CHAPTER 5

A-EXPANSIVENESS ON G-SPACES

Motivated by the concept of expansiveness of a homeomorphism on a metric space, in Chapter 2 we defined the notion of A-expansiveness of a homeomorphism on a topological space X relative to a subset A of X×X; while in Chapter 3 we defined the notion of G-expansiveness of a homeomorphism on a metric G-space wherein G is any topological group acting on the metric space. It is therefore natural to consider the general case of a G-space X, that is, a topological space X on which a topological group G acts; and to define and study the notion of expansiveness of a homeomorphism h in this setting. We take up this task in the present chapter. In fact, we define the notion of expansiveness of a homeomorphism h on a G-space X relative to a subset A of X×X and terming it GA-expansive homeomorphism we carry out their study obtaining some interesting results. Naturally, in case of a metric G-space, for a specific choice of A, the concept of GA-expansive homeomorphism coincides with that of G-expansive homeomorphism.

Let H(X) throughout denote the collection of all homeomorphisms on the topological space X.

1. GA-expansiveness.

The considerations of the following examples help us to motivate the concept of GA-expansiveness.

84

Examples 5.1(a). Let X = [0,1] with usual metric. Choose either $A = [b,1] \times [c,d]$ where $b \in (1/2,1)$ and $c, d \in X$ or $A = [0,a] \times [c,d]$ where $a \in (0,1/2)$ and $c, d \in X$. Define $h : X \rightarrow X$ by h(x) = 1 - x. Then h is A-expansive :

Let $x, y \in X$ be such that $x \neq y$. If $(x, y) \notin A$, then for n = 0, $(h^{n}(x), h^{n}(y)) \notin A$

and if $(x,y) \in A$, then

.

$$(h(x),h(y)) \not\in A.$$

Next, let the topological group $G \equiv Z_2 = \{-1,1\}$ act on X with the action 1t = t and -1t = 1 - t, where $t \in X$. Then it can be easily seen that there exist x, y in X - $\{1/2\}$ with distinct G-orbits such that for no n in Z

$$[h^{n}(G(\mathbf{x})) \times h^{n}(G(\mathbf{y}))] \cap \mathbf{A} = \varphi.$$

5.1(b). Let X be as in Example 5.1(a), A = $[1/5, 1/2] \times [1/3, 2/3]$ $\subset X \times X$ and h:X + X be defined by

$$h(x) = 3x, \quad \text{if } x \in [0, 1/5];$$

= (11x+5)/12, if $x \in [1/5, 1/2]$, and
= (x+3)/4, \quad \text{if } x \in [1/2, 1].

It can be easily seen that h is an A-expansive homeomorphism on X. Let $G \equiv Z_{z}$ act on X as defined in Example 5.1.(a). Then it can be observed that whenever x, $y \in X$ with distinct G-orbits, there exists an n in Z satisfying [$h^{n}(G(x)) \times h^{n}(G(y))$] $\cap A = \varphi$.

In Example 5.1(b), given any $A = [a,b] \times [c,d] \subset X \times X$, where a, b, c, d $\not\in \{0,1\}$, one can construct a suitable h satisfying the

same property, namely given any pair of distinct G-orbits G(x) and G(y), there exists an n in Z such that

 $[h^{n}(G(\mathbf{x})) \times h^{n}(G(\mathbf{y}))] \cap \mathbf{A} = \varphi.$

In fact one may define h in such a way that $h([a,b]) \cap [c,d] = \varphi$. But here we observe that A does not contain the diagonal in X×X. However, we do have similar situation even if A is a regular closed set containing the diagonal as can be seen in the following example.

5.1 (c). Let X = [0,1] with the usual metric and consider the subset A^{δ} of X×X given by $A^{\delta} = \{ (x/(x+1), y/(y+1)) | x, y \ge 0 \text{ with } |x - y| \le \delta \} \cup \{(1,1)\},$ where $\delta > 0$ is a fixed real number. Define $h : X \to X$ by

 $h(x) = \beta \cdot x / [(\beta - 1) \cdot x + 1],$

 $x \in X$, where β is a fixed positive real number and $\beta \neq 1$. Then as observed in the Note following Example 2.3 of Chapter 2, h is A^{δ} -expansive on X. Let $G \equiv Z_{2}$ act on X as in Example 5.1(a). Then it can be seen that whenever x, $y \in X$ with $G(x) \neq G(y)$, there exists an r in Z satisfying $[h^{r}(G(x)) \times h^{r}(G(y))] \cap A = \varphi$. For example take $\beta = 2$. Then Fixh = {0,1} and for any $x \in X - {0,1}$,

 $h^{n}(x) \rightarrow 1$ and $h^{-n}(x) \rightarrow 0$ as $n \rightarrow \infty$.

Thus there exist integers ι , m, n, k such that

$$(h^{l}(x),0) \not\in A^{\delta}; (0,h^{m}(y)) \not\in A^{\delta};$$

 $(h^{n}(1-x),0) \not\in A^{\delta} \text{ and } (0,h^{k}(1-y)) \not\in A^{\delta}.$

If $r = \max \{i, m, n, k\}$, then it follows that

$$[h'(G(\mathbf{x})) \times h'(G(\mathbf{y}))] \cap A^{\mathcal{O}} = \varphi.$$

5.1 (d). Consider the unit circle S^4 and the usual action of the multiplicative group $G \equiv U(n)$ of nth roots of unity on S^4 . Let C_k denote the arc $(e^{i2\pi k/n}, e^{i2\pi (k+1)/n})$ of S^4 , $k = 0, 1, \ldots, n-1$ and f_k denote the homeomorphism from $I_k = [0,1]$ to C_k given by

$$f_{i}(s) = e^{i2\pi(s+k)/2}$$

where $s \in [0,1]$ and k = 0, ..., n-1. Since the homeomorphism g_k on I_k defined by $g_k(x) = \beta x/[(\beta-1)x+1]$, for a fixed β , $\beta > 0$ and $\beta \neq 1$ is A^{δ} -expansive, where A^{δ} is as described in Example 5.1(c), it follows from Theorem 2.3 of Chapter 2 that $f_k g_k f_k^{-4} \equiv h_k$ is $[(f_k \times f_k)(A^{\delta})]$ -expansive on C_k . Define $h : S^4 \to S^4$ by $h|_{C_k} = h_k$, where $k = 0, 1, \ldots, n-1$. Obviously h is in $H(S^4)$. In fact h is an $\prod_{k=0}^{n-1} ((f_k \times f_k)(A^{\delta}))$ -expansive homeomorphism on S^4 and the subset $B_n = \prod_{k=0}^{n-4} [(f_k \times f_k)(A^{\delta})]$ of $S^4 \times S^4$ is a regular closed set which contains the diagonal in $S^4 \times S^4$. In this example also one can verify that for distinct G-orbits G(x) and G(y), there exists an nin Z satisfying $[h^n(G(x)) \times h^n(G(y))] \cap B_n = \varphi$.

The observations made in the above examples lead us to the following definition of GA-expansiveness.

Definition 5.1. Let X be a topological space on which a topological group G acts, $A \subset X \times X$ and $h \in H(X)$. Then h is called GA-expansive if whenever x, $y \in X$ with $G(x) \neq G(y)$, there exists an integer n satisfying [$h^n(G(x)) \times h^n(G(y))$] $\cap A = \varphi$.

Observe that a metric space can always be regarded as a metric G-space by considering the trivial action of any group G on

it; and hence by choosing $A = A_{\delta} \equiv d^{-1}[0,\delta]$ for some $\delta > 0$ when X is a metric space with metric d in this definition, one sees that GA-expansiveness of h in H(X) is equivalent to expansiveness of h with expansive constant δ . However, if X is any G-space with action of G on X trivial, then the GA-expansiveness of h in H(X) is equivalent to A-expansiveness of h. Also, in case X is a metric G-space and $A = A_{\delta}$ for some $\delta > 0$, then GA-expansiveness of h in H(X) is equivalent to G-expansiveness of h with G-expansive constant δ .

Example 5.1 (a) shows that an A-expansive homeomorphism need not be GA-expansive and on the other hand Example 3.2 of Chapter 3 shows that a GA-expansive homeomorphism is not necessarily an A-expansive homeomorphism.

2. Properties of GA-expansive homeomorphisms.

We study some properties of GA-expansive homeomorphisms. To begin with, the following result regarding the restriction of a GA-expansive homeomorphism follows from the definition.

Theorem 5.1. Let X be a G-space, Y be a G-invariant subspace of X, $h \in H(X)$ be GA-expansive where $A \subset X \times X$ and h(Y) = Y. Then $h|_Y$ is GB-expansive, where B is trace of A in Y×Y.

Proof. Suppose x and y are two points in Y with distinct G-orbits. Then GA-expansiveness of h on X gives an integer n satisfying $[h^{n}(G(x)) \times h^{n}(G(y))] \cap A = \varphi$. Now the Theorem follows if we take $B = A \cap Y \times Y$.

Next, we have a result regarding product of two GA-expansive homeomorphisms.

Theorem 5.2. Let X, Y be G-spaces, $A \subset X \times X$, $B \subset Y \times Y$, $h \in H(X)$ be GA-expansive and $f \in H(Y)$ be GB-expansive. Then $\psi = h \times f$ is $G(q^{-1}(A \times B))$ -expansive on $W = X \times Y$, where $q : W \times W \rightarrow (X \times X) \times (Y \times Y)$ is defined by q(x, y, x', y') = (x, x', y, y'), $x, x' \in X$, $y, y' \in Y$ and W is considered to be a G-space under the diagonal action of G. Proof. Let (x, y), $(x', y') \in W$ be such that $G(x, y) \neq G(x', y')$. Since action of G on W is diagonal action, i.e., g(x, y) = (gx, gy), $g \in G$, $(x, y) \in W$, the following cases arise: (i) $G(x) \neq G(x')$ or (ii) $G(y) \neq G(y')$. In case (i) since $G(x) \neq G(x')$, from GA-expansiveness of h there exists an n in Z satisfying $[h^n(G(x)) \times h^n(G(x'))] \cap A = \varphi$ which implies

 $[h^{n}(G(\mathbf{x})) \times h^{n}(G(\mathbf{x}')) \times f^{n}(G(\mathbf{y})) \times f(^{n}G(\mathbf{y}'))] \cap (A \times B) = \varphi.$

Further, as q is a homeomorphism we obtain

 $q^{-i}[h^{n}(G(x)) \times h^{n}(G(x')) \times f^{n}(G(y)) \times (f^{n}G(y'))] \cap q^{-i}(A \times B) = \varphi$ which implies

 $[(h \times f)^{n}(G(x) \times G(y)) \times (h \times f)^{n}(G(x') \times G(y'))] \cap q^{-1}(A \times B) \approx \varphi.$ Since $G(x,y) \subseteq G(x) \times G(y)$ and $G(x',y') \subseteq G(x') \times G(y')$, we therefore obtain

 $[(h \times f)^{n}(G(x,y)) \times (h \times f)^{n}(G(x',y'))] \cap q^{-1}(A \times B) = \varphi$ and hence $h \times f$ is $G(q^{-1}(A \times B))$ -expansive on W. Similarly Case(ii) follows from GB-expansiveness of f on Y.

The above result extends to any finite product of GA-expansive

homeomorphisms and can be proved in a similar way by using induction principle. Next we obtain a result regarding integral powers of a GA-expansive homeomorphism.

Theorem 5.3. Let X be a paracompact Hausdorff G-space, U be the uniformity on it consisting of all the neighbourhoods of the diagonal in X×X and $h \in H(X)$ be such that h^m , $m \neq 0$ is uniformly continuous with respect to U. Then h is GA-expansive for some $A \in U$ iff h^m , $m \neq 0$, is GB-expansive for a suitable $B \in U$. Proof. Consider any integer m different from 0. Suppose $\iota \in$ $\{\pm 1, \ldots, \pm m\}$. Since for each ι , h^{-i} is uniformly continuous, there exists a B_i in U for each ι such that

$$(h^{-1} \times h^{-1})(B_{i}) \subseteq A$$

or equivalently

$$(h^{L} \times h^{L})(X \times X - A) \subseteq X \times X - B,$$

where

$$B = \cap \{ B \mid i \in \{\pm 1, \dots, \pm m\} \}$$

Let x, $y \in X$ with $G(x) \neq G(y)$. Then from the GA-expansiveness of h there exists an n in Z satisfying $[h^n(G(x)) \times h^n(G(y))] \cap A = \varphi$. But this gives

$$[h^{L}(h^{n}(G(\mathbf{x}))) \times h^{L}(h^{n}(G(\mathbf{y})))] \cap \mathbf{B} = \varphi \qquad (*)$$

for each $i \in \{\pm 1, ., \pm m\}$. Let r be in Z such that $0 < |r - n/m| \le 1$, i.e., $0 < |rm - n| \le |m|$. Then putting i = rm - n in (*) we get

$$[(h^m)^r(G(\mathbf{x})) \times (h^m)^r(G(\mathbf{y}))] \cap B = \varphi$$

Thus h^m is GB-expansive, where $B \in \mathcal{U}$.

Conversely, let h in H(X) be such that h^m is GA-expansive

for some m in Z-{0}. Then, for x, y in X with $G(x) \neq G(y)$, the GA-expansivness of h^m implies that there exists an n in Z satisfying

$$[(h^m)^n(G(\mathbf{x})) \times (h^m)^n(G(\mathbf{y}))] \cap \mathbf{A} = \varphi.$$

Now put r = m.n to see that h is also GA-expansive.

The following result shows that admitting a GA-expansive homeomorphism is a topological property for G-spaces under some condition.

Theorem 5.4. Let X and Y be G-spaces, $A \subset X \times X$ and f : X + Y be a pseudoequivariant homeomorphism. Then an h in H(X) is GA-expansive iff fhf^{-1} is a $G((f \times f)(A))$ -expansive homeomorphism of Y. Proof. Let $y, y' \in Y$ with $G(y) \neq G(y')$. Since f is a homeomorphism, there exist x, x' in X such that f(x) = y, f(x') = y'; and therefore

 $G(f(x)) \neq G(f(x')).$

Now, pseudoequivariancy of f implies

 $f(G(x)) \cap f(G(x')) = \varphi$

and therefore, f being bijective, we get

 $G(x) \neq G(x')$.

Now, GA-expansiveness of h implies the existence of an integer n satisfying

 $[h^{n}(G(\mathbf{x})) \times h^{n}(G(\mathbf{y}))] \cap \mathbf{A} = \varphi.$

Again using bijectivity of f, it follows that

 $[\operatorname{fh}^{n}(G(f^{-1}(y))) \times \operatorname{fh}^{n}(G(f^{-1}(y')))] \cap (f \times f)(A) = \varphi.$

As f is pseudoequivariant, from Lemma 3.1 of Chapter 3 it follows that f^{-1} is also pseudoequivariant. Hence

 $[(fh^n f^{-1})(G(y)) \times (fh^n f^{-1})(G(y'))] \cap (f \times f)(A) = \varphi$ or equivalently

 $[(fhf^{-i})^{n}(G(y)) \times (fhf^{-i})^{n}(G(y'))] \cap (f \times f)(A) = \varphi.$ This proves that fhf^{-i} is $G((f \times f)(A))$ -expansive on Y.

Conversely, suppose x, $y \in X$ with distinct G-orbits, i.e., $G(x) \neq G(y)$. Then bijectivity of f gives $f(G(x)) \cap f(G(y)) = \varphi$. Since f is pseudoequivariant, we have $G(f(x)) \cap G(f(y)) = \varphi$, i.e., f(x) and f(y) also has distinct G-orbits. Further, since fhf^{-1} is $G((f \times f)(A))$ -expansive on Y it follows that there exists an integer n satisfying

 $[(fhf^{-i})^{n}(G(f(x))) \times (fhf^{-i})^{n}(G(f(y)))] \cap (f \times f)(A) = \varphi$ that is

 $[(fh^n f^{-i})(G(f(x))) \times (fh^n f^{-i})(G(f(y)))] \cap (f \times f)(A) = \varphi.$ Another application of pseudoequivariancy of f then gives

 $[fh^{n}(G(\mathbf{x})) \times fh^{n}(G(\mathbf{y}))] \cap (f \times f)(A) = \varphi.$

Finally, apply bijectivity of f to obtain

 $[h^{n}(G(\mathbf{x})) \times h^{n}(G(\mathbf{y}))] \cap \mathbf{A} = \varphi.$

Hence h is GA-expansive on X.

3. Extension and characterization of GA-expansive homeomorphisms.

Next result is regarding extension of GA-expansive homeomorphisms. If X is a G-space and S is a G-invariant subspace of X, then by GA-expansiveness of an h in H(X) on S we mean there exists a subset A of X×X such that whenever x, $y \in S$ with $G(x) \neq G(y)$, an integer n will exist satisfying $[h^{n}(G(x)) \times h^{n}(G(y))] \cap A = \varphi.$

Theorem 5.5. Let X be a paracompact Hausdorff G-space, $S \subseteq X$ be such that S is G-invariant and X - S is finite. If h in H(X) is GU-expansive on S, where U is a neighbourhood of the diagonal in XxX, then h is GV-expansive on X for a suitable neighbourhood V of the diagonal in XxX.

Proof. Let $X - S = \{x_0, x_1, \ldots, x_n\}$. We first show h is GV-expansive on $S \cup \{x_0\}$. Since X is a paracompact Hausdorff space and U is a neighbourhood of the diagonal in X×X, there exists a symmetric neighbourhood V' of the diagonal in X×X such that V'oV' \subset U, where V'oV' = { (x,y) \in X×X } there exists z in X satisfying (x,z) \in V'

and $(z,y) \in V'$ }

Since ∇' contains the diagonal, $\nabla' \subset \nabla' \circ \nabla' \subset U$.

First note that h being GU-expansive on S, there does not exist two points p_1 , p_2 in S such that $G(p_1) \neq G(p_2)$ and for some g_1 , k_1 , g_2 in G

 $(h^{n}(g_{i}p_{i}),h^{n}(k_{i}x_{o})) \in V'$ and $(h^{n}(g_{2}p_{2}),h^{n}(k_{i}x_{o})) \in V'$ for each integer n, i.e., there exists at most one point p in S such that for some g, k, in G,

 $(h^{n}(gp), h^{n}(k_{x_{0}})) \in V'$

for each integer n. In case no such p exists in S then h is GV-expansive on $S \cup \{x_0\}$, where V = V'. On the other hand if such a point p exists, then by taking

$$\mathbb{V} = \mathbb{V}' - \{ [(\mathbf{G}(\mathbf{p}) \times \mathbf{G}(\mathbf{x})) \cup (\mathbf{G}(\mathbf{x}) \times \mathbf{G}(\mathbf{p}))] \cap \mathbb{V}' \},\$$

one can easily verify that h is GV-expansive on S \cup {x_c}.

Finally, the required result is proved using induction on the number of elements in X - S.

Recall that at the end of Section 1 of the present Chapter, we have observed that the notion of A-expansiveness and the notion of GA-expansiveness are independent of each other. In view of this the following characterization of GA-expansive homeomorphism is interesting. We first give a definition.

Definition 5.2. Let X be a G-space, $A \subset X \times X$ and $h \in H(X)$. Then h is said to GA-separate h-orbits if given any basis $\mathscr{B} = \{x_{\alpha} \mid \alpha \in \mathscr{A}\}$ of X with respect to h, whenever $G(x_{\alpha}) \neq G(x_{\beta})$, there exists an integer n satisfying $[h^{n}(G(x_{\alpha})) \times h^{n}(G(x_{\beta}))] \cap A = \varphi$.

Theorem 5.6. Let X be a G-space and $A \subset X \times X$. Suppose h in H(X) is pseudoequivariant. Then h is GA-expansive iff (a) h GA-separates h-orbits

(b) given p in X and n in Z such that $h^{n}(p) \notin G(p)$, there exists an integer r satisfying

 $[h^{r}(G(p)) \times h^{r-n}(G(p))] \cap A = \varphi.$

Proof. Suppose h is a GA-expansive homeomorphism. Then we show that (a) and (b) are true. For (a), let $\mathscr{B} = \{x_{\alpha} \mid \alpha \in \mathscr{A}\}$ be any basis of X with respect to h. Consider x_{α} and $x_{\beta} \in \mathscr{B}$ with distinct G-orbits. Then by GA-expansiveness of h, there exists an n in Z satisfying $[h^{n}(G(x_{\alpha})) \times h^{n}(G(x_{\beta}))] \cap A = \varphi$. This proves (a). For

(b), we recall that (Lemma 3.1) as h is pseudoequivariant, so we have

$$h^{n}(G(x)) = G(h^{n}(x))$$
 (*)

for each x in X and n in Z. Now, suppose there is a $p \in X$ and an n in Z such that $h^{n}(p) \notin G(p)$. Then we obtain an r in Z for which (b) holds. As h is GA-expansive, so we find an integer m satisfying

$$[h^{m}G(h^{n}(p)) \times h^{m}G(p)] \cap A = \varphi.$$

Using (*) we get

 $[h^{m+n}(G(p)) \times h^{m}(G(p))] \cap A = \varphi.$

On substituting m + n = r, we finally obtain

 $[h^{r}(G(p)) \times h^{r-n}(G(p))] \cap A = \varphi.$

Conversely, suppose (a) and (b) hold. Then we prove that h is GA-expansive. Let x, $y \in X$ with $G(x) \neq G(y)$. Then two cases arise: Either x and y have disjoint h-orbits or they intersect. In case $O(x) \cap O(y) = \varphi$, we choose that basis of X with respect to h which has x and y as its members and then apply (a) to obtain an integer r satisfying $[h^r(G(x)) \times h^r(G(y))] \cap A = \varphi$. This proves that h is GA-expansive in this case. In the other case when the h-orbits of x and y intersect, there exists an integer n for which $x = h^n(y)$. Since x and y are having distinct G-orbits, we get $G(y) \neq G(h^n(y))$ which implies $h^n(y) \notin G(y)$. Now we apply (b) and obtain an integer r satisfying

$$[h^{r}(G(y)) \times h^{r-n}(G(y))] \cap A = \varphi$$

which implies

$$[h^{r}(G(h^{-n}(\mathbf{x}))) \times h^{r-n}(G(\mathbf{y}))] \cap \mathbf{A} = \varphi.$$

95

Once again we make use of (*) and obtain

 $[h^{r-n}(G(\mathbf{x})) \times h^{r-n}(G(\mathbf{y}))] \cap \mathbf{A} = \varphi.$

This establishes the GA-expansiveness of h in this case.

The above characterization of GA-expansive homeomorphisms gives the following sufficient condition for the homeomorphic extension of a GB-expansive homeomorphism on a G-invariant subspace Y of a G-space X to be GB-expansive on the whole space.

Theorem 5.7. Let Y be a G-invariant subspace of a G-space X and let h in H(Y) be pseudoequivariant GB-expansive, where $B \subset X \times X$. Then a pseudoequivariant homeomorphic extension f of h to X is GB-expansive on X if

(i) f is GB-expansive on X - Y and

(ii) there exists a basis B of Y with respect to h such that

 $[G(\mathbf{y}) \times (\mathbf{X} - \mathbf{Y})] \cap \mathbf{B} = \varphi,$

for each y in B.

Proof. For proving the GB-expansiveness of f in H(X), we show that conditions (a) and (b) of Theorem 5.6 are satisfied by f.

For (a), choose any basis $\mathscr{B}' = \{ x_{\alpha} \mid \alpha \in \mathscr{A} \}$ of X with respect to f and consider any two members, say x_{α} and x_{β} , in \mathscr{B}' with distinct G-orbits. We have following cases :

(i)
$$\mathbf{x}_{\alpha}, \mathbf{x}_{\beta} \in \mathbf{Y};$$

(ii)
$$x_{\alpha}, x_{\beta} \in X - Y$$
 and

(iii) $x_{\alpha} \in Y$ and $x_{\beta} \in X - Y$ or $x_{\alpha} \in X - Y$ and $x_{\beta} \in Y$.

In cases (i) and (ii), we appply the fact that $f|_{\chi} = h$ and

 $f|_{X-Y}$ are GB-expansive homeomorphisms and get the desired result (here we use the fact that a point lies in a G-invariant set iff the entire G-orbit of that point lies in that set).

Next we consider case (iii). Let us assume $x_{\alpha} \in Y$ and $x_{\beta} \in X-Y$. Then $x_{\alpha} \in O(y)$ for some $y \in \mathcal{B}$, i.e., $x_{\alpha} = h^{n}(y)$ for some integer n and therefore by condition (ii) of the hypothesis

 $[G(h^{-n}(x_{\alpha})) \times (X - Y)] \cap B = \varphi.$

Now X - Y being G-invariant subspace of X, $G(x_{\beta}) \leq X - Y$. Also $f^{-n}(G(x_{\beta})) \leq X - Y$. Therefore using pseudoequivariancy of $f|_{X} = h$, we obtain

 $[f^{-n}(G(x_{\alpha})) \times f^{-n}(G(x_{\beta}))] \cap B = \varphi.$

Hence f-orbits are GB-separated by f, i.e., f satisfies condition (a) of Theorem 5.6. For condition (b), let p in X and integer n be such that $f^{n}(p) \notin G(p)$. Again, either $p \notin Y$ or $p \notin X-Y$. If $p \notin Y$, then Y being G-invariant one gets $G(p) \subset Y$. Also, as $f|_{X} = h$ is GB-expansive Theorem 5.6 is applicable to the map f on Y and hence there will exists an integer r which satisfies

 $[\mathbf{f}^{\mathbf{r}}(\mathbf{G}(\mathbf{p})) \times \mathbf{f}^{\mathbf{r}-\mathbf{n}}(\mathbf{G}(\mathbf{p}))] \cap \mathbf{B} = \varphi.$

For the case when $p \in X-Y$ we use the fact that X-Y is G-invariant and $f|_{X-Y}$ is GB-expansive and argue exactly as we did when $p \in Y$ to obtain an $n \in Z$ such that

 $[\mathbf{f}^{\mathbf{r}}(\mathbf{G}(\mathbf{p})) \times \mathbf{f}^{\mathbf{r}-\mathbf{n}}(\mathbf{G}(\mathbf{p}))] \cap \mathbf{B} = \varphi.$

Thus we obtain that f is GB-expansive on whole of X.

It may be noted here that Theorems 5.6 and 5.7 reduce to respectively Theorems 1.8 and 1.7 stated in Chapter 1 due to Wine [42]. 97