CHAPTER 4
GENERATORS FOR HOMEOMORPHISMS ON G-SPACES

Observe that for a given compact Hausdorff space X the notion
of a generator for (X,h) as defined in Definition 1.5 involves a
homeomorphism h on the underlying space X while the notion of a
generator-for (X,3), G a discrete group acting on X, as defined
in Definition 1.7 does not involve any homeomorphism on the
underlying space X. Therefore, it is natural to ask whether the
notion of a generator / weak generator involving a homeomorphism
on an arbitrary compact Hausdorff G-space X, wherein G need not be
discrete, can be meaningfully defined. In this chapter we attend
to this problem and define such notions in +this setting and
terming them G-generators and weak G-generators carry out their
study. We also define the notion of G-asymptotic points for
homeomorphism on & metric G-space and study them relative +to

G-generators on a compact metric G-space.

Let H({X) throughout denote the collection of all

homeomorphisms on the topological space X.

1. G-generators and weak G-generators.
Definition 4.3. Let X be a G-space and h e H(X). Then a finite
cover U of X consisting of G-invariant open sets 1is called

a G-generator ( respectively weak G-generator ) for (X,h) if for
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each bisequence {U } of members of u,_% h_i(ClU_) (respectively
LUiEZ 1= i
B h—L(Ut) } contains at most one G-orbit.

1z-0

Let us give an example of a G-generator.

Example 4.1. Consider the space X = { i/n, 1 - 1/n | ne N } with
the usual metric defined through the absolute value and the h in
H(X) which fixes 0 and 1 and sends t in X - {0,1} to the point of
X which is next to the right of t. Let G =2, = {-1,1} act on X
with the action defined by (-1)t = 1- t, 1t = t, t € X. Then it is
easily seen that the finite cover ¥ of X consisting of G-invariant
open sets U and X - U where U ={ 1/2, 1/3, 2/3, 1/4, 3/4 } is
such that for any biseguence {U&hez of members of %, i?L h‘L(ClUL)

o

is either empty or is {0,1}. Thus, ¥ is a G-generator for (X,h).

Note. Under the trivial action of G on X where X and G are as in
Definition 4.1, a G-generator (respectively weak G-generator) for
(X,h) is equivalent to a generator (respectively weak generator).
But under a non-trivial action of G on X, a G-generator for (X,h)
need not be a generator as can be seen in Example 4.1. In the
following example we show that the converse is also not true,

i.e., a generator need not be a G-generator.

Example 4.2. Let X, h and G be same as in Example 4.1. Choose any
& in (0,1/6) and consider the open cover % = { B(x,6/2) | x € X }

of X where B(x,56/2) is the open ball centred at.x with radius &6/2.
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Then any finite subcover U’ of U is a generator but not a
G-generator for (¥,h) since the members of U are not G-invariant

subsets of X.

Clearly a G-generator for (X,h) is also a weak G-generator
for (X,h) while a weak G-generator need not be a G-generator. For

the converse we have the following result.

Theorem 4.1. lLet X be a compact Hausdorff G-space with G compact
and h in H(X). Thern (X,h) has a G-generator wvhenever it has a weak
G-generator. .

Proof. Let % be a weak G-generator for (X,h). For x € X, choose Ux
in ¥ such that x e Ux. Then p(x) p(Ux) where p : X » X/G is the
orbit map. Since an orbit map is known to be an open map [4,p.371,
p(U ) is open in X/G. Also, X being regular Hausdorff and G being
compact, it follows that X/G is a regular Hausdorff space and
hence there exists an open set, say pr of X/G, such that

p(x) = Ap(xﬁ ClAp(x) = p(Ux).

}}

Since Ux is G~-invariant, we obtain

xep (A,)<Sp (ClA ) S (2(U)) =0U.

Clearly ¥ = { pﬂ(Apm) | x e« X} is an open cover of X and the
fact that p(y) = p(gy) for all g in G gives that p_‘(Ap(x,) is

G-invariant for each x in X. Thus % is an open cover of X
consisting of G-invariant subsets of X. We complete the proof by
showing that any finite subcover %' of ¥ is a G-generator for

(X,h). Suppose {P-:(%)}i& is any biliseguence o¢f members of ¥’.
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Then we have

©0 -i -1 ©0 ! © -i

O BTCITA)) S0 BT (CA) S0 hT(D).

As % is a weak G-generator for (X,h),,:rav_ao h*L(UL) contains at most
one G-orbit and therefore we getiiap*i[01p~‘(Ai)] contains at most

one G-orbit.

Recall that a homeomorphism h on a G-space X 1is called
pseudoequivariant if h(G(x)) = G(h(x)) for all x in X, and in
Chapter 3 we have noted  that an equivariant map is
pseudoequivariant but the converse is not @rue. The fact that an
equivariant homeomorphism ﬁ on a G-space X induces a homeomorphism
hG on the orbit space X/G is shown, in the following lemma, to
hold true even 1if +the equivariancy condition 1is replaced by
a weaker condition of pseudoequivariancy. This property of
pseudoequivariancy is then used to prove in Theorem 4.3 that if
(X,h) has a G-generator, where X is compact Hausdorff G-space,

with G compact, then the orbit space X/G is metrizable.

Lemma 4.2. lLet X be a compact Hausdorff G-space with G compact and
let h in H(X) be pseudoeguivariant. Then the map h.Ci : X/G » X/G
defined by ha(G(x)) = G(h(x)) 1is a homeomorphism such that
peh = hbog, where p : X+ X/G 1is the o;bit mrap, t.e., the

following diagram commutes :

. x Box
pl 4, P
X/G %+ X/G.
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Preoof. First let us note that the map ha is well defined. Let G(x)
and G(y) € X/G with G(x) = G(y). Then h(G(x)) = h(G(y)) and thus

by the pseudoequivariancy of h we get G(h(x)) = G(h(y)) and
hence hbgG(x)) = h, (G(y)). Next, suppose h_ (G(x)) = h_(G(y)) for
some G(x) and G(y) in X/G. Then we have G(h(x)) = G(h(y))
which by pseudoequivariancy of h implies h(G{(x)) = h(G(y)). As h
is injective, we get G(x) = G(y) which proves the injectivity of
h, . For the surjectivity of h , observe that 1if G(y) € X/G, then

[« ]
ha(G(x)) = G{y) where h{x) = y. Also, for any x in X

peh(x) = p(h(x)) = G(h(x))

h (G(x)) = h, (p(x)) = hep(x).

Hence the above diagram is commutative. Next, let U be any open
set of X/G. Then note that (h ) "(U) = ph 'p (U) and hence
continuity of h implies the continuity of hG as p is continuous as
well as open. Finally, ha is a closed mnmap because X is given
compact and Hausdorff and G being compact, X/G is alsc a compact

Hausdorff space. Thus h<J is a homeomorphisnm.

Theorem 4.3. lLet X be a compact Hausdorff G-space with G compact
and let h € H(X) be pseudoeguivariant. If (X,h) has a G-generator,
then

() (X/G,ha) has o generator; and

(it) X/G s metrizable.

Proof. Let ¥ = { Ui, ...... ,Un} be a G~generator for (X,h). Let ¥ =
{ p(U),..... »P(U_)}. Then we complete the proof of (i) by showing

that ¥ is a generator for (X/G,hb).
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The surjectivity and the openness of the map p implies that ¥
is a finite open cover of X/G. Let {p(UL)hez be any bisegquence of
members of ¥. Then in order to show thati23Q (hc)—WEClp(Ut)} has
at most one point, assume on the contrary that

G(x), G(y) B (h,) "[C1p(U)] and G(x) = G(¥).

Now,

G(x), G(y) € P (h,)Cle(U) =» p(x), B(y) &M (h,) " [C1p(U)]

+x, vy=_ B p7(h,) [Clp(U)]
»x, ye R nTpIClR(U)]
»x, vye B  h7pTp(C1U),

as p is continuous and closed. Since closure of a G-invariant set

is G-invariant, it therefore follows that C1lU, is G-invariant for

all i. Also, from the last implication we get x, y & iﬁm h—i[ClUi].

Finally, as ¥ is a G-generator for (X,h) we must have G(x) = G(y).

Hence ¥ is a generator for (X/G,hG).

The proof of (ii) now follows by +the Keynes &and Robertson
result [ 29, Corollary 2.8 1 which says that if there exists a

generator for a homeomorphism on a compact Hausdorff space, then

the space is metrizable.

For the converse, we have the following result.
Theorem 4.4. let X be a compact Hausdorff G-space with G compect
and let h in H(X) be pseudoeguivariant. Then (X/G’hh) has a

generator implies (X,h) has a G-generator.

Proof. Let %4 = { Ui,...,Un } be a generator for (X/G,hb). Consider
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¥={p (U),...,0 (U) } where p : X » X/G is the orbit map.
Then ¥ is clearly a finite open cover of X by G-invariant sets. We
complete the proof by showing that ¥ is a G-generator for (X,h).
. Suppose {p_‘(Ui)}i_ez is any bisequence of members of ¥. Let x, ¥
be in tl'x'ai:r.ﬂ_bh_i[Clp“‘(Ui)]. We need to show that G(x) = G(y). Now,
since Clp ' (U) are G-invariant for all i, we have

Ny B LCIPTH(U)] 5 A h TP RIC1P T (U)]

= b p ™ [Clpp *(U))]

as p is a closed map. Therefore, surjectivity of p and the fact
that hG°p = poh implies

JABTICIPT(U)] 5 3,0 TP (C1,)

:i;?zwp—" (h'(i)_t (ClUL)

= p '[,7 () (C10)].
Hence x, y <, N h '[Clp *(U)] implies
p(x), p(y) etfjw(ha);‘(cwi).
That is
= -
G(x), G(y) e,l?w(ha) (C1U).
Now using the fact that % is a generator for (X/G,hb) we conclude

that G(x) = G(y). It follows that ¥ is a G-generator for (X,h).

2. G—-generators and G-expansiveness.

Theorem 1.9 due to Keynes and Robertson { 29 1 gives a
characterization of an expansive homeomorphisms on a compact
metric space in terms of a generator. In the following we
characterize a G-expansive homeomorphisms on a compact metric

G-space in terms of a G-generator.
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Recall that if X is a metric G-space with metric 4 and G
compact, then X/G is also a metric space with metric e defined by

p(G(x),G(y)) = Inf { d(ex,ky) | g, k& G }.

Theorem 4.5. Let X be a compact metric G-spacce with G compact and
let h € H(X) be pseudoeguivariant. Then h is G-expansive iff (X,h)
has a G-generator.
Proof. Let h be G-expansive with G-expansive constant &. Then any
finite subcover ¥ of the open cover of the form

° = { p“(B(}G(x>,é/z>) | x X}
of X where B(G(x),6/2) denotes the open ball in X/G centred at
G(x) with radius 6/2 under the metric o will work as a G-generator
for (X,h). In fact, members of ¥ are clearly G-invariant subsets
of X. Morecover, for any bisequence {p-i(BiXhez of members of %,
if x, y eiﬁoo h*i'[Clpﬂ(B.L)], then G(x) = G(y). To show this assume
G(x) = G(y). Using the closedness of p and the commutativity
peh = h op, we get ’

G(x), G(¥) e, A, (h,) " (C1B)
which implies

P (B (G(x)),h (G(¥))) £ &
for all i in 2. Further, as G is compact so G{(x) and G(y) are
disjoint compact Sets and hence for a given t in 2 there exlst
g, k in G such that

d(h'(gx),h' (k¥)) = p(B'(G(x)),h (G(¥))) < 6.
But this contradicts +the fact that h is G-expansive with

G-expansive constant &.
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Conversely, if ¥4 = { Ut"""Un } is a G-generator for (X,h),
then h will be G-expansive with G-expansive constant & where & is
a Lebesgue number of the opeﬁ cover ¥ = { p(Ui),..,p(Un) } of X/G.
For, if not, then there exist x, y € X with G(x) # G(y) such that
for each i « 2 one geéts g, k < G satisfying

d(h (g x),h (ky)) < 6.
Thus for each . imr 2, we obtain
e(h'(G(x)),h (G(y))) = Inf { d(h'(gx),h'(ky)) | & ke G}
- < d(h'(gx),h (ky))
< 6.
Since & is a Lebesgue number for ¥, one obtains for each integer i
in 2, a p(U)) in ¥ such that
B (G(x)), K(G(y)) = p(U)
which implies
G(x), G(y) e (h,) " (p(U,))
and hence
x, v e, p (k) R(T).
Finally, in view of poh = hbop wve get
| x, y b0 'p(U) =R, hTH(U) .0 hTH(CL,)

with distinct G-orbits. But +this contradicts the fact that % is a

G-generator for (X,h).

Note. To see the fact that the condition of pseudoequivariancy of
h in Theorem 4.5 is necessary, recall Example 4.1 and first note
that the h defined in this example is not pseudoequivariant. In

fact take x = 1/3, then
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G(h(x))= {1/2} where as h(G(x)) = { 1/2, 3/4 }
and hence
G(h(x)) # h(G(x)).
Next, note that as observed in Example 3.1(a) of Chapter 3,h is

not G~exbansive. However, (X,h) has a G-generator.

Now we use our Theorem 4.3, 4.4 ,4.5 and Theorem 1.9 stated

in Chapter 1 to obtain the following interesting result.

Theorem 4.6. lLet X be a compact metric G-space with G compact and
let h in H(X) be pseudoequivariant. Then h is G-expansive on X {ff

h, s expansive on X/G.

G
Proof. Suppose h is G-expansive on X. Then by Theorem 4.5 (X,h)
has a G-generator and therefore by Theorem 4.3 (X/G,hG) has a
generator. Now apply Theorem 1.9 to conclude that hG is expansive
on X/G.

\ Conversely, if hG is expansive on X/G, then Theorem 1.8
guarantees the existence of a generator for (X/G,hG), and

therefore by Theorem 4.4, (X,h) has a G-generator. Finally, apply

Theorem 4.5 to obtain that h is G-expansive.

3. G~generators and G-asymptotic points.

The notion of positively and negatively asymptotic points are
defined ( recall Definition 1.8 from Chapter 1 ) and studied in
detail [ 5,6,8,13,36,37,41 1, Theorem 1.13 of Chapter 1 obtained

by Bryant and Walter { 8 1 gives a necessary and sufficient
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condition for two points to be positively -asymptotic under a
homeomorphism on a compact metric space which has a generator. In
this section, we consider a metric G-space, define the notion of
positively énd negatively G-asymptotic points for a homeomorphism
on such & space, give examples and study their relation with

G-generators.

Throughout in this section d denotes the metric of a metric

space X.

Definition 4.2. Let X be a metric G-space and let h € H(X). Then x
vy € X are called positively G-asymptotic ( respectively negatively
G-asymptotic) points with respect to h if given € > 0 there exists
an integer N such that whenever n = N ( respectively n = N ) one

has d(h"(gx),h"(ky)) < & for some g, k in G.

Note. Under the +trivial action of a G on X +the notion of
positively (respectively negatively) G-asymptotic points coincides
with the notion of positively (respectively negatively) asymptotic
points. Under a non-trivial action of G on X, obviously positively
(respectively negativly) asymptotic points with rspect to a
homeomorphism on X are positively (respectively negatively)
G-asymptotic points; in fact take g = k = the identity element of
G. However, the fact that the converse need not be true can be

seen from the following example.
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Example 4.3. Consider X {*1/m, ¥(1 - 1/m) | me N } with usual
metric and define h : X + X by

h(z) = x if x € {-1,0,1}

]

the point of X which is immediately next

to th; right (left) of x if x > 0 ( x < 0 ).
Obviously h « H(X). Let G = {-1,1} act on X by -1x = -x and 1x = x
x € X. Then +the points x = —1/8 and y = 1/4 are seen to be
positively G-asymptotic but are not positively asymptotic with

respect to h i 8 1,

The following result for G-generators is along the 1lines of
Theorem 1.12 of Chapter 1 due to Bryant and Walter {81 concerning

generators,

Theorem 4.7. lLet X be a compact metric G-space, h € H(X) and ¥ be
a G-generator for (X,h). Then for each non negative integer n,
there exists £ > 0 such that for x, ¥y in X with G(x) # G{(y),
digx,ky) < £ for some g, k in G implies the existence of A_n, .....

A .,Ah in U such that gx, ky e i_?jnh—i'(Ai)_ Conversely, for each

o
€ > 0, there is a positive integer n such that X, ¥y ei.—.?:n h~i(Ai)
with G(x) = G(y), arnd A“h,.,.,An e U implies d(gx,ky) < € for some
g, k in G, ’

Proof. Since X is compact and ¥ being a G-generator 1is an open
cover of X, ¥ will have a Lebesgue number, say n. Fix a non

negative integer, say n. Obviously hi, 1 = n, are uniformly

continuous. Thus for above 7, there exists an £ > 0 such that
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d(x,y) < £ implies d(ht(x),hi(y)) <7
for all i, |i}| £ n. Now if for some g, k in G, d(gx,ky) < &, then
using: the fact that n is a Lebesgue number for %, for each i,
[i] = n, we will find an A in % such that hi'(gx), h.‘(ky) € A and
hence gx, ky e.ﬂ?_ﬁ_n h'—"A,t .
Conversely, suppose £ > 0 is given. If the required result is
not true, then for each positive integer j, there exists X, ¥, in

X with distinct G-orbits and {Aj .} in ¥ such that

L Tysis
X, v, € A hT(A ) and d(ex,ky,) % (%)

for each g, k in G. Since X is compact, _sequences {xj} and {yj}
will converge. Suppose they converge to x and y respectively. Then
(%) implies G(x) # G(y). In fact, if G(x) = G(y) then x = gy for
someé & in G and therefore Lim x = & Limyn = Lim &y, » i.e., for
£ > 0 there exists Ne; N such that d(xn,gyn) < £ for all n > N but
this is not possible in view of (¥). Since ¥ is a finite cover,
infinitely many of Aj’o are same, say equal to Ao and therefore
for infinitely many j's, xj, yj belong to Ao. But this gives x, ¥
= Cle. Similarly, for each integer n, infinitely many of AJ.,n
coincide; hence one gets An in ¥ such that x, y e h—"(ClAn). Thus
X, ¥ qo:ﬁmh"i'(ClAt). This contradicts +the fact that € is a

L= -

G-generator for (X,h).

This result helps us to obtain the following necessary and
sufficient condition for two points to be positively -G-asymptotic
with respect to a homeomorphism on a compact metric G-space having

.

a G-generator.
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Theorem 4.8. lLet X be a compact metric @-space, h e H(X) be
equivariant and U be a G-generator for (X,h). Then x, y in X with
distinct G-orbdits are positively G-asymplotic with respect to h
1ff there exists an N in N such that for each i Z N, there s an
A tn U with X, y e.?‘r h—t(A).
i l:-N T
Proof. Suppose x, y in X with distinect G-orbits are positively
G-asymptotic points. Then for a given £ > 0 there exists N in N
such that
d(h'(gx),h"(ky)) < & wherein i = N
for some g, k in G. Take £ to be a Lebesgue number of ¥. Then for
each i 2 N, there exists A.t in ¥ such that hi(gx), h'(ky) € AL for
some g, k in G and hence using equivariancy of h, we obtain
o h._,_
X, y<€. .0, (A).
Conversely, suppose that there exists an integer N such that for
. o —
each + = N, there exists an A in ¥ such that x,y e q h‘TAi). Let
£ > 0. Then by Theorem 4.7, obtain a positive integer n such that
if x, yen h—t(Ai) with G(x) # G(y) and Agn,..,Ab,..,Ah € U, then
d(gx,ky) < £ for some g, k in G. Let p =2 N + n. Then

L d h—L
x, y € OQh (A)

implies
N hT (A
x, vy 0O (A).
Therefore
P+n _ .
B (x), ¥¥(y) e« a bGPl
. n =i
Fimn B B0
Also, G(x) # G(y) implies h?(G(x)) N h?(G(y)) = ¢ &and from

equivariancy of h we obtain G(hP(x)) = G(h’(y)) and hence for some
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g, k in G
d(g.h" (x), k.07 (¥)) < =.
Now equivariancy of h gives
d(b® (gx),n" (ky)) < =.
Thus given £ > 0, there exists N in N such that whenever n 2 N,

fo; some g,k in G we have d(h"(gx),h" (ky)) < &. This proves that x

and y are positively G-asymptotic points with respect to h.

The following result concerning negatively G-asymptotic

points can be proved in a similar manner.

Theorem 4.9. Let X be a compact metric G-space, h irn H(X) b&e
equivariant and U be a G-generator for (i{,h). Then x, y in X with
distinct G-orbits are negatively G-asymptotic with respect to h
iff there exists an integer N such that for each i £ N, there is
an A_L in U with

x, ye N hT(A).

1x .
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