.f. filtering with f » 0,05 c/s
Vsp

was considered to be the best suitable filter and it give 
estimated values closest to those expected* The estimated values 
of XjCO) and x3(0) are 0*25 and -2*158 respectively®
Ref siting to equations (4*16) and (4*17), the values of *2^ and 
D* are given by

i

* l/x2(0) * 1/0*25 * 4.0 sees® (4.104)

D* - l/x3(0) « l/(-»2*158) = -0.463 .. (4.105)

Using equation (4*10), one gets
D - 1^02 D*

104
= -1200 x 0.463/104

ss -0.0556 p.u* / c/s (4.106)

The estimation procedure developed for simulated conditions 
and later used for estimation from actual operating data showed 
no difficulty in convergence» The fact that the estimated values 
of parameters corresponded to the only minimum of I was verified 
by computing I for different values of x2(0) and x3(0) .
The l.*f. dynamic noise gave some trouble but this difficulty was
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overcame by using suitable filtering. Having obtained experience 
and confidence in the method of estimation for the first order 
open*.loop plant, the technique was applied to a second order 
closed-loop plant (with the feedback loop employing governor 
closed - Fig. 4.1) as will be discussed in Chapter V.
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