
CHAPTER 4

GENERATORS FOR HOMEOMORPHISMS ON G-SPACES

Observe that for a given compact Hausdorff space X the notion 
of a generator for (X,h) as defined in Definition 1.5 involves a 
homeomorphism h on the underlying space X while the notion of a 
generator for (X,G), G a discrete group acting on X, as defined 
in Definition 1.7 does not involve any homeomorphism on the 
underlying space X. Therefore, it is natural to ask whether the 
notion of a generator / weak generator involving a homeomorphism 
on an arbitrary compact Hausdorff G-space X, wherein G need not be 
discrete, can be meaningfully defined. In this chapter we attend 
to this problem and define such notions in this setting and 
terming them G-generators and weak G-generators carry out their 
study. We also define the notion of G-asymptotic points for 
homeomorphism on a metric G-space and study them relative to 
G-generators on a compact metric G-space.

Let H(X) throughout denote the collection of all
homeomorphisms on the topological space X.

1. G-generators and weak G-generators.
Definition 4. i. Let X be a G-space and h e H(X). Then a finite 
cover V. of X consisting of G-invariant open sets is called 
a G-gertera.tor ( respectively weak. G-generator ) for (X,h) if for
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c* —ieach bisequence {U }. of members of n h (G1U. ) (respectively
L

CO “lp h {U. ) ) contains at most one G-orbit. 
xs-co *■

Let us give an example of a G-generator.

Example 4.1. Consider the space X = { 1/n, 1 - 1/n | n e N } with
the usual metric defined through the absolute value and the h in
H(X) which fixes 0 and 1 and sends t in X - {0,1} to the point of 
X which is next to the right of t. Let G = Z2 = {-1,1} act on X
with the action defined by (-l)t = 1- t, It = t, t <= X. Then it is
easily seen that the finite cover U of X consisting of G-invariant 
open sets U and X - 0 where U = { 1/2, 1/3, 2/3, 1/4, 3/4 } is

00 —Lsuch that for any bisequence {U. }._ of Inembers of U, . n h (C1U )i i€Z i
is either empty or is {0,1}. Thus, W is a G-generator for (X,h).

Note. Under the trivial action of G on X where X and G are as in 
Definition 4.1, a G-generator (respectively weak G-generator) for 
(X,h) is equivalent to a generator (respectively weak generator). 
But under a non-trivial action of G on X, a G-generator for (X,h) 
need not be a generator as can be seen in Example 4.1. In the 
following example we show that the converse is also not true, 
i.e., a generator need not be a G-generator.

Example 4.2. Let X, h and G be same as in Example 4.1. Choose any 
<5 in (0,1/6) and consider the open cover V. = { B(x,<5/2) i x e X } 
of X where B(x,<5/2) is the open ball centred at x with radius <5/2.
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Then any finite subcover U’ of V. is a generator but not a 
G-generator for (X,h) since the members of U are not G-invariant 
subsets of X,

Clearly a G-generator for (X,h) is also a weak G-generator 
for (X,h) while a weak G-generator need not be a G-generator. For 
the converse we have the following result.

Theorem 4.1. Let X be a compact Hausdor// Q-space with. G compact 
and h in H(X). Then (X,h) has a G~ generator whenever it has a weak. 
G-generator.
Proof. Let U be a weak G-generator for (X,h). For x e X, choose 0^ 
in U such that x « 0^. Then p(x) « p(Ux) where p : X -* X/G is the
orbit map. Since an orbit map is known to be an open map [4,p.371 ,
p(Ux) is open in X/G. Also, X being regular Hausdorff and G being 
compact, it follows that X/G is a regular Hausdorff space and 
hence there exists an open set, say Ap{x> of X/G, such that 

p(x) e A £ CIA £ p(0 ).
Since U is G-invariant, we obtainX

* - P"1^) S P^CIA^) £ P"4(P(0X)) = Ux- 
Clearly Y = { p *(Ap(x>) I x e X } is an open cover of X and the
fact that p(y) = p(gy) for all g in G gives that p *(A , ) is

p(X?

G-invariant for each x in X. Thus Y is an open cover of X 
consisting of G-invariant subsets of X. We complete the proof by 
showing that any finite subcover Y’ of Y is a G-generator for 
(X,h). Suppose {p 1(A.)}.^r, is any bisequence of members of Y’ .
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Then we have
n h-i(Clp_1(A )) s.n h^p^CClA) £.n h"l(0.).

00 -iAs U is a weak G-generator for (X.hK^n^h (II) contains at most
0o —i —4one G-orbit and therefore we get n h [Clp (A)] contains at most\w-o* V

one G-orbit.

Recall that a homeomorphism h on a G-space X is called 
pseudoequivariant if h(G(x)J = G(h(x)) for all x in X, and in 
Chapter 3 we have noted that an equivariant map is 
pseudoequivariant but the converse is not true. The fact that an 
equivariant homeomorphism h on a G-space X induces a homeomorphism 
hg on the orbit space X/G is shown, in the following lemma, to 
hold true even if the equivariancy condition is replaced by 
a weaker condition of pseudoequivariancy. This property of 
pseudoequivariancy is then used to prove in Theorem 4.3 that if 
(X,h) has a G-generator, where X is compact Hausdorff G-space, 
with G compact, then the orbit space X/G is metrizable.

Lemma 4.2. Let X be a compact Hausdorff G-space with G compact and 
let h in H(X) be pseudoequivariant. Then the map hQ : X/G -» X/G 
defined by hQ(G(x)) = G(h(x)) is a homeomorphi sm such that

poh = J\,0P> where p : X -*■ X/G is the orbit map, i.e. s the
following diagram, commutes :

X
HX/G h.

XIp
X/G.
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Proof. First let us note that the map h is well defined. Let G(x)
a

and G(y) e X/G with G(x) = G(y). Then h(G(x)) = h(G(y)} and thus 
by the pseudoequivariancy of h we get G(h(x)) = G(h(y)) and 
hence hQ(G(x)) = hQ(G(y)). Next, suppose ha(G(x)) = hQ(G(y)) for 
some G(x) and G(y) in X/G. Then we have G(h(x)) = G(h(y)) 
which by pseudoequivariancy of h implies h(G(x)) = h(G(y)). As h 
is injective, we get G(x) = G(y) which proves the injectivity of 

V For the surjectivity of hQ, observe that if G(y) e X/G, then 
hQ{G(x)) = G(y) where h(x) = y. Also, for any x in X 

poh(x) = p(h(x)) = G(h(x))
= h.Q(G(x)) = hG(p(x)} = hQop(x).

Hence the above diagram is commutative. Next, let 0 be any open 
set of X/G. Then note that (hQ) 1(U) = ph^p^fO) and hence 
continuity of h implies the continuity of h^ as p is continuous as 
well as open. Finally, hQ is a closed map because X is given 
compact and Hausdorff and G being compact, X/G is also a compact 
Hausdorff space. Thus hQ is a homeomorphism.

Theorem 4.3. Lot X bo a compact Hausdorff Q-space with G compact 

and. let h € H(X) t>e pseudoequivariant. If (X,h) has a G-generator, 

then

(i) (X/G,hQ) has a generator; and 

(it) X/G is metrisaJble.
Proof. Let tL - { u ,..... ,U } be a G-generator for (X,h). Let <K =l n
{ p(0 ),.... , p(U }}. Then we complete the proof of (i) by showingx n
that T is a generator for (X/G,ha).
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The surjectivity and the openness of the map p implies that 
is a finite open cover of X/G. Let {p(0 be any bisequence of
members of tV. Then in order to show that .ft (h J^EClpCU )] has

- OD G L

at most one point, assume on the contrary that
G(x), G(y) e.S (h )-1 [Clp(U )] and G(x) * G(y).

t; *03 a i .

Now,
G(x), G(y) e n <h )-iClp(U) p(x), p(y) e n (h ) "L[Clp(U ) ] 

x~ -.00 a *■ i—-*oo a i
X, y e , n p ‘(h J^CClptU )] 

t——oo a t
* X, y e, n h“lp^[Clp(D.)]

is: - CO t

=> x, y <= . n h Lp-1p(ClU. ),
Is-oo l

as p is continuous and closed. Since closure of a G-invariant set 
is G-invariant, it therefore follows that Clll is G-invariant for 
all i.. Also, from the last implication we get x, y e . n h [C1U. ].US—CO l

Finally, as U is a G-generator for (X,h) we must have G(x) = G(y). 
Hence *K is a generator for (X/Gjhg).

The proof of (u) now follows by the Keynes and Robertson 
result l 29, Corollary 2.8 1 which says that if there exists a 
generator for a homeomorphism on a compact Hausdorff space, then 
the space is metrizable.

For the converse, we have the following result.

Theorem 4.4. Let X be a. compact Haxisdorff G—space with Q compact 

and let h in H(X) be pseudoeQxiinariant. Then (X/G,hQ ) has a 

generator implies (X,h) has a G-generator.
Proof. Let tc = { 0 } be a generator for (X/G,ha), Consider

74



r = { p^fOJ,... ,p~*(U ) } where p : X •» X/G is the orbit map. 

Then T is clearly a finite open cover of X by G-invariant sets. We 
complete the proof by showing that T is a G-generator for (X,h). 
Suppose {p A(U.)}._ is any bisequence of members of tK. Let x, y 
be in thaj^h l[Clp 1(Ui)]. We need to show that G(x) = G(y). Now, 

since Clp *(U ) are G-invariant for all i, we have 
,? h-i[Clp~*(U )] =. n h~V*P[Clp"*(U )]

i l:«qo l
00 “I=.n h V^Clpp^CU.)]

t

as p is a closed map. Therefore, surjectivity of p and the fact 

that hgop = poh implies
JV^CClp^OJ.)] =. £ hV*(ClU.)
TUT-OO t X.SL-JO0 t

=
Hence x, y e.n h l[Clp-:1(G.)] implies

l

P(x), p(y) cl2}w^ha)~i(C1Ui)’

That is
G(x), G(y) «.n (h >^(010).

X--.Q5 O t

Now using the fact that U is a generator for (X/G,ho) we conclude 
that G(x) = G(y). It follows that is a G-generator for (X,h).

2. G-generators and G-expansiveness.
Theorem 1.9 due to Keynes and Robertson f 29 1 gives a

characterization of an expansive homeomorphisms on a compact 
metric space in terms of a generator. In the following we 
characterize a G-expansive homeomorphisms on a compact metric 
G-space in terms of a G-generator.
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Recall that if X is a metric G-space with metric d and G 

compact, then X/G is also a metric space with metric p defined by 

p(G(x),G(y)) = Inf { d(gx,ky) I g, ke G }.

Theorem 4.5. Let X be a compact tnetric G—spacce with G compact and 
let h € H(X) be psevdoepvivariant. Then h is G-expansive iff (X,h) 

has a G-generator.
Proof, Let h be G-expansive with G-expansive constant <5. Then any 
finite subcover of the open cover of the form 

U = { p_1(B(|g(x) ,<5/2)) I x e X }

of X where B(G(x),<5/2) denotes the open ball in X/G centred at 
G(x) with radius <6/2 under the metric p will work as a G-generator 
for (X,h). In fact, members of ‘K are clearly G-invariant subsets 
of X. Moreover, for any bisequence {p l(B. )>._ of members of ‘K,

i USi
if x, y ejn h t[Clp 1(B. )], then G(x) = G(y). To show this assume

is-eo i

G(x) * G(y). Using the closedness of p and/ the commutativity 

poh = hQop, we get
G(x), G(y) (^^(CIR)

which implies
p(hL(G(x)),hi(G(y))) < 6-

for all i in Z. Further, as G is compact so G(x) and G(y) are 
disjoint compact sets and hence for a given < in Z there exist 
gL> k in G such that

d(hl(^x),hl(l^y)) = pth^GCxJJ.h^Gty))) ^ <5.
But this contradicts the fact that h is G-expansive with 
G-expansive constant <5.
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Conversely, if U - { U ,....,U > is a G-generator for (X,h),1 n
then h will be G-expansive with G-expansive constant 6 where & is 
a Lebesgue number of the open cover r = t P«J,), . . ,P<0„) } of X/S. 
For, if not, then there exist x, y e X with G(x) * G(y) such that 
for each t « Z one gets , k <s G satisfying

d(hL(g.x) ,hL(ky)) 5 <5.

Thus for each t iirZ, we obtain
p(hi{G(x)),hi(G(y))) = Inf { d(hl(gx) .h1 (ky)) 1 g, k e G }

< d(hi(g.x),ht(ky))

< <5.
Since 6 is a Lebesgue number for ‘K, one obtains for each integer i 
in Z, a p(ll) in such that

hc(G(x)), hl(G(y)) « p(0.)

which implies
G(x), G(y) e (ha)_i(p(U.))

and hence

Finally, in view of poh = hQop we get
x’ y £i?.*h'i(Club>

with distinct G-orbits. But this contradicts the fact that W is a
G-generator for (X,h).

Note. To see the fact that the condition of pseudoequivariancy of 
h in Theorem 4.5 is necessary, recall Example 4.1 and first note 
that the h defined in this example is not pseudoequivariant. In 
fact take x = 1/3, then
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G(h(x))= {1/2} where as h(G(x)) = { 1/2, 3/4 }
and hence

G(h(x)) * h(G(x)).
Next, note that as observed in Example 3.1(a) of Chapter 3, h is 
not G-expansive. However, (X,h) has a G-generator.

Now we use our Theorem 4.3, 4.4 ,4.5 and Theorem 1.9 stated 
in Chapter 1 to obtain the following interesting result.

Theorem 4.8. Let X be a compact metric G-space with G compact and 
let h in H(X) be psevdoequivariant. Then h is G-expansive on X iff 
hn is expansive on X/G.
Proof. Suppose h is G-expansive on X. Then by Theorem 4.5 (X,h)

has a G-generator and therefore by Theorem 4.3 (X/G, V has a
generator. Now apply Theorem 1.9 to conclude that h^ is expansive 
on X/G.

Conversely, if h^ is expansive on X/G, then Theorem 1.9 
guarantees the existence of a generator for (X/G,hG), and 
therefore by Theorem 4.4, (X,h) has a G-generator. Finally, apply 
Theorem 4.5 to obtain that h is G-expansive.

3. 6-generators and G-asymptotic points.

The notion of positively and negatively asymptotic points are 
defined ( recall Definition 1.8 from Chapter 1 ) and studied in 
detail t 5,6, 8, 13, 36, 37, 41 1. Theorem 1.13 of Chapter 1 obtained 
by Bryant and Walter C 8 1 gives a necessary and sufficient



condition for two points to be positively 'asymptotic under a 
homeomorphism on a compact metric space which has a generator. In 
this section, we consider a metric G-space, define the notion of 
positively and negatively G-asymptotic points for a homeomorphism 
on such a space, give examples and study their relation with 
G-generators.

Throughout in this section d denotes the metric of a metric 
space X.

Definition <4.2. Let X be a metric G-space and let h e H(X). Then x 
y e X are called positively G-asymptot£c ( respectively negatively 
Q,-asymptotic) points with respect to h if given e > 0 there exists 
an integer N such that whenever n 2: N ( respectively n ^ N ) one 
has d(hn (gx) ,hn(ky)) < s' for some g, k in G.

Note. Under the trivial action of a G on X the notion of 
positively (respectively negatively) G-asymptotic points coincides 
with the notion of positively (respectively negatively) asymptotic 
points. Under a non-trivial action of G on X, obviously positively 
(respectively negativly) asymptotic points with rspect to a 
homeomorphism on X are positively (respectively negatively) 
G-asymptotic points; in fact take g = k = the identity element of 
G. However, the fact that the converse need not be true can be 
seen from the following example.
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Example 4.3. Consider X = { ± 1/m, ±(1 - 1/m) I m e N } with usual 
metric and define h : X ■* X by

h(x) = x if x « {-1,0,1}
= the point of X which is immediately next 

to the right (left) of x if x > 0 (x<0 ). 
Obviously h <s H(X). Let 6 = {-1,1} act on X by -lx = -x and lx = x 
x « X. Then the points x = -1/8 and y = 1/4 are seen to be 
positively G-asymptotlc but are not positively asymptotic with 
respect to h I 81.

The following result for G-generators is along the lines of 
Theorem 1.12 of Chapter 1 due to Bryant and Walter £81 concerning 
generators.

Theorem 4.7. Let X be a compact metric G-space, h «s H(X) and Li be 

a Q-generator /or (X,h). Then for each non. negative integer n, 
there exists £ > O such that for x. y in. X with G(x) s* G(y),
d(gx,ky) < s for some g, k in G implies the existence of A_n ....
A . .. . ,A_ in Hi such that gx, ky e . n h t(A.). Conversely, for each
O n i.-'-n t

e > 0, there is a positive integer n such that x, y a, n h '"(A.)
i=-n v

with G(x) * G(y), and A , . . . ,A <s Hi implies d(gx,ky) < £ for some***n n
g, k in G.
Proof . Since X is compact and Hi being a G-generator is an open 
cover of X, Hi will have a Lebesgue number, say n. Fix a non 
negative integer, say n. Obviously hl, M ^ n, are uniformly 
continuous. Thus for above rj, there exists an £ > 0 such that
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d(x,y) < e implies d(hL(x) ,\i {y)) < n
for all t, |i| < n. Now if for some g, k in G, d(gx,ky) < e, then 
using the fact that n is a Lebesgue number for V-, for each 
|l| < n, we will find an At in t£ such that hL(gx), hl(ky) « Al and 
hence gx, ky h lAt.

Conversely, suppose e > 0 is given. If the required result is 
not true, then for each positive integer j, there exists x^, y^ in 
X with distinct G-orbits and {A. . > in t£ such that

4 -ix., yt e ;.n. h (A. ) and d(gx.,ky.) a ^
J J J i** J J

(*>
for each g, k in G. Since X is compact, sequences {x.} and {y.}J J
will converge. Suppose they converge to x and y respectively. Then 
(*) implies G(x) * G(y). In fact, if.G(x) = G(y) then x = gy for 
some g in G and therefore Lim x = g Limy = Lim gy , i.e., forn n n

> 0 there exists N « N such that d(x , gy ) < £ for all n > N butn n
this is not possible in view of (*). Since *il is ' a finite cover, 
infinitely many of A. are same, say equal to A and therefore

J j O O

for infinitely many j'a, x., y. belong to Ao. But thin given x, y 
« ClAo. Similarly, for each integer n, infinitely many of A^ n 
coincide; hence one gets A in such that x, y e h n(ClA ). Thus

n n
0Q -lx, y « n h (CIA). This contradicts the fact that ^ is aus -00 l

G-generator for (X,h).

This result helps us to obtain the following necessary and 
sufficient condition for two points to be positively -G-asymptotic 
with respect to a homeomorphism on a compact metric G-space having 
a G-generator.
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Theorem 4.8. Let X be a compact metric G-space, h e H(X) be

equivariant and U be a G-generator for (X,h). Then x. y in- X with

distinct Grorbits are positively G-asymptotic with respect to h
iff there exists an N in N such that for each t > N. there is an

cOA. in V. with x, yen h (A).«• t=N «•
Proof. Suppose x, y in X with distinct G-orbits are positively 
G-asymptotic points. Then for a given £ > 0 there exists N in N 
such that

d(hL(gx) ,hl(ky)) < £ wherein <• ^ N
for some g, k in G. Take £ to be a Lebesgue number of V.. Then for 
each t ^ N, there exists At in V- such that hl(gx), hl(ky) e At for 

some k in G and hence using equivariancy of_h, we obtain
«ox, y « . n h (A ). i=N »■

Conversely, suppose that there exists an integer N such that for
00 _j_each t > N, there exists an A in ?/ such that x,y e n h (A). Leti N L

s > 0. Then by Theorem 4.7, obtain a positive integer n such that 
if x, y e n h l(A) with G(x) * G(y) and A , . . , A . . . , A e %L, then

i -n o n
d(gx,ky) < e for some g, k in G. Let p £ N + n. Then

x, y e . ni h l(A )
X= «•

implies
x, y e n h (A ). 

P-n '■
Therefore

hp(x), hp(y) e h (i_p)(A )

= . n h 1 (A . ).jri-n J+P
Also, G(x) * G(y) implies hp(G(x)) n hp(G(y)) = <p and from
equivariancy of h we obtain G(hp(x)) * G(hp(y)) and hence for some
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g, k in G
d(g.hp(x),k.hp(y)) <

Now equivariancy of h gives
d (hp (gx), hp (ky)) <

Thus given e > 0, there exists N in W such that whenever n t N, 
for some g,k in G we have d(h"{gx),hn(ky)) < &. This proves that x 
and y are positively G-asymptotic points with respect to h.

The following result concerning negatively G-asymptotic 
points can be proved in a similar manner.

Theorem 4.9. Let X be a. compact metric Q-space, h in H(X) be 
ecfvi variant and U be a G-generator for (X,h) . Then x> y in X with 
distinct G-orbits are negatively Q-asymptotic with respect to h 
iff there exists an integer N svch that for each L < N. there is 
an A. in %L with

t

N -ix, y e , n h (A. ).XT-CO l
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