CHAPTER IV

ESTIMATION OF THE OPEN.LOOP TRANSFER

FUNCTION OF THE TURBO-ALTERNATOR
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This chapter deals with the estimation of the open-loop
(i.e. the feedback loop employing governor is disconnected)
transfer function of a turbo-alternator of an inter-connected
power system from the normal operating input-output data. The
state variable formulation of the open-loop plant is first
obtained and using the basic theory developed in Chapter II1I,
a suitable algorithm for numerical computation to seek the
minima of the performance index is developed using input-output
of a simulated system. The same technique is then employed to
estimate the parameters (of transfer function) of the plant
using the actual operating data. The effect of dynamic noise,
not considered in the basic formulation of the estimation probl-

em in Chapter III, is overcome by digital filtering.

4.1 Description of the Plant

The basic equations obtained for the dynamic performance

98@ However, . if these

of a synchronous alternator are nonlinear
equations are linearized by considering small perturbations
about the normal operating level, it is possible to represent

80 of the turbo-alternator by the block

the dynamic behaviour
diagram depicted in Fig. 4.1. The input and output of the plant
are respectively the vower demand fluctions Ap (per unit value)
and the corresponding frequency variations Ah5(cycles per second) .
The frequency of a.c. output from the turbo-alternator has to be
maintained within permissible limits about the declared frequency.

The variations infrequency are therefore normally counteracted

by a feedback loop emploving governor which regulates the flow
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of gteam to the turbine to even out the power load fluctuations.
It is required to estimate the parameters of turbo-alternator
transfer functions when

(a) the feedback loop employing governor is kept open -

which is termed "open-loop® plant, and

(b) the feedback loop is closed as normal - which is

termed “closed-loop" plant.
The input-output data was therefore made available for both the
cases.

The open-loop plant is assumed to be of first order, with
the open-loop gain and one time constant to be estimated from
the given input-output record for the open-~loop élantn In fact,
this is the subject matter of this chapter.

While considering the estimation  of closed-loop plant
from the corresponding input-output data, the feedback loop
employing governor is assumed to be

(L) of first order which involves the estimation of

feedback 108p gain and one time constant,and

' alternatively,
(ii) of second order vwhich requires the estimation of

feedback loop géin and two time constants.
The representation of the feed-back loop by twoe time-constants
is more typical. The estimation of closed-loop transfer function
involves constants of forward loop and feedback loop. Thus the
closed-loop systems corresponding to cases (i) and (ii) above
are of second and third order respectively. These are dealt with

in Chapter V and VI respectively.
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In view of the above discussion, the transfer function of

the open-loop plant(shown in Fig. 4.1) is given by

A (s) 1
AP(s) T B +%.s) (4.1)

where '‘s' is the Laplace Transform variable and AS2(s) and
AP(s) are the Laplace Transforms of A«(t) and Ap(t) res-
pectively. The ramdom disturbances with Ad(t) and Ap(t) are
ignored for the validity of equality sign in equation (4.1). The
parameter D 1is the composite rotor damping coefficient in per
unit/cycles per second and ?; is the time-constant in seconds
of the alternator. Alternatively, 1/D represents the open-loop
gain. The coefficients K and T% are the gain and time~constant
for the feedback loop. The four coefficients, viz. D, 7&, K and
20

7; were estimated by Stanton using power spectra analysis and

their estimated values are

D = 0,055 p.u./ ¢/s (4.2)
75 = 2.5 secs. {(4.3)
K = 0635 peu./ C/S (4‘.4)
?é = 2.5 sees. (4.5)

Since the quantities 2Ap and A were found to be very small, they
were amplified for convenience by a factor of 1200 and 104 respe=-
ctively before they were measured. The amplified or measured values
are given by

A ="' 1200 AD (4.5)

Ap* "= 10% ap (4.7

The open-loop tranafer function in terms of the amplified values



7°

iz given by

ASUs) 1200 A%(s) ‘ (4.8)
Apt(s) 10* Ap(s)

Using equation (4.1), this becomes

_ASs) 1 (4.9)

LP(s) D¢l + 'z’ms) ¢

vwhere 4 .
= -;-o-n—

D' = 1306 (4.10)

Thus, if one uses the amplified data, the open-loop gain is
obtained as 1/D*' . The value of D' according to Stanton's esti-

mate is readily obtained by using equations (4.2) and (4.10) as
D* = 00458 poua/ C/S (4011)

The problem to be considered in this chapter is to estimate the
values of D' and 7; in equation (4.9) using the same input-
output data (amplified) as used by Stanton employing the techni-
gue developed in Chapter III. The technique requires the plant
dynamics to be represented in terms of state variables as will

be discussed in the following section. B .
4.2 State Variable Formulation

As an intermediate step towards obtaining the state variable
0o
formulation”~, let the open-loop plant transfer function of equa-
tion (4.9) be transformed into a differential eguation given by
} 1 ’

i
%{ (&) = - O 3 5-1-?“ ap! {(4.12)
m ™

Using the usual notations, let

x, = AW (4.13)
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and
u = Ap’ (4.14)
where x = xl(t) is the true state (ignoring disturbances in

the output A for the time-being) of the system. Substituting
these in egquation (4.12), one obtains

- 1 1
1 Qﬁn 1 D? Zm

In order to apply directly the method developed in Chapter III

for estimation of constant parameters QQ and D! , let

X, = 1/qn (4.16)
and
Xy = 1/D¢ (4.17)

Thus the differential equations representing the dynamics of

the plant become

X, = -x %, + X, X3u (4.18)
X, = 0 (4.19)
%, = 0 | (4.20)

Equations (4.19) and (4.20) imply that x, and x_, are constants.

2 3
These three equations can be brought into the vector form of

equation (3.1) by writing
x(e) = col [x (€), x,(t), x,(t)] (4.21)

The true state x ignores the random disturbances and represe-

1
nts the theoretical output Ad. However, the observed values

H
of %y or Aw are corrupted with random disturbances
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dncluding measurement noise as well as dynamic noise of the

system. Thus the discretely measured output y(i) is given by
y{i) = xl(i) + n(i) i = 0,1, ¢« « « ,N (4.22)
wvhere n{l) represents the additive noise (at the output) and
includes measurement noise and other random disturbances but
not the correlated dynamic noise. Since only one state is

observable, y(i) is a scalar quantity. Comparison of eguation

(4.22) with equation (3.3) gives

H = (1, 0, 0) (4.23)
which is a row vector, and

x(1) ; col [xl(i), x, (1), x3(i)] {4.24)

represents the state vector of the plant at an instant i .
The problem is to estimate the initial states xx(O).

x2(0) and x3(0) from the observations of the input u(i)

(power demand fluctuations ap') and the output y(i) (frequency

{
fluctuations A® ) for i = 0 to N.

4,3 Estimation Scheme

The best estimate of x, (o), x, () x, (0) is cbtained

by minimizing the performance index I given by

I

ft

N 2
s ey - %, ()] (4.25)

which is obtained by substituting for H from egquation (4.23)
in equation (3.11). Here, §1(i) is the nominal trajectory

i.e. computed output y{i) of the dynamic model of the system
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simulated on the digital computer) and is obtained by solving
the differential equations of the dynamic model given by

X, = =X X, + X, X3'u (4.26)
X, = 0 ) ' {(4.27)

for some initial conditions §1 (0), %,(0) and 5'23 (0) and the

same input as that of the system whose parameters are to bes
estimated. It should be noted that Q is scalar in the equation
(4.25). The above three equations are represented by the general
vector differential equation (3.41). The minimization of I in
equation (4.25) must satisfy the Euler-Lagrange difference equa-
tions and the natural boundary conditions given by equations
(3.17) to §.20). Splitting these into scalar difference equations
{(noting that the state vector under consideration is 3-dimension-

al), one obtains

% i4) = £ [® W, %,6), %), 1] (4.29)

R4 = £,[F0), X,0), KW, 1] (4.30)
= %,(i) (4.31)

Fylael) = £, [%,Q), X,00), Xy(0), 4] (4.32)
= x,(i) (4.33)

and

ali-1) = £ A o+ £ 2w o+ £ A1)

1 2y b (1) 2 2 3

+ 20[y@) - X @] (4.34)
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12 22 32 o)

2, (i-1) = f}_i(i)ml(i) + f;:(i) (1) + ix(i) 5 (1) (4.35)

21 = £22 A )+ f 32(1) * f %3(:1) (4.36)
x(1)

with the following boundary conditions

A1) = 0 k=1, 2 3 (4.37)

A =0 sk=1,23 (4.38)

Equations (4.29), (4.31) -and (4.33) are discrete-time version of
equations (4.26) to (4.28) and are not available in the closed
form when the values X, (i), 322 (1) and ¥X,(i) are obtained by
numerical integration of equations (4.26) to (4.28). Equations
(4.31) and [4.33) imply that §2(i) and §3(i) are constants.

The Jacobian matrix elements fjk reguired in equations
x®(1)

(4.34) to (4.36) are to be computed by solving equation (3.46).

The matrix .g_ corresponding to equations (4.26), (4.27) and
x

(4.28) is given by

g = 0 0 0 (4.39)
X
0 0 o |

The state transition matrix &$(i+l, i) of eguation (3.46) is a
3x 3 matrix in the present case and its (j,k)ﬁh element is

written as t¢;3(i+l, i). Substituting for ¢ From egquation
' b3

(4.32) in equation (3.46) and then performing the vector multi-

plication, one obtains a =scalar equation for each element of
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$(i+l, i) as follows.

Pk, 1) = < ®, ot 1o+ R+ R P, 1)

+ X0 3an, 1 g 4:11(1.:1)'-.- 1 (4.40)
2, 1) = <R, e, 1)+ R + R0 47004, 1)

+Eu 220, 1) 5 ) =0 (4.41)
5513(14-1, 1) = - X, d>l3(i+1g i) + (-521 + §3u)d>23(i+1, i)

+ ;ezu #*3an, 1) 4913(1,1) =0 (3.42)
d* (i, 1) = o d?Zi(i,i) =0 (4.43)
$*2uu, 1) = o ; @22(1,1) =1 (4.44)
¢+, 1) = 0 : ¢P2,4) = 0 (4.45)
Flae, 1) = o : 3@, =0 (4.46)
P24, 1) = 0 3 ¢32(1,1) = 0 (4.47)
$33H, 1) = o ;P (4,1) =1 (4.48)

The state transition matrix represents the Jacobian matrix by
vitue of equation (3.47). The dynamic equations (4.26) to (4.28)
and the equations from (4.40) to (4.48) together can be integr-
ated simultaneously between the successive sampling instants
(to obtain the nominal trajectory and the Jacobian matrix resp-

100

actively) by using AMRK subroutine. The AMRK subroutine has

been specially programmed to solve n first order simultaneous

-

differential equations. However, the equations (4.43) to (4.48)
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imply that the Jacoblan matrix elements le R f22 ’ f23 ’

(1) 0 x(@) x(1)
fil s fEZ , fiB
x{i) x (1) x(i)
0, 0, 0, 1 ; This is obvious from equations (4.31) and (4.33)

are constants and are respet¢tively 0, 1,

which also suggest that equations (4.27) and (4.28) need not be

integrated since §2(i) = §2(0) and §3(i) = §3(0) for 1i=1,

2, « o +(N#¥l). The equations (4.27), (4.28) and (4.43) to
(4.48) may therefore be excluded from the AMRK subroutine to save
computer time.
The entire camputatiqnal procedure is outlined as follows:
1. Make an initial guess on the initial conditions
21(0). §2(0) and §3(O).

2. Integrate (numerically using AMRK) equation {4.26) to
obtain §1(i) and equations {4.40) to (4.42) to obtain

the Jacobian matrix elements fll . f12 and f13 H

XW) x{i) x(1i)
i = 0 to N. The values of x, (1), §3(i) and other
elements of Jacobian matrix are known as discussed before.
3. Compute the performance index I using equation (4.25).
The value of Q is taken to be 100.
4a., If the current value of I is less than the previous

value of I, compute ?\1 (-1), /\2(-.1). 9‘3('»1) from
equations (4.34) to (4.36) starting with 31(N) = ZE(N)
= A =

/3(N) 0,

Then modify that values of initial conditions by the

following rule as per equation (3.48).
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new x,(0) = old £, {0) + [ 43 LA (1)
. 3 2 3
= Ak(-l)
k=1 ‘ {4.49)
nev %,(0) = old %,(0) + [ T 12,6-1)
- _ L | (4.50)
nev %,(0) = old x3€0) +* L ].As(—l)
(4.51)

The step-size A A is chosen to be 0.1 to start with.
Go back to step (2) above and repeat the sequence.
This procedure is followed until I bbecomes minimum in

which case the initial states ﬁl(O)p iz(o) and i3(0) are

expected to have converged to their true values.
The above computational procedure will be first shown to
work successfully with the input-output data obtained from a

computer-simulated system as discussed in the following section.

4.4 Estimation from Input-Output Record of a Computer~Simulated

System Similar to Open-loop Plant

While working on an estimation problem under actual oper-
ating conditions, one has to make sure that the values of sta£es
and parameters estimated are close to their true values. The
assurance of correct estimation depends upon the confidence one
has gained in the estimation technigue used. To ensure feasibility
of the technique, it must be first tried out for estimation from
input-output data obtained for a computer-simulated system in
which case one is in a position to compare estimated values with

the known true values. A transfer function of the form
¥
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" - 1,
éls) = FEE"TIES (4.51)

which is somewhat similar to the open-loop plant transfer fun-
ction (estimeated by Stanton) and which gives rise to differential
equations (4.18), (4.12) and (4.20) with xz(ﬁ) = 0.4 and

x3(0) = 2.0 , wvas simulated on the digital computer. The output
was obtained with a sampling interval of 0.125 sec., consider-
ing sinusoidal input and the intial condition xl(o) = 0.2 .

The sampling period was chosen to be the same as that for input
of the experimental data. This ocutput combined with or without

101) and the sinusocidal

additive noise (generated by using RRN
input were then uséd to perform several experiments aimed at
getting suitable algorithm for best estimate of initial states

x, (0) , x,(0) and x3(0). The RRN subroutine generates random

numbers with a rectangular distribution.

During the early stages of egperimentation (without con-
sidering noise) it was realized that increasing the number of
measurements of input-output speeded up the rate of convergence
and also resulted in better estimates of the initial states. It
was also concluded that too small a value of the step-size AA
slowed down the convergence whereas with large values of AA ,
the convergence was faster in the beginning but kept on fluct-
uating around the minima in the later stages. It was found most
expedient to let AA = 0.1 in the beginning and then halving
it whenever the value of performance index I of the current
‘equation exceeded that of the previous iteration. This gave

faster convergence. If the difference between two successive
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values of I 1is very small, inspite of ‘considerable changes in

variables ii(O)' §2(0) and §3(0) on each iteration, the

computer program run stops at such a stage giving an impression
of a minima. This situation is known as the plateau problem.
This deceptive situation was avoided by taking large steps along
the gradient., Large steps helped in jumping over the plateau
region. Thus a2 suitable cocmputational algorithm was developed.
As such the step (4) of the computational procedure on page 85
is supplemented by the following instruction.

4b. If the current value of I is greater than its previous

value, go back to previous iteration and reduce step-

size AA to 4A/2 and modify X, (0), X,(0) and %, (0)
using stored previous values of }l(wl), %z(wl) and

?\3(-»1) in equations (4.49), (4.50) and (4.51). and go
back to step (2).
4c. If the current valuve of I is almost equal to the

previous value of I, modify §1(0). %,(0) and §3(0)

by taking large value of AA along the gradient. If
this fails to locate I lower than the previous one,
gstop computation.
Several computer runs were made considering different
conditions of noise and these experiments have been catagorized

into the following two cases with subcazes for each.

CASE 1

Estimation of initial states xl(O). xz(O). x3(0) from

measurements of xl(i) (a) without additive noise,
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(b) with the noise having zero mean, {c) with the noise

having nonzero mean.

The true state xl(i) for i = 0 to 94 was computed using

equations (4.18), (4.19) and (4.20) for xl(O) = 0.2, %,(0) =

0.4 , x3(0) = 2.0 and sinusoidal input u({i) =1 x sin(0.125 i)

with a sampling interval of 0.125 seconds. The output y(i) may

be of three catagories:

(a)

(b)

(c)

Without Additive Noige ¢ The output y(i) without
additive noise was obtained as y(i) = xl(i) i=
0 to 94 (i.e. 95 measurements).

With the Additive Noise Having Zero Mean : Ninty five

random numbers representing hoise were genersted by
using RRN subroutine and stored separately. The values
of these numbers were kept within the bounds % 0.05.
Comparing this magnitude wiih the unity amplitude of
sinusoidal input, the noise level is termed as 5 % .
This had a nonzeroc mean. The mean of these 95 numbers
was computed and deducted from each of them. The new
set of random numbers has zero mean. These numbers
were then added to X;(i)'s to obtain the output

v{i) with additive noise having zerc mean. This noise
includes all random disturbances (including measurem-
ent noise) appearing additively at the output. It does

not represent dynamic noise of the system.

With the Additive Noise Having Nonzero Mean : The

output y(i) having nonzero mean is obtained by adding
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to xl(i) the random numbers generated by RRN,
The input and outbut of each of the above three cases were

used for estimation of xl(O)a x2(0) and x3(0) following the

computational procedure discussed earlier. Figures 4.2, 4.3 and
4.4 show the convergence of §1(0)' iﬁ(o) and §3(0) respecte
ively towards their true values for the three different conditi-
ons of output as discussed in (a), (b) and (c) above. The initial
guess in each case were §1(O) = y(0}, §2(0) = 0, §3(0) = 0. The

estimated values are shown in Table 4.1.

Table 4.1 Estimated Values of Initial States for a Computer-

Simulated System Similar to the Open-loop Plant. ¢4s5¢ I

xl(O) 32(0) xB(O)
(1) True Values 0.2 0.4 2.0
Egtimated Values for ‘
(2) No Noise 0.214 0.403 1.947
(3) Noise having zero mean 0,216 0.406 1.982
(4) Noise having nonzero mean 0,193 0,466 1,759

TR e oW GG AR M TS G A MR BMe W e CD CID GNP S Gl W IR TER R WA G e WS W e OB o

Mean of Noise = « 0.058

These results indicate that better estimates ére obtained only
when there is either no noise or when the noise has zero mean.
¥When the noise does not have zero mean, the estimated values of
x,(0) and x3(0) are far off from their true values. This is
also evident from the following analytical proof.

The true state (xl(i) is observed in the output as per

eauﬁti@n ‘4.22) & iaeo
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Y(i) = xl(i) + n(i) i = O, l' e @ 5N (4052)

The best estimate of the initial state =x(0) is obtained by
fitting the nominal trajectory §1(i) on y(i) in the least
squares sense. Thus the performance critericen to be minimized

(equation (4.25)) is

N - 2
I = g_og;;y(i) - %, (1] s Q>0 (4.53)

Differentiating I w.r.t. xl(i) and equating the result to

zere® for minima, this becomes

N
-20 5 [yl) -x@W] = o (4.54)
i=0

Additing and subtracting ﬁl(i) within the brackets and dividing
by 20(N+1) on either side of equation (4.54) and rearranging the

terms, this kecomes

N N
e [x W -7 W] = gy = [v@) - %] (4.55)
i=0 i=0

The mean or expectation of noise nf{i) , i=0, 1, . . ,N is

given by

N

N = FT o ) (4.56)
i=0

Using this in equation (4.55), one obtains

1 X -

W o (@ - W) = n (4.57)

Equation (4.57) indicates that, if the noise has zero mean, the
best fit §1(i) on y(i} is almost the same as the true traj=-
ectory x,{(i). This is shown in Fig. 4.5 . Since §1(i) depends
on §1(0), §2(0) and X {0), the best §1(i) also gives the

best estimate of these initial conditions. The equation (4.57)
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also evidences that if the noise does not have zero mean, the
estimated trajectory (i.e. best §1(i) ) will be away from the
true one by the amount equal to the mean of noise. Thus the
estimation is in error. This is depicted in Fig. 4.6.’

To overcome the difficulty posed by nonzerc mean of noise,

several experiments were made and they are discussed in case Il.

CASE II Estimation of Initial States X1(0)0 82(0) and XB(O)

From Measurements of xlii) Computed with Noise (Having
Nonzero Mean) Considering the Mean of Noilse Separately
in Three Different Ways.
The general estimation procedure followed for this case
was more or less the same as that of case I. The output y(i),
i =0 to 94 with the additive noise having nonzero mean for
the sinusoidal input was obtained for the same system as descr-
ibed in case I..The nonzero mean of noilse which gave wrong
estimates is tackled by three different methods.
Method (a)
After having computed the nominal trajectory il(i) from
the initial guesses‘ §1(0) = y(0), §2(0) = 0, §3(O) = 0, the

mean of residual error e_ Wvas computed as

N
I = - s
m T R I [v(1) - %, )] (4.58)
The performance index I to be minimized was then modified to
X - 2
I = X aofyl) -%0) -] (4.59)
i=0

Consequently the equation (4.34) had to be changed as follows:
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MUl = £ A () ¥ €20 A 0) + £ A5
x(1) x(1) x(i)

+20Q [yl) - £ Q) +e] (4.60)

The equations for 32(1) and ﬁ3(i) remained unchanged. The
estimated values for xl(O), x2(0) and x3(0) shown in Figures
4.7, 4.8 and 4.9 are better than corresponding values of Case 1.
The mean €n of residual errors finally converges to the mean no
of noise. The estimated values are given in Table 4.2.

Method (b)

A fourth state variable x was introduced to take care

4
of the mean of noise! i.e.
Thus a fourth equation given by

is added to the three differential equations (4.18), (4.19)
and (4.20). The state .xl(i) was observed (equation (4.22) )

as

Y(i) = xl(i) + n(i) i= 8' 1,' .« o o QN (4‘063)

The noise n(i) has nonzero mean in this case. It can be
written as

n{d) = n'l) +n,

= n'{1) +x,{) | (4.64)
where n'(l) is the noise with zero mean. Therefore
yi) = x,{i) +x, (1) + n'(i) (4.65)

One more differential equation in addition to equations (4.26)},
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{4.27) and (4.28) required for generating the nominal trajectory

is given by

L
-

x, = 0 (4.66)

Therefore, the state vector x(i)} became 4-dimensional and is

given by

1) = col® W), %), X(), ¥, )] (4.67)
The performance index to be minimized became

I = f_‘zo Qfy) - % @) - :24(1)]2 (4.68)

Consequently, the equations (4.34), (4.35), (4.36) for (i)'s

vere replaced by the following eguations.

NE-n o= gl AW e 2 w2t 2w+ AW
x(i) x (i) x (1) x (i)
+29[yl) - {0 - %, W] (4.69)
Mtim1) = £22 0,0+ £22 a0 + £32 ai0) + £22 )
x(1) x (i) x(i) x(i)
| (4.70)
N-2) = 222 2w + £ @+ £ a0 + 222 3 @)
X (1) Z() Z(1) £(1)
- (4.71)
NG-2) = £2 ) + 22 A w22 A+ e )
x(i) x(i) x(i) x(i
+ 20 [v@) - X () - X, (1)] (4.72)
The nominal trajectory §1(i) and the Jacobian f_( ) were
x(i

computed by numerical integration from the relevant equations.

The input-cutput data used here was the same as that for method

{a). Only the formulation of the problem was changed. The same

computational algorithm was followed for estimation and the
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.estimates of .xl(O), xz(O), x3(0) and xé(O) are shown in
Figures 4.7, 4.8 and 4.9 and Table 4.2. Thé results cbtained
by this method are also better than those of case I.

Method (c)

This method aléo involves the fourth state variable to
represent the mean of noise but the plant eguations are written
in a different manner to improve convergence during estimation
procedure.,

Iet a new variable xi(i) be defined as
xi(i) = xl(i) + x4(i) - {4.73)

where xl(i) is the true state and xé(i) is the mean of noise
as discussed earlier., It was seen in case I for noige having
nonzero mean that the best fit of §1(i) on y(i) is away from
the true trajectory x,(i) by the amount equal to the mean
x4(i) of noise. In other words, the estimate of xl(i) was
found to be xi(i) giving an incorrect estimate. It was intui-
tively felt that if one attempted to obtain the estimate of
trajectory xi(i), better results could be obtained. Equation

(4.73) is written in continuous-time as

x] = X, *t X, (4.74)
Substituting for xi(i) from equation (4.73) in equation (4.18),
one obtains

ﬁi = - xi X, + X, X, + X, Xy {4.75)
This equation, augmented by the equations (4.19), {4,20) and

(4.62) complete the set of eguations to describe the plant

Aynanics. Use of equation (4.73) in equation (4.65) gives
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v{i) = xi(i) + n*(i) (4.76)"
In this context, the performance index ies written as
S! \
I = Qv - x‘(i)] (4.77)
i»o

where ii(i) is the nominal trajectory obtained by numerical

integration of the equation

Xi = "’Z'Ei Siz + §4 ;Ez + xz 523 u (4078)
supplemented by equations (4.27), (4.28) and (4.66). The
equations (4.34), (4.35) and (4.36) for A(i)'s were replaced

by the following equations.
11 X\

A (ie1) = (1) + £21 A (4) + W + £ N W
1 ) z() 2 x(i))B z) 4
+20[y@) - & )] - (8.79)
M- = £22 A 222 5o+ 232 )+ £22 )
x(i) x{1) x (1) x(i)
(4.80)
N-1) = £23 A @ #2283 ) + 22 a0 + £ @)
x(i) x(i) x(i) ®(i)
(4.81)
MU-1) = £22 8 @+ £2f w22 agw £ @)
x(1) x{1) x(1i) x (i)
(4.82)
The elements of Jaccbian matrix £_ ) were obtained using
» x (i
equation (3.46) vherein the matrix g_ is obtained from eguat-
X

ions (4.78), (4.27), (4.28) and (4.66). The same computational
algorithm was used again. As expected, the results obtained by
this method are slightly better than those obtained by methods

(a) and (b) of case II as is evident from Figures 4.7, 4.8 and
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4.9 and Table 4.2.

Table 4.2 Estimated Values of Initial States for a Computer-

o Simulated System Similar to the Open-loop Plant -
CASE II.
x, (0) x., (0) x., (0) x,(0) or
1 2 3
R . T T T R R R S — e KT W Kk omR ON e Cn e RE e N e o e m‘m w-mcu
(1) True Values 002 0.4 290 . 4*0.0‘58

W e G kM R an R O O @r we BB W A5 RS GR MG, e Sk P e OF G GR QR GR N W e e 6B

Egstimated Vglues

{(2) Method (a) . 0,196 0,427 1.914 - 0.046
{3) Method (b) 0.187 0.426 1.816 - 0,045
{4) Method (c),,x]'_(O) = 0.155 0.416 . 1.922 - 0,046

= 0,155 + 0.046
0.202

-

It can be seen that method of case II{c) gave results
slightly better than those in case II{a). But case II{(c) involved
more computational time in computing the Jacobian f”(i) on

4 x
account of the additional state variable x4(i)o In view of this,
metho§ II{a) was preferred for the estimation of parameters from
the actual operating input-output data as is discussed in the
following section. The time regquired on IBM 7094 for each of
these programs was about 2 to 3 minutes.

It was also cbserved that the computational algorithm dev-
eloped here worked equally well for estimation of any first order
prlant (i.e. plant having ANY gain and time constant other than

those assumed here).
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Having ensured the feasibility of our estimation method
with a suitable computational algorithm with input-output data
of a computer-simulater system, the method was then applied to
the turbo-alternator data. The actual data was obtained for 10
minutes giving 4800 samples of input ap' (i.e. power load
fluctuations) at the rate of & samples/second and 1200 samples
of output A«' (i.e. frequency fluctuations) with a sampling
period of 0.5 seconds. Since the open-loop plant acts like a
low pass filter (on account of large moment of inertia of the
turbo-alternator rotor), high frequency f£fluctuations in ap’
do not reflect in the output 4x° . The sampling interval for

At was therefore chosen longer tban that for ap!' . This also
reduces measurement labour and cost. The average operating levels
were removed from both input and output data because the varia-
tions othervise were very small as compared to the operating
levels. This was necessary to obtain better correspondence bet-
ween variations in input and output.

Barly experiments using AMRK or other simpler subroutines
for integration over the entire 10 minutes span of datg per every
iteration showed that it took a long time even for few iterations.
A need for faster subroutine for integration was felt. The diff-
erential equations (4.26),¢.27) and @ozs)wer%%ransformed into diff-
erence equations considering linear interpolation between succe-
ssive samples for input. The difference equations thus obtained

for the nonminal trajectory are
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~%, (1)7T_ -X, 1),
X (1) = e X, (1) + X (1) ui+) l i + §__~ J
x, )T x0T

+ x (1) u(i) [*-t*)-* - e-xg(i)T- e-xz(i)T}
T

§2(1)T
i= 0; 1) » e gN (4.83)
iz(i+1) = §2(1) i=0,1, .. ,N {4.84)
53(1+1) = §5(i) i=0,1, « . ,N {4.85)

where 'T' is the sempling period. Equations (4.83) to (4.85)
were used in generating the nominal trajectory :-:1 (1) staring

with the initial guess on 5':1 (0), 552(0) and :;:.3(03. It is

easy to ohtain Jacobian f_( ) from these difference equations.
x (1
Thue by virtue of equation (3.15), one obtains
-x, (1)T
gl . o2 (4.86)
x(i) )
-x i)z
£12 = _7e %, (1) + %, (1) fuliad) - uld)] ,.“2
x{i) - X
X, (1)T -x. (1) ..2
2 2 - -X, i)T
"%T ...?r_ +x3(i) u{(i) T e
13 fu 2 It 1[0 = e 2 1)T %, (1)T
f,_ - u(i+1) il )i - _J-:,_ - e 2 U(i)
x{1i) x (1)1
(4.88)
£21 o 23 31 = £32 2 9 (4.89)
x(i) x(i) (i) x(1)
£22 = £33 - ' (4.90)

%(1) x (i)
Equations (4.86) to (4.90) were used in computing the Jacobian

metrix required for estimation procedure. Since the rate of

sampling of input data was 4 times that of the output data, the
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subroutine using the above equations with T = 0,125 secs. was
ré&uired to be CALLed four times to reach the next sample of
nominal trajectory il(i) to compare the observed output y(i)
at the corresponding sampling instant. This increased the compu-
tation time 4 times. The computation time could be reduced by

either of the following two types of high frequency filtering.

(1) High frequency filtering by modifying the input data Ap'
(i.e. u{i) ) by taking average over four samples, i.e.
filtered u(i) = % ég u{i+k-1) ? i=0, 4, 8, . ,N

k=1 (4.91)
This gave the modified input data with a 5ampli§g interval of
0.5 sec. and reduced the number of samples to 1200, the same
as that for the observed output Au', i.e. y(i) . This amounted

21

to high frequency (h.f.) filtering® of the input data with a

cut-off fregquency of 2.0 ¢/s as shown below.

g L1} e A t}

1 sin P ( .

Filter function F(f) = ) —3E 4.92
sin{*=}

where
£ = freguency in c¢/s
k¢l = Number of data points averaged (4 in the present case)
4t = Sampling period (0.125 in the present case)
P(£f) = gain of the filter at frequency £, which is maximum at

£=0 and becomes zero at f=fé,. the cut-off frequency.
The cut-off frequency for the filter can be easily computed as
2.0 ¢/s by equating to zeroc, the numberator of the right hand
side of equation (4.92).



101

€2) Hich frequency filtering by modifying the input data u(i)
by taking average over eight samples and modifying the output

data y(i) by taking average over two samples, i.e.

8
filtered ul(i) = % S uli+k=1) ; i=0, 8, 16, . .
k=1 (4.93)
and
1 2
filtered Y(i) = "5 i Y(j‘i"k"l) b j = 03 2, 4' “ ®
k=1 (4.94)

This gave the filtered input and output data with a sampling
interval of 1.0 second and reduced the number of samples to 600
for both. Substituting for k+l = 8 and At = 0.125 sec. for input
data and k+l = 2 and At = 0.5 for the output data in equation
(4.92), the cut-off frequency can ge obtained as 1.0 ¢/s for both.

90 of about 2.5 secs.

The open-loop plant has a time~constant
which gives the corner fregquency d% = 0.5 rad/sec or fc = 0.08.
¢/s. Therefore, no appreciable information was lost by using h.f.
filtered data having £ equal to either 2.0 or 1.0 ¢/s. Indeed,
some experiments did show that the estimator without or with h.f.
filtering (fc = 2.0 ¢/s), using the same length of time of data,
gave the same results. The results obtained using h.f. filter with
£,=1.0 c/s gave results little different but the computer time
taken was the least because the number of measurements were reduced
to 600. However, considering better accuracy, the h.f. filtering

with fc = 2.0 ¢/s and 1200 filtered data points was considered
‘ suitable.
The method used for estimation with actual data was the same

as Method (a) of case II in section 4.4 with the only difference

that the simulated data was replaced by the actual one. The
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initial guesses for the initial conditions were il(O) = y{(0) ;
22(0) = 0.1 ; §3(0) = =0.1 . Since the increase in power load
would result in décrease in frequency, the gain of open-loop
plant transfer function was expected to have negative value.

The initial guess for §3(o) was taken as 0.1 80 that it would
converge in the right direction in the very early stages instead
of taking a different course in the beginning and then turning
back in the right direction, thus saving computation time. The
following five experiments were made for estimating the gain and
the time-constant for the open-loop plant from normal operating
data.

(1) CEstimation using High Frequency Filtered Data (fc = 2.0 ¢/s)
with Means Deducted.

The @%ms for both input and ocutput were computed and sub-
tracted from their respective data. This removed the average op-
erating levels leaving only the variations. The convergence of
EI(O), X,(0) and §3(0) sta%ing from initial guesses are shown
by curves marked *{1)® in Figures 4.10, 4.11 and 4.12 respecti-
vely. The estimated values are also shown in Table 4.3. The
estimated values 32(0) = 0,445 and x3(0) = =0,465 were found
to be different (particularly x3(0) ) from their expected values
x,(0) = 1/ = 0.4, x4 (0) = 1/D* = 2.19 ¢/s / p.u. obtained
earlier by power spectral analysis%o An unaccounted l.f£. source
was suspected to be present in the form of dynamiq noise vhich
could not be measured at the input. However, its effect appeared
in thg output measurements and this gave different estimated
values. The estimation method developed in chapter III is equipp~-
ed to take care of only the ad@%ive noise at the output and not
.the dynamic noise generated within the system. The dynamic noise
is usually correlated and can not be tackled as easily as the
additive noise at the output, in the general formulation of
estimation scheme of chapter III. Had the dynamic noise been in
the h.f. range, it would have disappeared with h.f. filtering.
Thus digital l.f. filtering of both input and output data was
necegsary to remove this l.f. dynamic noise. The following four
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2xperiments were performed to show the effect of different 1.f.

filters.

(2) Using First Differences for Wide Band low Frequency Filte-

ering. ‘
21

A very wide band 1l.f. filtering ~ was first tried on the

h.f, filtered (fc = 2.0 ¢/g) data using the first differences,

i.e.
filtered u(i) = u(i+l) - u(i) {4.95)
and
‘filtered v({i) = y(i+l) - y(i) (4.96)

This gave the estimate of xz(o) and xB(G) to be 0.209 and
=2.130 respectively (depicted in Figures 4.10, 4.11 and 4.12
and Table 4.3).

(3) Using lLow Freguency Filtering21

with £ = 0.025 c/s.
This was obtained by applying the following treatment to

the h.f. filtered data

80
filtered uf{i) = u{i) - - = u(i+k-l) (4.97)
, 80 =1
and 80
filtered y(1) = y(i) - 25 - y(itk-1) (4.98)
k=1
The corresponding filter gainu§unction is
) {siniiki'lz} ”A’t] (
F(f) = 1.0 - - 4.99)
~ k+1 . faiat
szng~§~y

Here k+l = 80 and At = 0.5 sec. The 1l.f. filter response is
plotted in Fig. 4.13. The estimated values as can be seen from
Figures 4.10, 4.11 and 4.12 and Table 4.3 are xz(O) = 0.345
and x3(0) = =1.254 .,

(4) Using Low Frequency Filtering with £, = 0.05 c/s.

This was accomplished by using the formulas
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40

filtered u(i) = u(i) - 3%~ 5 ulitkel) (4.100}
k=1
and
1 20 ‘
filtered y(i) = y(i) - 45 ﬁéi y{it+k=1) (4.101)

The cut-off frequency fc can be easily found from equation
(4.99) by substituting k+l = 40 and At = 0.5 sec. The filter
response is shown in Fig. 4.13. As a result of this filtering,
the estimated values were changed to xz(o) = 0,250 and x3(0)
= =2,158., (Figures 4.10, 4.11, 4.12 and Table 4.3).
(5) Using Low Frequency Filtering with £, = 0.1 c/s.

This was done by modifying the h.f. filtered data in the

following way.

20
filtered u(i) = u(i) = 1%; T uli+k-l) (4.102)
k=1 -
and
, 4 20
filtered y{i) = y(i) - Z- y{i+lk=1) (4.103)
20 5

The filter gain is piotted in Fig. 4.13 by taking k+l1 = 20 and
At = 0.5 sec. in equation (4.99). The estimated values are
depicted in Figures 4,10, 4.11 and 4.12 and Table 4.3 are xz(o)
= 0.234 and x3(0) = -2.617.

Table 4.3 Comparative Statement of Estimated Values of x, (0)
and x3(0) Obtained by Different Low Frequency

Filterings.

Next Page
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—— - Estimated - -
Type of Filteringn = =75 7 07 7 %% 7,5
xzfo) x3(0)
(1) With means deducted 0.445 - =0.465
(2} Using first differences 0.209 «2.130
{3} Using l.£. filtering, fc = 0,025 ¢ofs 0,345 =1.254
{4) Using 1.f. filtering, £, = 0.05 c/s 0.250 -2.158
{5) Using 1.f. filtering, £, = 0.1 c/s 0.234 -2.617

It was concluded that 1.f. filtering with £ = 0.05 c/s
was considered to be the best suitable filter and it give
estimated values closest to those expected. The estimated values
of x2(o) and x3(G) are 0.25 and =2.158 respectively.
Refeé;ng to eguations (4.16) and (4.17), the values of </ and

m
D* are given by

m = 1/&2(0) = 1/0.25 = 4.0 secs. {4.104)
DY = 1/k3(0) = 1/(-2.158) = «=0,463 . (4.105)

Using equation (4.10), one gets

D - l—zus-)%Di
10

~1200 x 0.463/10%
= ~0,0556 p.u. / ¢/s (4.106)

The estimation procedure developed for simulated conditions
and later used for estimation from actual operating data showed
no difficulty in convergence. The fact that the estimated values
of parameters corresponded to the only minimum of I was verified
by computing I for different values of §2(0) and §3(6) .

The l.£., dynamic noise gave some trouble but this difficulty was
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pvercome by using suitable filtering. Having obtained experience
and confidence in the method of estimation for the first order
open-loop plant, the technique was applied to a second order
closed-loop plant (with the feedback loop employing governor
closed -~ Fig. 4.1) as will be discussed in Chapter V.
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