EXPERIMENTAL

x

,

EXPERIMENTAL

PART I - Synthesis And Study of New Mesogens

Synthesis of the following series of compounds was undertaken :-

- 1. n. Butyl P (p'-n'-alkoxycinnamoyloxy) benzoate
- 2. n. Amyl p-(p'-n'-alkoxycinnamoyloxy benzoate
- 3. n. Hexyl p-(p'-n'-alkoxycinnamoyloxy) benzoate
- 4. n. Heptyl- p-(p'-n'-alkoxycinnamoyloxy) benzoate
- 5. p. (p'.n-alkoxycinnamoyloxy) benzylidine -p" nitro_aniline
- p. (p'-n-alkoxycinnamoyloxy) benzylidine -p" Fluoroaniline.
- 7. p- (p'-n-alkoxybenzoyloxy) benzoic acid
- 8. p- (p'-n-alkoxybenzoyloxy) propiophenone
- 9. p- (p'-n.alkoxybenzoyloxy) butyrophenone

The step wise synthesis of the various series of the new mesogens is given below -

1. P-n. Alkyl bromides

These bromides (C_2 to C_{10}) were synthesized by standard method and the pure products were obtained by repeated distillation. Their boiling points were found to be in accordance as reported in literature (315).

2. P - n - alkoxybenzaldehydes

Various methods have been described for preparing p.n. alkoxybenzaldehyde (316 - 317), but following procedure was adopted with better results in this investigation. Though first member viz. p.methoxy benzaldehyde of the BDH grade was boucht and purified. 0.1 mole of p-hydroxybenzaldehyde, 0.15 mole of anhy. potassium carbonate and 0.15 mole of corresponding n.alkyl bromide or iodide were added to dry acetone (60 ml). The mixture is refluxed, using water both, for six to eight hours. The refluxing period was extended to ten to twelve hours in case of higher members. The whole mass was then added to cold water and the aldehydes separated us the form of oily layer were extracted with ether. Ether extract was washed with dilute sodium hydroxide solution to remove unreacted p. hydroxybenzaldehyde followed by water and then dried. Ether was evaporated and p.n. alkoxy benzaldehydes thus obtained were purified by distilling under reduced pressure. Boiling points were found to be in agreement with those reported in literature (320).

3. Trans-p-n. Alkoxycinnamic Acids

These acids were prepared by the method of Gray and Jones (319).

66

p.n.alkoxybenzaldehyde (0.02 moles), malonic acid (0.04 moles), Pyridine (8 ml) and Piperidine (3 drops) were mixed and heated at 100°C for three hours on a steam bath. The mixture was poured in a beaker containing ice (25 gms) and conc.hydrochloric acid (25 ml). The precipitate were filtered and washed with dilute hydrochloric acid followed by water. The compounds were crystallised from 98% acetic acid. Yield of colourless product was 85 to 90%. The higher homologues were crystallised twice from benzene and then from acetic acid till constant transition temperatures were obtained. These are listed in Table - 2.

4. Trans-p-n-Alkoxycinnamoyl Chlorides

These were prepared by treating the corresponding trans-p-n-alkoxycinnamic acids with excess of thionyl chloride and heating on a water bath till evolution of hydrogen chloride gas ceased. Excess of thionyl chloride was distilled off under reduced pressure using a water pump. The acid chlorides left behind in the form of residue were used for further reaction.

5. <u>n-Butyl-p.hydroxybenzoates</u>

These were prepared by refluxing p.hydroxy benzoic acid (50 gms), absolute n. butanol (200 ml) and concentrated (98%) sulphuric acid (2 ml) on a sand bath for six to eight hours. The whole mass was then poured on to ice water (100 ml) containing 1 ml concentrated hydro-chloric acid. The product separated from water was washed with aqueous sodium bicarbonate solution (4N) and then with water. It was crystallised from 98% ethanol, and further purified by column chromatography using activated aluminaacetone system. Yield was 85%, m.p. 68°C. Elemental analysis conforms with the calculated values.

6. <u>n-Amyl-p.hydroxybenzoate</u>

This compound was prepared by refluxing dried n-amyl alcohol and p-hydroxy benzoic acid in presence of concentrated sulphuric acid as in A5 above. The product was obtained in liquid form which was extracted with ether. The ether layer was washed with Sodium Bicarbonate solution (4N) and then with water and dried. Yield was 70%. B.P. 60°C.

7. n-Hexyl-p-hydroxybenzoate

This compound was prepared by refluxing dried n-hexanol and p.hydroxy benzoic acid in presence of concentrated sulphuric acid as in A5 above. The liquid The liquid product was extracted with ether. The ether layer was washed with sodium bicarbonate solution (4N) and then with water. The ether was evaporated and the liquid product was dried over anhydrous sodium carbonate. Yield was 65%. B.P: 112°C.

8. n-Heptyl-p-hydroxy benzoate

This compound was prepared by refluxing absolute n-heptanol and p.hydroxybenzoic acid in presence of concentrated sulphuric acid as in A5 above. The liquid product was extracted with ether. The ether layer was washed with sodium bicarbonate solution (4N) and then with water. The ether was evaporated and the liquid product was dried over anhydrous sodium carbonate. Yield was 65%. B.P. 137°C

9. n-Butyl-p-(p-n-alkoxy cinnamoyloxy) benzoates

These were synthesized by adding dry n - butyl-phydroxy benzoate (0.01 mole), dissolved in dry pyridine (A.R. 10 ml), to trans p-n-alkoxy Cinnamoyl Chloride (0.015 mole). The mixture was warmed on water bath, while shaking for an hour and was allowed to stand overnight. It was acidified with cold dilute hydrochloric acid. The precipitates were filtered and were washed with cold dilute sodium hydroxide solution followed by water. The product was crystallised from ethanol to get almost white needles though the higher members were in the form of white or pale yellow powder. The melting points and transition temperatures are listed in Table 5. The analytical data is listed in Table 6. Yield was approximately 50%.

10. n-Amyl-p-(p'-n'.alkoxyCcinnamoyloxy) benzoate

These compounds were prepared by reacting n-amyl-p-hydroxy benzoate dissolved in phridine with p-n-alkoxy cinnamoyl chloride as in A9 above. They were crystallised from ethanol in the form of fine white needles or powder. The melting points and transition temperatures are listed in Table - 7. The analytical data is listed in Table 8. Yield was 45%.

11. n-Hexyl-p- (p'-n'-alkoxy[cinnamoyloxy]benzoate

These compounds were synthesized by reacting n-hexyl-p.hydroxy benzoate dissolved in dry pyridine with p-n.alkoxy_cinnamoyl chlorides as in A 9 above. The products were crystallised in hot alcohol to get the white needles or powder. The melting points and transition temperatures are listed in Table - 9. Analytical data is listed in Table 10. Yield was 40%. 70

12. n-Heptyl-p- (p'-n'-alkoxy cinnamoyloxy) benzoate

These compounds were prepared by reacting n-heptyl.p-hdroxy benzoates dissolved in dry pyridine with p-n-alkoxy Cinnamoyl chlorides as in A 9 above. The products were crystallised in alcohol to get the white needles or powder. The melting points and transition temperatures as listed in Table - 11 and analytical data is compiled in Table 12. Yield was approximately 40%.

13. <u>P-(p'-n-Alkoxy_benzoyloxy)</u> benzoic acids

These compounds were prepared by reacting p-n.alkoxybenzoyl chlorides with p.hydroxy benzoic acid. The product were crystallized from acetic acid to get pale yellow colid. The melting points and transition temperatures are given in Table 13. The analytical data are given in Table 14. Yield was 50%.

14. P- (p'-n-alkoxyCcinnamoyloxy) benzaldehyde

These compounds were prepared by reacting p-n-alkoxy Cinnamoyl chloride with p-hydroxy belzaldehyde as in A 9 above. The precipitates are collected by filtration and are washed with cold dilute sodium hydroxide solution followed by water. The compounds were crystallized from ethanol in the form of pale or dark yellow solid. The melting points and transition temperatures are compiled in Table 4. Yield was approximately 60%.

15. <u>P- (P'-n-alkoxyCinnamoyloxy) benzylidene-p</u>

<u>nitroaniline</u>

These compounds are prepared by condensing equimolecular amount (0.01 moles) of P- (p'-n-alkoxy Cinnamoyloxy) benzaldehyde and p.nitroaniline. The mixture is refluxed for one or two hours in 20 to 25 ml ethanol containing a few drops of acetic acid. For higher members the refluxing period was extended to about four hours. The lower members were crystallized from ethanol. The higher members were crystallized from acetic acid. The transition temperatures and analytical data are compiled in Tables 15 and 16 respectively. Yield was approximately 80%.

16. P _ (p'-n-alkoxy@innamoyloxy) benzylidene-p"fluoroaniline

These compounds are prepared by condensing equimolecular amount (0.01 moles) of P- (p'-n-Alkoxy Cinnamoyloxy) benzaldehyde and p-fluoro aniline. The mixture is refluxed for two to three hours in 20 to 25 ml. ethanol containing a few drops of acetic acid. The higher members are refluxed for four to five hours. The product were crystallised from alcohol to get fine white or pale yellow powder. The transition temperatures and analytical data are compiled in Tables 17 and 18 respectively. Yield was approximately 70%.

17. p.n.Alkoxy benzoic acids

These acids were prepared (321) by refluxing 1 mole p.hydroxy benzoic acid dissolved in 2 moles of alcoholic potassium hydroxide with 1.1 mole alkyl iodide or bromide. Under these conditions little or no esterification occurs. To ensure the forward reaction further 1 gm. ofpotassium hydroxide dissolved in very small amount of water, was added to refluxing mixture after seven hours of refluxing. The free acid was liberated by the addition of concentrated hydrochloric acid. The lower members were crystallised from alcohol and higher members were crystallised from acetic acid till constant transitions were obtained. These temperatures are listed in Table 3.

18. P-n. Alkoxybenzoyl chlorides

These were prepared by reacting p.n.- alkoxybenzoic acid and thionyl chloride as in A4above.

19. Phenyl Propionate (322)

This compound was prepared by adding slowly 120 ml of redistilled thionyl chloride to a mixture 150 g. of

pure phenol and 133 ml. of propionic acid. After addition, the mixture was warmed to drive away all the sulphur dioxide and hydrogen chloride, then distilled. Yield was approximately 80%. B.P. 211°C.

20. p-Hydroxy Propiophenone (322)

Dry phenyl propionate (17g) was taken in a round bottom flask and powdered anhydrous aluminium chloride (20g) was added portionwise while keeping the flask cooled in ice cooled water. After half an hour the contents were heated at 55-60°C for about two to three hours and<u>t</u>hen left overnight. During this period, hydrogen chloride gas was evolved and the mixture thickened to a brown mass. The cold dilute hydrochloric acid was added to this mass to decompose the aluminium chloride complex. The mixture was then steam distilled to distill off the ortho isomer while the p.hydroxy propiophenone is non-volatile in steam and remained in the flask. It was recrystallised from hot water. Yield was 50%. M.P. 148°C.

21. Phenyl Butyrate

It was prepared by slow addition of 120 ml. of redistilled thionyl chloride to a mixture of 150g of phenol and 160 ml of Butyric acid. The mixture was warned and then left overnight. Then cold dilute hydrochloric acid was added and the mixture was steam distilled. The solid product was crystallised from hot water. Yield was 60%. B.P. 227°C.

22. <u>p-Hydroxy butyrophenone</u>

Powdered anhydrous aluminium chloride (20.0 g) was slowly added to dry phenyl butyrate (17.0 g). After half an hour the contents were heated at 55 - 60°C for three to four hours and left overnight. The cold dilute hydrochloric acid was added to the mixture and then steam ' distilled. The p-hydroxy butyrophenone which is nonvolatile in steam was crystallised from dilute alcohol. Yield was 40%. M.P. 91°C.

23. p-(p'-n-alkoxy_benzoyloxy) propiophenones

Dry p-hydroxypropiophenone (0.01 mole) was dissolved in dry pyridine (A.R. 10 ml.) and was added slowly to the trans-p-n-alkoxybenzoyl chloride (0.015 mole). The mixture was warmed for an hour and then left overnight. It was acidified with cold dilute hydrochloric acid and filtered. The precipitates were washed with cold dilute sodium hydroxide solution followed by water. They were crystallised from ethanol to get fine white needles or powder. Yield was approximately 60%. The melting points and transition temperatures are listed in Table 19, and analytical data are compiled in Table 20.

24. p- (p'-n-alkoxy_benzoyloxy) butyrophenones

Dry p-hydroxybutyraphenone (0.01 mole) is dissolved in dry pyridine (A.R. 10 ml) and added slowly to the trans-p-n-alkoxybenzoyl chloride (0.015 mole). The mixture was warmed while shaking for an hour and<u>t</u>hen allowed to stand overnight. It was acidified with cold dilute hydrochloric acid and the precipitates were collected by filtration and were washed with cold dilute sodium hydroxide solution followed by water. The esters were crystallised from ethanol to fine white flakes or powder. The melting points and transition temperatures are listed in Table 21 and analytical data is compiled in Table 22. Yield was 50%.

STUDY

The study of mesomorphic characteristic was carried by Polarising microscope.

A Polarising microscope, fitted with heating stage arrangement (Kofler) was used to carry out study of mesomorphic properties of newly synthesized compounds (Fig-6).

1. Preparation of Slides

The substance taken on a slide was heated to a little more temperature than its isotropic temperature. A cover slip was placed over it and then made to cool off.

FIG'	6	POLARISING	MICROSCOPE	WITH	·.
		•			
		KOFLER	HEATING	STAGE.	

*

2. Heating rate

The prepared slide was then placed over the heating stage of the microscope. A slow rate of about 1° per minute was maintained by means of rheostat attached to the heating stage. The changing textures over the temperature range were carefully observed and characteristics of the phases are noted.

3. Calibration of Thermometer

The thermometer was calibrated by taking melting points and transition points of some known and very pure substances like benzoic acid, p. azoxy-anisole., \ll .napthol, succinic acid etc.

4. <u>Measurement of transition temperatures of mesogens</u> <u>under study</u>

The prepared slide containing a thin section of the material under study was mounted on the heating stage. Initially the heating rate was kept at 5° per minute to find the transition temperatures approximately. The slide was cooled and, again, temperature was raised, now at a slower rate, the heating rate was regulated to 1°C per minute from about 5°C below the expected transition temperature to measure them accurately. Further, to ensure that phase transition has actually taken place, the cover slip was touched with a spatula. Movement of

cover slip confirms a change from solid to fluid state. The transitions and phases are clearly observed as focal conic, plane, homostropic and threaded textures of smectic and nematic mesophases appear under polarized light. Formation of isotropic liquid is clearly marked as the field of vision becomes extinct in polarized light.

All enantiotropic transitions are clearly detected on cooling the isotropic liquid, as the reverse transitions take place either at the same temperature or within a range of \pm 0.2 to 0.5°C.

Monotropic transitions are determined by carefully observing the isotropic liquid as it cools slowly until batonnets of smectic phase or droplets of nematic phase appeared.

The smectic-nematic transitions are also clearly detected as there is a sharp variation in texture from focal conic to threaded structure while heating and exactly the reversed sequence on cooling under microscope.

All the compounds under study were observed several times under microscope to ensure that no transition was unnoticed. In case of any doubt, the compound was purified again and then observed again under microscope.

DSC and TGA Data

.

DSC and TGA study of mesomorph is very useful in deciding transformations of structures at the transition. But, due to lack of availability of any facility for conducting these studies, as the apparatus were not available in working conditions, it could not be done. Some samples were sent for DSC but the results of this analysis is still awaited.

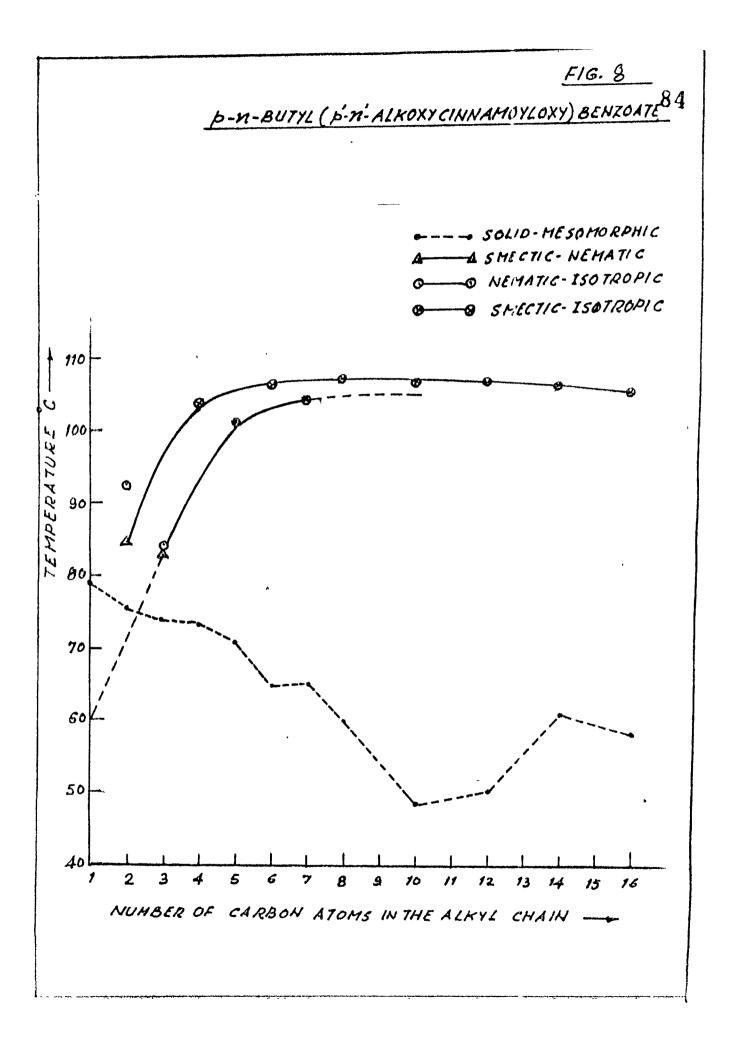
Trans p-n-Alkoxycinnamic Acid (319)

-

~ ~ ~ ~ ~ ~ ~ ~ ~ ~			~ ~ ~ ~ ~
n-Alkyl group	Trans	ition Tempera	tures
	S	(in _N °C)	^I
Methyl		174.0	190.0
Ethyl	-	194.0	200.0
Propyl	-	169.0	184.0
Butyl		156.0	189.0
Amyl	-	144.0	180.0
Hexyl	-	152.0	180.0
Heptyl	-	148.0	175.0
Octyl	-	145.0	172.0
Decyl	136.0	150.0	169.0
Dodecyl	132.0	157.0	164.0
Tetradecyl	127.0	-	160.0
Hexadecyl	118.0	-	159.0
Octadecyl	120.0	-	157.0

-

Trans-p-n-Alkoxybenzoic Acid (321)


4000 400 405 500 600 400 400 400 400 400 400			
n-alkyl group	Tran	sition Tempe	ratures
	,	(in °C)	
	<u> </u>	<u>N</u>	_ <u>I</u>
Methyl	-	-	183.4
Etnyl		-	197.0
Propyl	-	146.0	156.0
Butyl		147.0	160.0
Amyl	-	124.0	151.0
Hexyl		105.0	153.0
Heptyl	92.0	• 98.0	145.0
Octyl	100.0	107.0	146.0
Decyl	97.0	121.0	146.5
Dodecyl	95.0	129.0	137.0
Tetradecyl	93.0	134.5	136.0
Hexadecyl	102.0	-	134.0
Octadecyl	101.5		131.0

	~ ~ ~ ~ ~	_ ~ ~ ~ ~ ~	
n-alkyl group	Trans	ition tempera	atures
	S	N	I
		······································	
Methyl	-	(122.5)	125.0
Ethyl	***	(128.0)	144.0
Propyl	-	(106.5)	112.0
Butyl	-	76.5	116.0
Amyl		73.0	110.5
Hexyl		73.0	113.5
Heptyl		71.0	109.5
Octyl	77.0	89.0	111.0
Decyl	83.0	111.5	113.0
Dodecyl	87.0	-	117.0
Tetradecyl	90.0		117.5
Octadecyl	94.0	-	118.0

Trans p- (p'-n-Alkoxycinnamoyloxy) benzaldehyde

TABLE - 4

Values in parentheses indicate monotropy.

P-n-Butyl (p'-n' Alkoxycinnamoyloxy) benzoate

n-Alkyl group	Transition		eratures
Merthyr growp			°C)
	Smectic	Nematic	Isotropic
946 da vil vil pa an an an an an an an		9999	
Methyl	-	-	79.0
Ethyl -	76.0	85.0	92.5
Propyl	74.0	83.0	84.0
Butyl	73.5	-	103.5
Amyl	71.0	_	101.0
Hexyl	65.0	-	106.0
Heptyl	65.5	-	104.0
Octyl	60.0	-	107.0
Decyl	48.5	-	106.5
Dodecyl	50.5	-	106.5
Tetradecyl	61.0	-	106.0
Hexadecyl	59.0	-	107.0

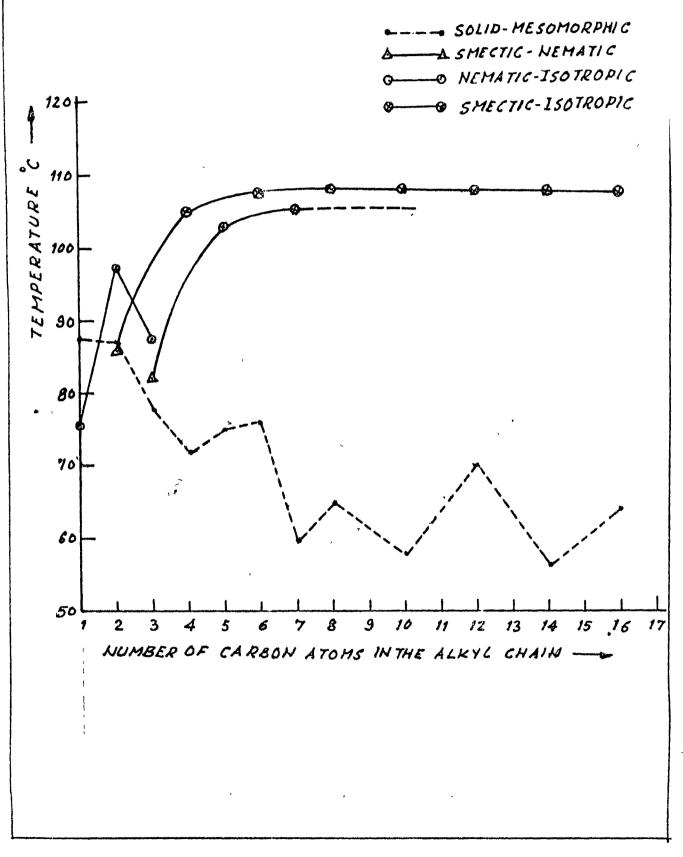
.

.

,

.

TABLE - 6


n - Butyl P - (p'-n'-alkoxycinnamoyloxy) benzoate

n-Alkyl	Molecular	% Required	ired	% Found	
droup	formula	υ	Н	υ	Н
		ne manga ng manga na manga na manga ng mangang ng mangang ng mangang ng mangang ng mangang ng mangang ng manga			An and a little because an an an and a state of the state
Methyl	c ₂₁ H ₂₂ O ₅	71.18	6.21	71.48	6.422
Ethyl	c ₂₂ H ₂₄ o ₅	71.73	6.52	71.83	6.464
Propyl	c ₂₃ H ₂₆ o ₅	72.25	6.80	72.26	6.843
Butyl	C24 ^H 28 ⁰ 5	72.72	7.07	72.70	6.840
Amyl	C25H30O5	73.17	7.31	73.18	7.270
Hexyl	c26H32O5	73.58	7.54	73.53	7.313
Heptyl	c ₂₇ H ₃₄ o ₅	73.97	7.76	73.62	7.418
Octyl	C28H36 ⁰ 5	74.33	7.96	74.26	7.909
Decyl	C ₃₀ H ₄₀ O ₅	75.00	0 •33	74.28	8.717
Dodecyl	$c_{32}H_{44}o_{5}$	75.59	8 .66	75.37	8.243
Tetradecyl $C_{34}H_{48}O_5$	$c_{34}H_{48}O_{5}$	76.11	8 .95	75.82	8.583
Hexadecyl	с ₃₆ н ₅₂ 05	76.59	9.21	76.28	9.113

86

/

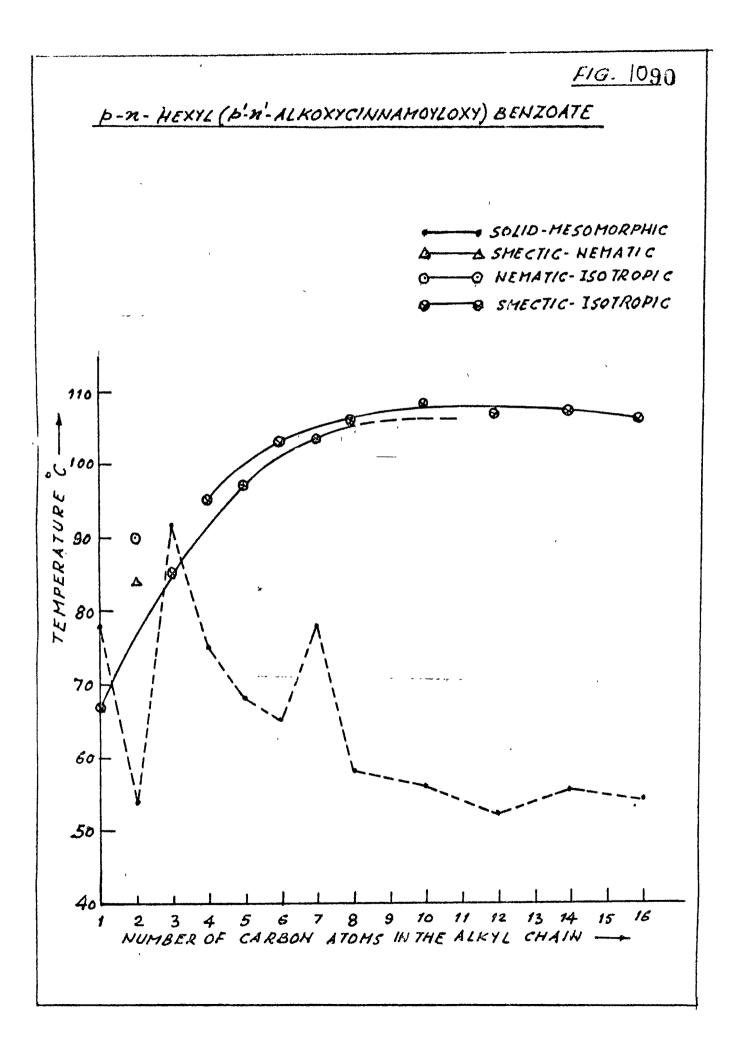
FIG. 9. p-n-AMYL (p-n-ALKOXYCINNAMOYLOXY) BENZOATE

.

· ,

<u>n-Amyl o - (p'-n'-Alkoxycinnamoyloxy) benzoate</u>

400 an	natus anga atas an	20 4000 4004, 404-4	
n.Alkyl group	Transitio	on Tempera	ture (°C)
	S	N	I
900 000 000 000 000 000 000 000 000 000			
Methyl	-	(76.0)	88.0
Ethyl	(86.0)	87.0	97.5
Propyl	78.0	82.0	87.5
Butyl	72.0	-	105.0
Amyl	75.0	-	103.0
Hexyl	76.0	-	107.5
Heptyl	60.0	-	105.0
Octyl	65.5	-	108.0
Decyl	58.0	-	108.0
Dodecyl	70.0	-	107.5
Tetradecyl	55.0	_ ,	107.5
Hexadecyl	52.0	-	108.0


١

Values in parentheses indicate monotropy.

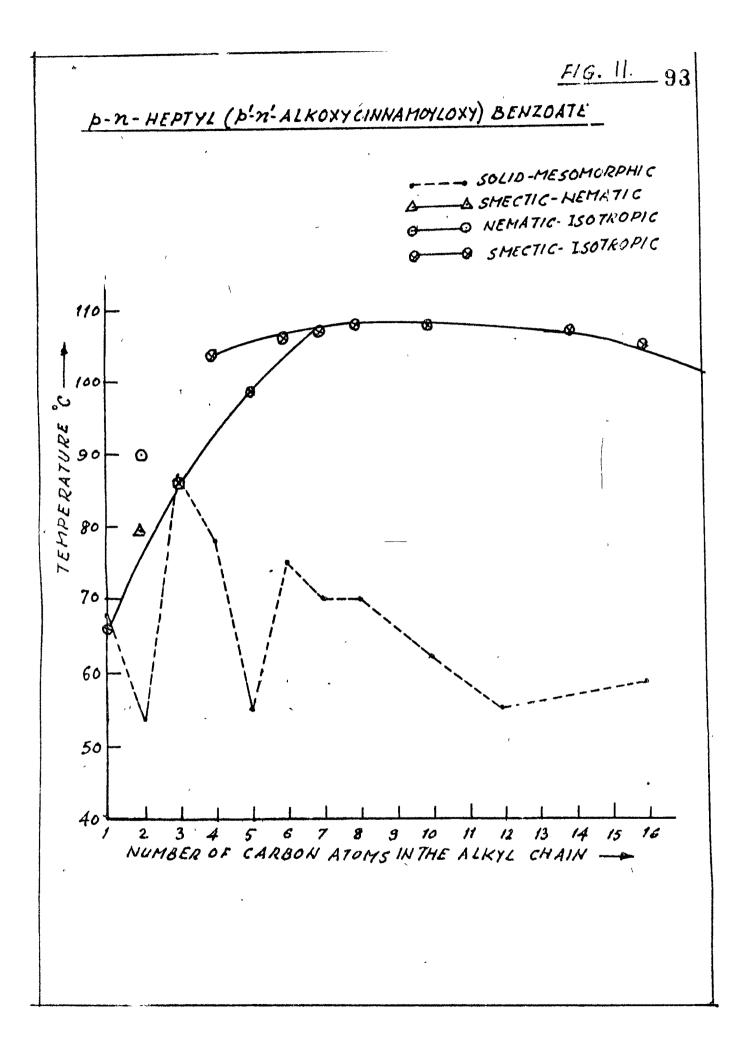
,

n - Amyl P - (p'-n'-alkoxycınmanoyloxy) benzoate

rroup f Methyl C ₂ Ethyl C ₂	formula				
đ	1	υ	Н	υ	Н
	с ₂₂ H ₂₄ 05	71.73	6.52	71.62	6.232
	с ₂₃ 42605	72.25	6.80	71.84	6.586
Propyl C ₂	C24 ^{H280} 5	72.72	7.07	72.48	6.834
Butyl C ₂	с ₂₅ н ₃₀ 05	73.17	7.31	72.70	7.076
Àmyl C2	C26H32O5	73.58	7.54	73.50	7.323
Hexyl C ₂	C27H34O5	73.97	7.76	73.54	7.551
Heptyl C ₂	с ₂₈ н ₃₆ 05	74.33	7.96	74.21	7.910
Octyl C ₂	C29H38O5	74.67	8.15	74.53	3.100
Decyl C ₃	C ₃₁ H ₄₂ O ₅	75.30	8.50	75.19	3.235
Dodecyl C ₃	C33H4605	75.86	8.81	75.56	8.420
Tetradecyl C ₃	c ₃₅ H ₅₀ 05	76.36	60.6	76.21	8.728
Hexadecyl C ₃	c ₃₇ H ₅₄ 0 ₅	76.81	9 . 34	76.80	9.543

,

n-alkyl Group	Transit	tion Tempe (°C)	erature
	S	N	T
Methyl	-	(67.0)	78.0
Ethyl	54.0	84.0	90.0
Propyl	(85.0)	-	92.0
Butyl	75.0	-	100.0
Amyl	68.0	-	97.0
Hexyl	65.0	-	103.0
Heptyl	78,0	-	103.5
Octyl	58.0	-	106.0
Decyl	56.0	-	108.0
Dodecyl	52.0	_	106.5
Tetradecyl	55.0	-	107.0
Hexadecyl	56.0	-	107.0
	· ··· ··· ··· ··· ···		


n-Hexyl p - (p'-n'-Alkoxycinnamoyloxy) benzoate

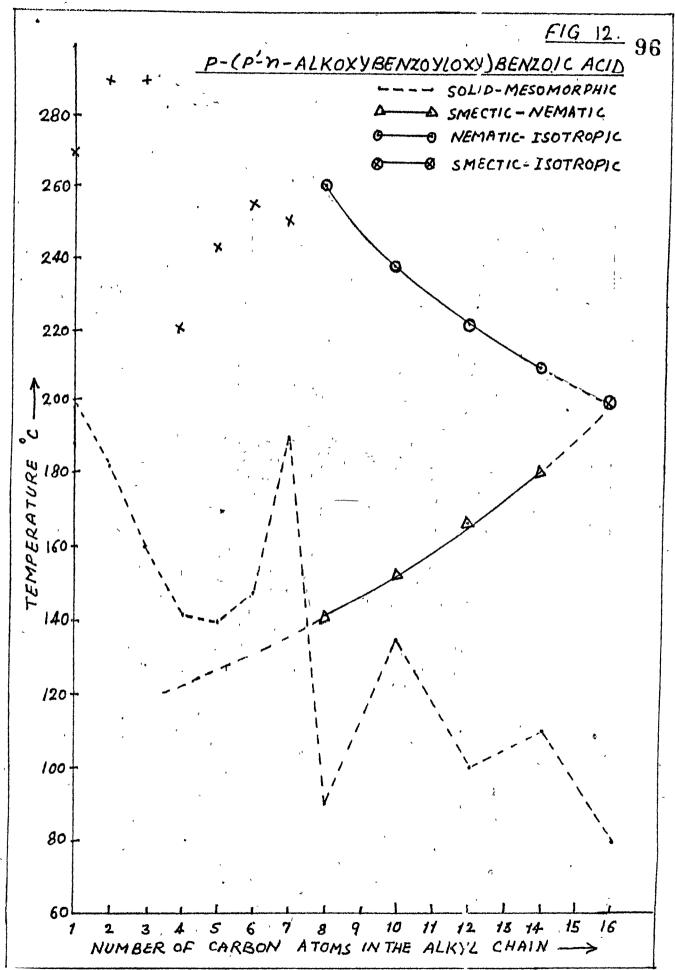
Values in parentheses indicate monotropy.

_

-1	n- Hexyl P - (p'-n'-alkoxycinnamoyloxy)	xycinnam	oyloxy) benzoate	0)	
n-Alkyl group	Molecular formula	% red	required	% Found	
		υ	H	υ	H
Methyl	22 ⁴² 405	72.25	6.80	72.00	6.761
Ethyl	C24 H2805	72.72	7.07	72.58	6.982
Fropyl	C25H305	73.17	7.31	72.88	7.041
Butyl	C26 H3205	73.58	7.54	73.52	7.507
Amyl	C27 H340S	73.97	7.76	73.88	7.787
Hexyl	C28H3605	74.33	7.96	74.42	7.780
Heptyl	C29 H38 05	74.68	8 . 15	74.80	8.224
Octyl	C30H40S	75.00	8 . 33	74.94	8.313
Jecyl	C32H4405	75.59	8 . 66	75.61	8.582
Dodecyl	C34 H4805	76.11	8 . 95	76.28	6.003
Tetradecyl	^C 36 ^H 5 یا 0 5	76.59	9.21	76.50	9.112
Hexadecyl	C38 H5605	77.02	9.45	77.11	9.312

T A B L E - 10 (n'_n'_alkovucinnamoulovu) hend

<u>TABLE - 11</u>


n-Heptyl p- (p'-n'- Alkoxycinnamoyloxy) penzoate Transition Temperatures (°C) n-alkyl Group S N I -----Methyl (66.0) 68.0 -Ethyl 54.0 80.0 90.0 Butyl 78.0 104.0 Amyl 55.0 99.5 ----75.0 Hexyl -106.0 Heptyl 70.0 -107.0 Octyl 70.0 107.5 Decyl 62.0 107.5 ---Dodecyl 55.0 ----107.0 Tetradecyl 57.0 -106.5 Hexadecyl 58.0 105.5 ----

Values in parentheses indicate monotropy.

T A B L E - 12

n-Heptyl P- (p'-n'-alkoxycinnamoyloxy) benzoate

n-Alkyl	Molecular	% kequired	ired	%	Found
group	e Tnujoj	U	Н	υ	H
Methyl	C ₂₄ H _{2RO5}	72.72	7.07	72.56	7.121
Ethyl		73.13	7.31	72.98	7.281
Propyl	$c_{26}H_{32}O_{5}$	73.58	7.54	73.60	7.554
Butyl	C27 ^H 34 ^O 5	73,97	7.76	73.85	7.800
Amyl	C ₂₈ H ₃₆ O ₅	74.33	7.96	74.62	7.908
Hexyl	C29H3805	74.68	8 . 15	74.67	8.118
Heptyl	C ₃₀ H ₄₀ O ₅	75.00	8 .33	75.01	8.321
Octyl	$c_{31}H_{42}O_{5}$	75.30	8 . 50	75.25	8.517
Decyl	с ₃₃ 4605	75.86	8.81	75.91	9.622
Dodecyl	c ₃₅ H ₅₀ 05	76.36	60°6	76.30	9.110
Tetradecyl	c ₃₇ H ₅₄ 0 ₅	76.81	9 . 35	76.75	9.307
Hexadecyl	C39 ^H 58 ^O 5	77.21	9.57	77.11	9.452

,

ډ

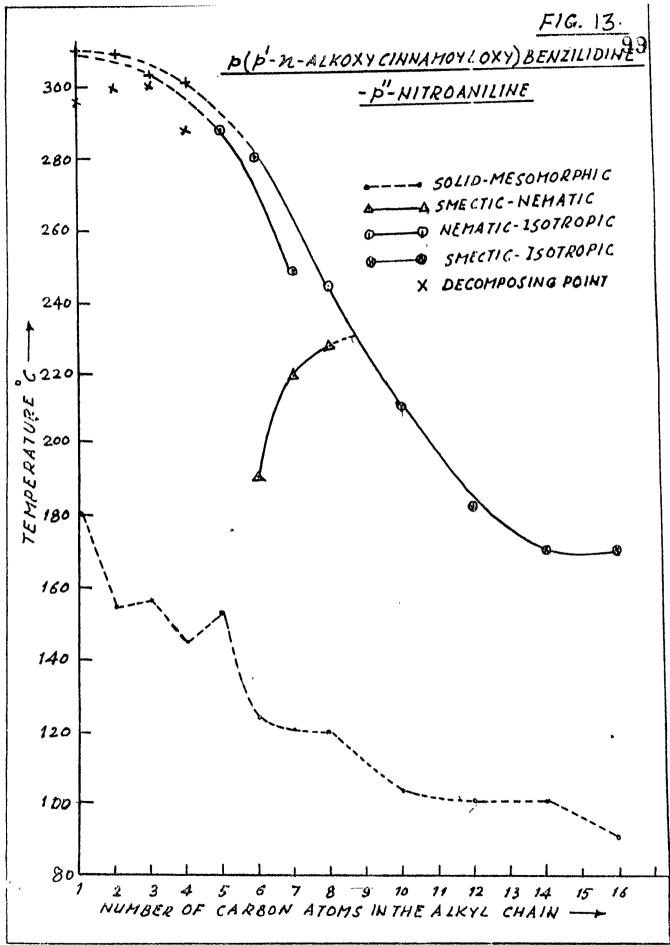
P- (p'-n-Alkoxybenzoyloxy) benzoic acid

n.olkyl group	3	ition Temp N	I
A Tan an Ingeneer of manifestation angles and a logic of the angles and a second second second second second se	9	an ann a mar Ann an Ann	8-14-1 ⁴ -14
Methyl	-	200.0	270.0(d)
Bthy1		102.0	290.0 (d
Propyl	~ •••	160.0	290.0 (d)
Butyl		142.0	220.0 (d)
Amyl	-	140.0	243.0 (d)
Hexyl	-	147.0	240.0 (d)
Heptyl	-	185.0	250.0 (a)
Octyl	90.0	140.0	260.0
Decyl	135.0	152.0	236.0
Dodecyl	100.0	166.0	220.0
Tetradecyl	110.0	180.0	209.0
Hexadecyl	73.0	-	200.0

,

97

.


.

T A B L E - 14

P- (p'-n-Alkoxybenzoyloxy) benzoic acid

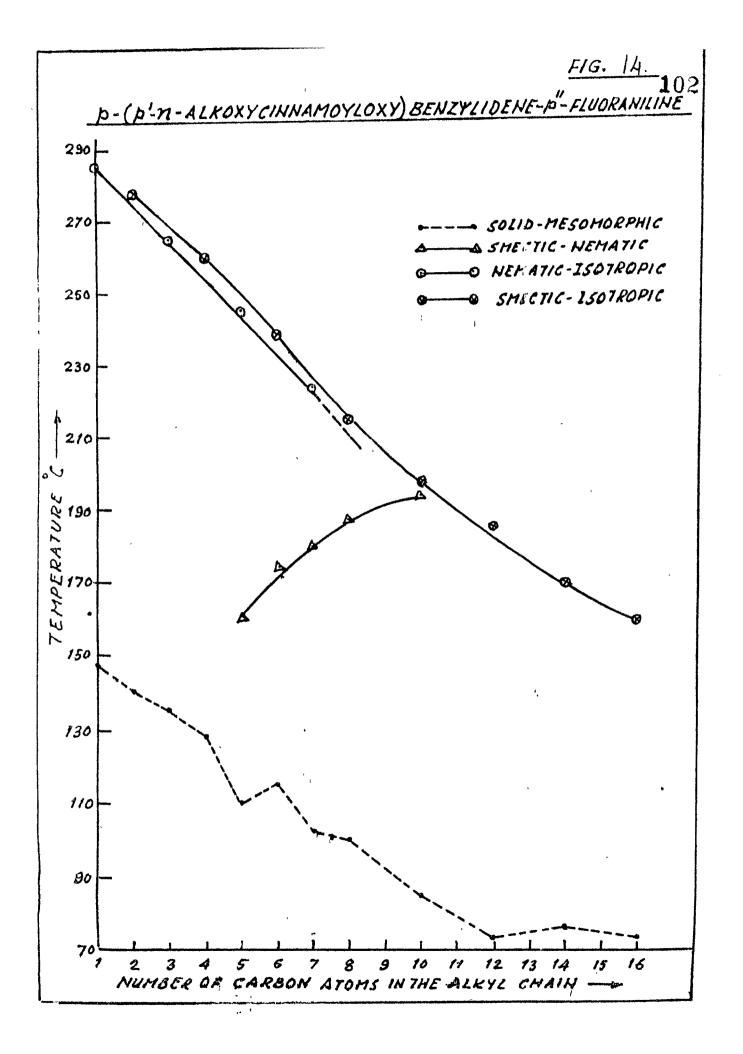
n-Alkyl	Molecular	% kequired	ired	% Found	Ū
Group	formula	υ	Н	υ	Н
Methyl	c ₁₅ H ₁₂ O ₅	66.17	4.418	66.32	4.60
Ethyl	с ₁₆ н ₁₄ 05	67.13	4.891	67.61	4.423
Fropyl	$c_{17}^{H_{16}0_{5}}$	63.00	5.335	67.81	5.728
Butyl	с ₁₈ н ₁₈ 05	68.78	5.736	69.13	5.303
Amyı	с ₁₉ н ₂₀ 05	69.51	6.092	69,79	5.678
Нехуі	C20 ^H 22 ^O 5	70.17	6.423	70.47	6.098
Heptyl	$c_{21}^{H_{24}}o_{5}$	70.78	6.741	70.92	6.68
Octyl	C22 ^H 26 ^O 5	71.35	7.024	71.11	. 6.646
Decyl	$c_{24}H_{30}O_{5}$	72.36	7.538	71.93	7.850
Dodecyl	C26H3405	73.23	7.981	72.94	7.567
Tetradecyl	C28 ^H 38 ^O 5	74.00	8.372	73.89	8.013
Hexadec71	$c_{30}H_{42}O_{5}$	74.68	8.713	74.52	8.611

,

f

P_ (p'_n.Alkoxycinnamoyloxy) benzilidine -p"- nitroaniline					
n-Alkyl Group	Transi	tion Temper	ature (°C)		
	S	N	I		
••• ••• ••• ••• ••• ••• ••• ••• •••			~ ~ ~ ~ ~ ~ ~		
Methyl		180.0	300.0(d)		
Ethyl	-	157.0	300.0(d)		
Propyl	-	158.0	300.5 (d)		
Butyl	-	145.0	288.0(d)		
Amyl	-	152.0	288.0(3)		
Hexyl	124.0	190.0	280.0		
Heptyl	121.0	220.0	249.0		
Octyl	120.0	228.0	245.0		
Decyl	103.0	-	210.0		
Dodecyl	100.0	-	183.0		
Tetradecyl	100.0		170.0		
Texadecyl	90.0	-	170.0		
			** ** ** ** ** **		

.


d - decomposition temperature.

•

T A B L E - 16

P - (p'-n-alkoxycinnamoyloxy) benzylidene-p"nitroaniline

6.392 6.211 6.287 6.018 6.127 5.853 6.112 5.172 4.381 4.286 5.622 4.032 \mathbf{Z} 6.405 Found 5.822 6.412 6.927 7.803 6.015 5.801 7.321 5.018 5.381 6.511 8.412 Ι 77.93 76.78 77.05 77.68 75.25 75.66 76.32 76.97 77.62 78.41 75.93 74.82 % υ 7.56 7.28 7.03 6.36 6.16 5.98 6.57 4.82 6.78 5.64 5.34 5.06 \mathbf{z} Required 5.20 5.52 6.36 74.59 4.86 6.60 7.96 76.05 6.10 6.83 5.82 77.40 7.25 77.86 7.63 8.27 Ξ 76.36 75.00 75.37 76.65 78.26 75.72 76.92 78.62 % υ C_{23} H_{18} $N_2^{0}_4$ C24 H20 N204 C₂₅ H₂₂ N₂04 C₂₆ H₂₄ N₂04 C₂₇ H₂₆ N₂04 C29 H30 N204 C₃₈ H₄₈ N₂O₄ C₃₀ H₃₂ N₂O₄ C32 H36 N204 C₃₄ H₄₀ N₂O₄ C₃₆ H₄₄ N₂O₄ C28 H28 N204 Molecular formula Tetradecyl Hexadecyl Dodecyl n-Alkyl Methyl Heotyl Propyl Ethyl Butyl Hexyl Octyl Decyl Group Amyl

P- (p'-n-Alko	xycinnamoyloxy) be fluoroaniline	nzilidir	ne _p' _
n-Alkyl Group	Transition	Tempera	ature (°C)
	<u>S</u>	_ <u>N</u>	<u>I.</u>
Methyl	-	147.0	285.0
Ethyl	-	140.0	272.0
Propyl	-	135.0	265.0
Butyl	-	128.0	250.0
Amyl	110.0	152.0	227.0
Hexyl	111.0	168.0	222.0
0 Heptyl	105.0	180.0	215.0
Octyl	100.0	187.0	215.0
Decyl	85.0	194.0	198.0
Dodecyl	73.0	-	185.0
Tetradecyl	76.0	-	170.0
Hexadecyl	73.0	-	160.0

.

ŕ

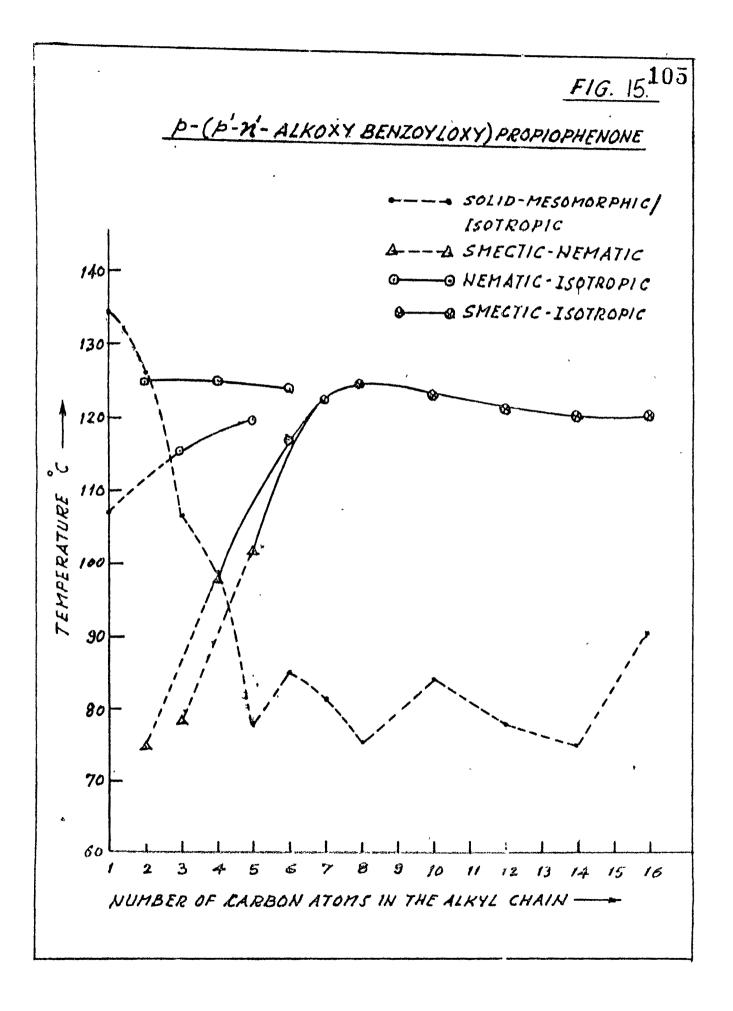
<u>TABLE - 17</u>

103

-

T A B L E - 18

۲


,

P - (p'-n-Alkoxycinnamoyloxy) benzylidene - P'

ł

Fluoroaniline

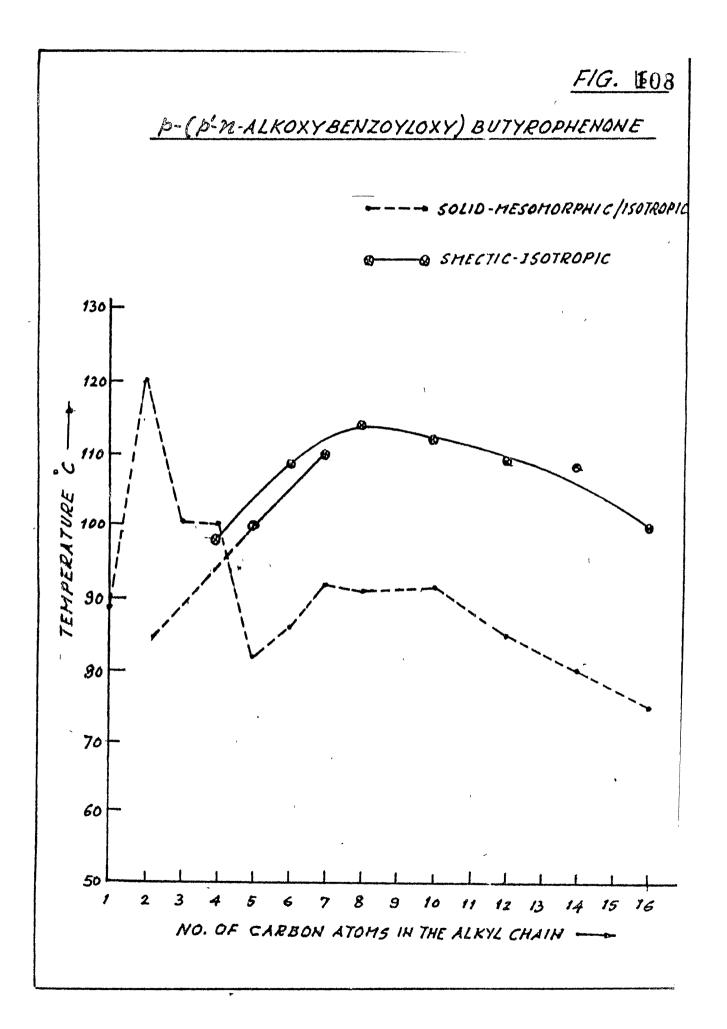
n-Alkyl group	Molecular formula	%	Required	ed	*	Req	Required
		υ	н	R	υ	н	Z
Methyl	C, 3H, GO, NF	73.86	4.80	3.73	73.60	5.072	3.359
Ethyl	$c_{24}H_{2003}NF$	74.03	5.14	3.59	73.82	5.181	3.621
Propyl	С ₂₅ Н ₂₂ 03 ^{NF}	74.44	5.45	3.47	74.67	5.249	2.994
Butyl	$c_{26}H_{24}O_{3}NF$	74.82	5.75	3.35	74.91	5,513	3.112
Amyl	C27H2603NF	75.17	6.03	3.24	74.98	5.791	3.015
Hexyl	C ₂₈ 48 03 ^{NF}	75.50	6.29	3.14	75.22	5.837	2.912
Heptyl	$C_{29}H_{30}O_{3}NF$	75.81	6.53	3.05	75.62	6.022	2.891
Octyl	$c_{30}H_{32}O_{3}NF$	76.10	6.76	2.96	76.325	6.821	2.440
Decyl	$C_{32}H_{36}O_{3}NF$	76.64	7.18	2.79	76.71	7.257	3.011
Dodecyl	$C_{34}H_{40}O_{3}NF$	77.12	7.56	2.64	76.78	7.115	2.025
Tetradecyl	$C_{36}H_{44}O_{3}NF$	77.55	7.89	2.51	77.02	7.613	2.031
Hexadecyl	C ₃₈ H ₄₈ O ₃ NF	77.95	8.20	2.39	77.43	7.981	1.981

<u>TABLE - 19</u>

P_ (p'_n_Alkoxybenzoyloxy) propiophenone

n-Alkyl Group	 Transiti	on Temperatu:	- $ -$
HTTYYT CLOUP	S	N	I
Methyl	-	-	134.5
Ethyl	-	(125.0)	126.0
Propyl		106.5	115.5
Butyl	(98.0)	98.5	125.0
Amyl	78.0	102.0	119.5
Hexyl	85.0	117.0	124.0
Heptyl	81.5	-	122.5
Octyl	76.5	-	124.5
Decyl	84.0	-	123.0
Dodecyl	78.0		121.0
Tetradecyl	75.0	-	120.0
Hexadecyl	90.0	-	120.0

Values in the paranthesis indicate monotropy.


,

<u>T A B L E - 20</u>

P - (p'-n- Alkoxybenzoyloxy) propiophenone

n-Alkyl	Molecular	% Re	Required	% Re	Required
group	formula	U	Ξ.	ບ	н
Methyl	C ₁₇ H ₁₆ 04	71.83	5.63	71.54	5.625
Ethyl	C ₁₈ H ₁₈ 04	72.48	6.04	72.00	5.845
Propyl	$c_{19}^{H_{20}}o_{4}$	73.07	6.41	73.23	5.960
Butyl	C20 ^H 22 ^O 4	73.61	6.74	73.60	6.457
Amy1	$c_{21}^{H_24}o_4$	74.11	7.05	74.12	6.921
Нехуі	C ₂₂ H ₂₆ 04	74.57	7.34	74.35	6.903
Heptyl	C ₂₃ H ₂₈ 04	75.00	7.60	74.63	7.223
Octyl	$C_{24}H_{30}O_{4}$	75.39	7.85	75.78	7.675
Decyl	C26H3404	76.09	8.29	75.60	7.854
Dodecyl	C28 ^H 3804	76.71	8.67	76.24	8.200
Tetradecyl	$c_{30}^{H}_{42}o_{4}$	77.25	9.01	77.26	9.034
Hexadecyl	$^{C}32^{H}46^{O}4$	77.73	9.31	77.61	9.275
	,				

P_(p'_n_Alkoxybenzoyloxy) butyrophenone

n-Alkyl Group	Transition		
	S	N	I
			100
Methyl	(77) *	-	89.0
Ethyl	(87) *	-	120.0
Propyl	(90) *	-	100.5
Butyl	(98.0)	-	100.0
Amyl	82.0	-	100.5
Hexyl	86.0	-	109.0
Heptyl	92.0	-	110.0
Octyl	91.0	-	114.0
Decyl	91.5	-	112.0
Dodecyl	85.0	-	109.0
Tetradecyl	80.0	-	108.0
Hexadecyl	75.0		99.5

.

* Extrapolated values.

Values in the paranthesis indicate monotropy.

P. (p'-n-Alkoxybenzoyloxy) butyrophenone

89.272 8.040 8.472 6.238 7.793 9.540 5.758 6.575 7.117 7.285 7.785 7.911 Ц Found 75.30 76.00 78.00 74.32 74.85 75.50 76.47 77.38 72.00 73.55 73.60 74.60 υ % kequireõ 7.60 8.08 8.49 9.16 7.05 7.34 7.85 9.84 9.44 6.04 6.41 6.74 Ξ 75.00 75.75 76.41 76.99 77.50 72.48 73.07 73.61 74.11 74.57 75.39 77.95 * υ Molecular formula с₁₉^Н20⁰4 $c_{23}^{H_{28}O_{4}}$ C22^H26⁰4 $c_{24}^{H_{30}0_{4}}$ c25^H32⁰4 $c_{21}^{H_{24}}o_{4}$ c27^H36⁰4 c33^{H4804} $c_{18}^{H_{18}O_4}$ c₂₉H₄₀0₄ C₃₁H₄₄O₄ $c_{20}H_{22}O_{4}$ Tetradecyl Hexadecyl 14-14-14-14 14-0-14-0 Dodecyl hiond Nechyl leptyl And the second se Lthyl Butyl Jotyl Decyl Hexyl Amyl

PART - 2

MIXED MESOMORPHISM

Study of mixed mesomorphism in binary systems, none one or both components of which are mesogens is very helpful in establishing generalizations concerning factors responsible for exhibition of mesomorphism. Mixed mesomorphism has also contributed recently to applications of liquid crystals by way of widening the scope of utility of certain mesogens.

PREPARATION OF COMPOUNDS

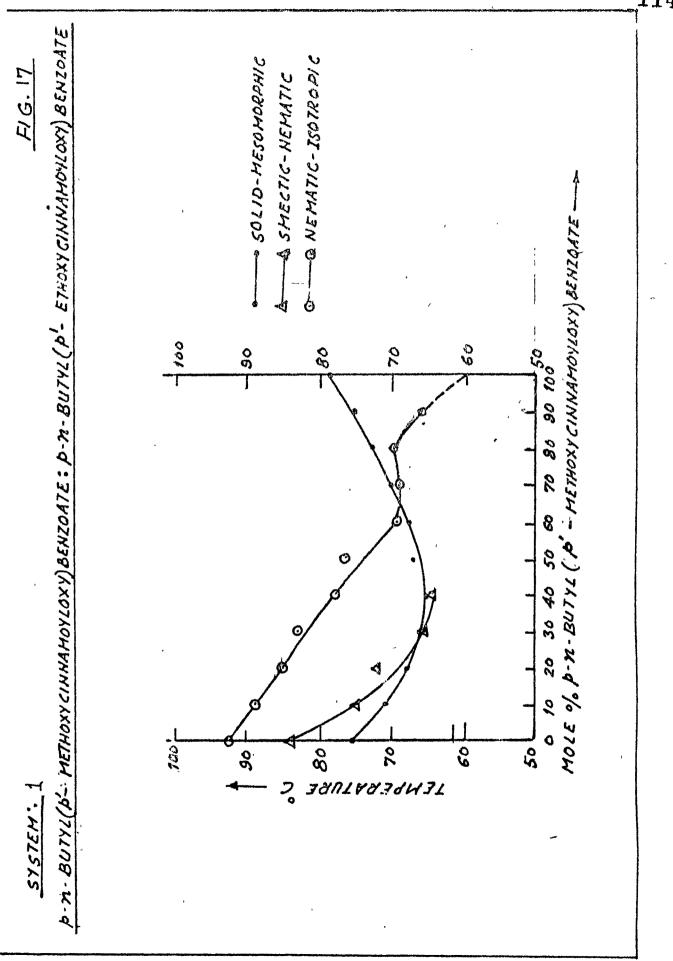
Both components of the binary mixtures are weighed accurately in known proportions in a thoroughly clean sample tube. The total weight of the mixture taken is around 0.1 g. accurately weighed. The mixture in the tube was then heated in an oil bath to a temperature slightly higher than at which the mixture melts. At the melting condition, the mixture is stirred thoroughly with a glass stirrer in order to get a homogenous mixture. The tube is then cooled by quenching it in a beaker containing cold water. The mixture solidifies instantly. The mixture was then taken out of the tube and then ground to a fine powder with the help of a gate mortar and pestle. Thus mixtures of varying proportion were prepared and studied under polarizing microscope method.

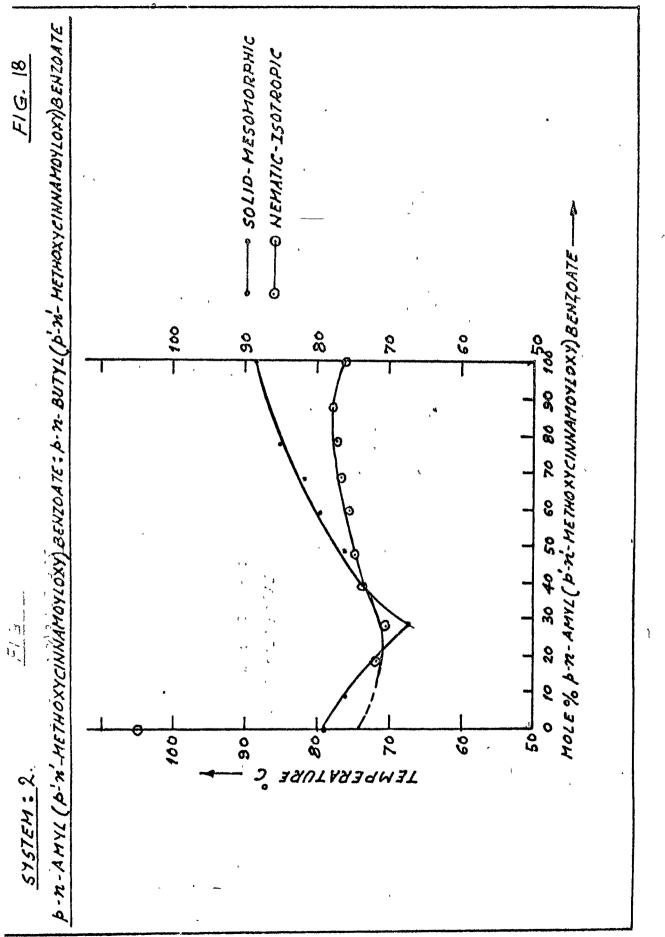
STUDY UNDER POLARIZING MICROSCOPE

Main details of this procedure are outlined in Part 1. More relevant details dealing with the study of binary mixture are given below. The prepared slide containing a little portion of binary mixture was observed under polarizing microscope. The whole of the mixed melt exhibits mesomorphism lending support to its homogeneous nature.

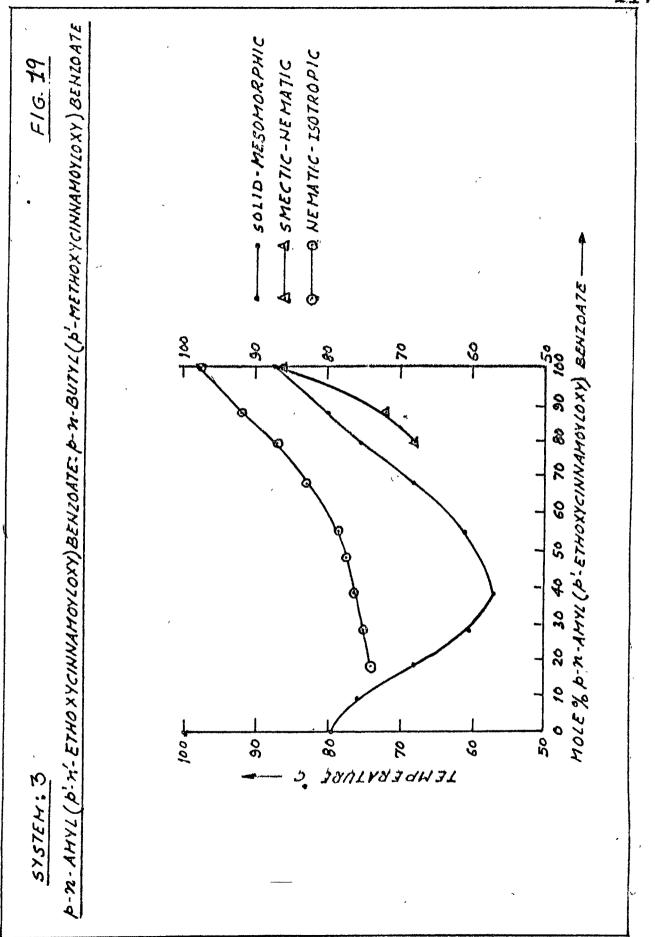
The transition temperatures are studied several times to ensure that none of transitions remain unnoticed.

~

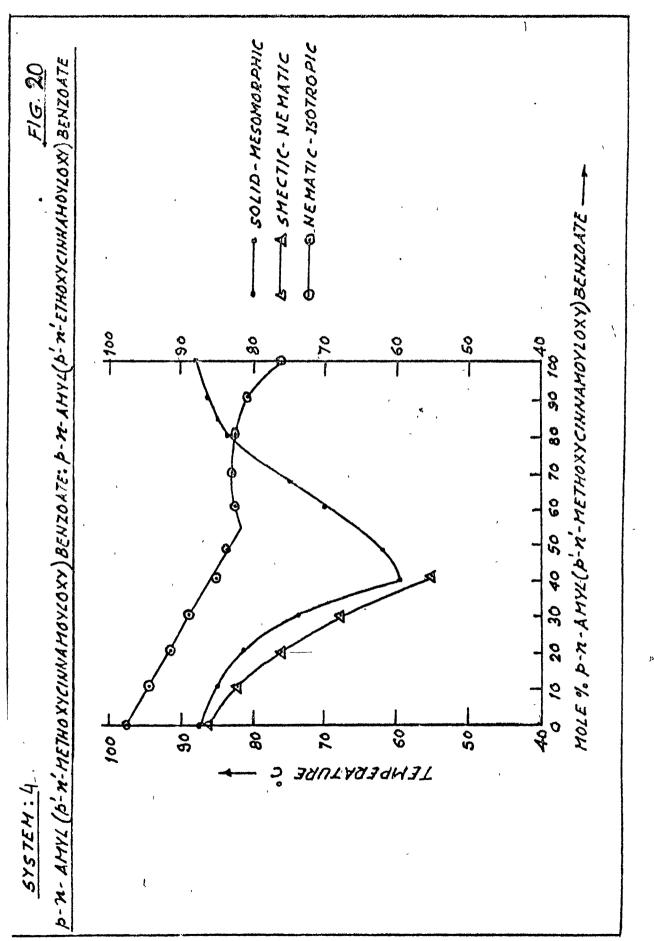

`


System No.1				
Components : (A)	-n.Butyl <i>p.</i> (p	-methoxycin Benzoate		
(B)	-n.Butyl <i>p.</i> (p'	,ethoxycinna benzoate	amoyloxy) e	
Mole % of n-Butyl		ion Temperat	tures(°C)	
P (p'-methoxycinn moyloxy) benzoate	a- S	N	I.	
100.00	_	-	79.0	
90.35		(66.0)	75.0	
80.61	-	(70.0)	73.0	
70.80	-	(69.0)	70.0	
60.92	-	68.0	69.0	
50.96	-	67.0	76.5	
- 40.93	(64.5)	65.0	78.0	
32.94	(65.5)	66.0	83.0	
20.62	68.0	72.0	85.0	
10.35	71.0	75.0	89.0	
00.00	76.0	85.0	92.5	

Sintering point = 40°C


Values in parenthesis indicate monotropy.

1

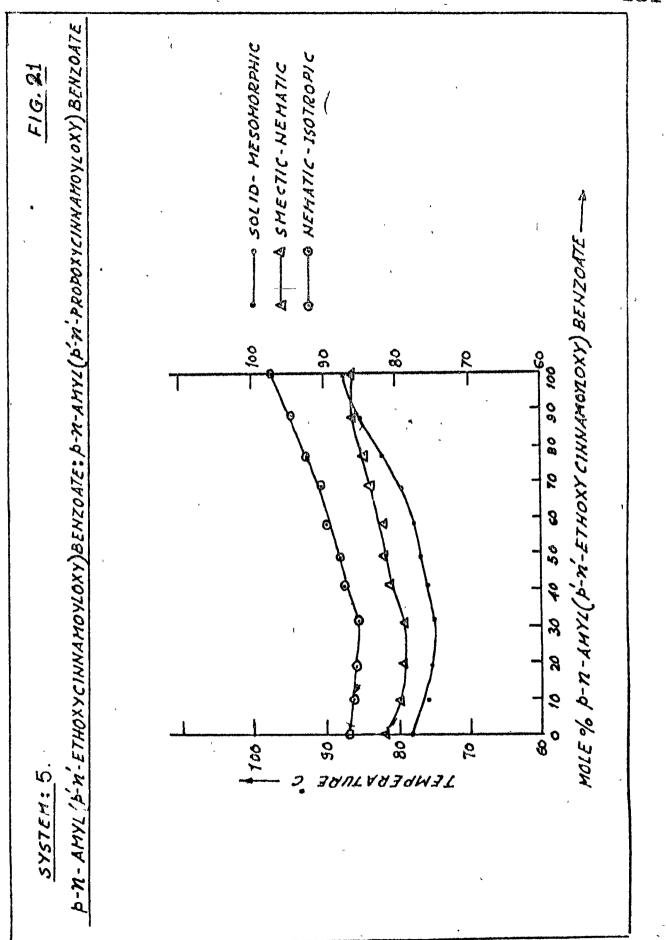

System No.2 -n-Amylp(p'.methoxycinnamoyloxy) Components : (A) benzoate -n-Butylp_(p'.methoxycinnomoyloxy) (B) benzoate Transition Temperatures(°C) Mole % of n-Amyl p'-methoxycinna-S N I moyloxy) benzoate (76.0) 100.00 88.0 (77.5)86.5 88.62 (77.0)79.37 85.0 (76.0)69.17 81.5 (75.0)79.5 60.07 49.03 (74.5)76.0 (73.5)74.0 40.06 67.0 29.19 70.0 19.38 (71.5)72.0 9.65 (72.0)76.0 00.00 79.0 Sintering point = 67°C Values in parenthesis indicate monotropy.

<u>11</u>7

System No. 3 Components : (A) n.Amyl P- (p'-ethoxycinnamoyloxy) Benzoate (B) n.Butyl P-(p'-methoxycinnamoyloxy) Benzoate Transition Temperatures(°C) ole % of n-Amyl (p'-ethoxycinna- S. N. I. moyloxy) benzoate 100.00 (86.0) 87.0 97.5 (72.0)88.89 80.0 92.0 (68.0) 79.19 76.0 87.0 68.37 68.0 83.0 -----55.12 78.5 61.0 ----59.0 77.5 48.09 76.5 38.18 57.0 28.42 60.5 75.0 -18.80 68.0 74.0 -9.33 76.0 -----00.00 79.0 Sintering point = 57°C

Values in parenthes 2s indicate monotropy.

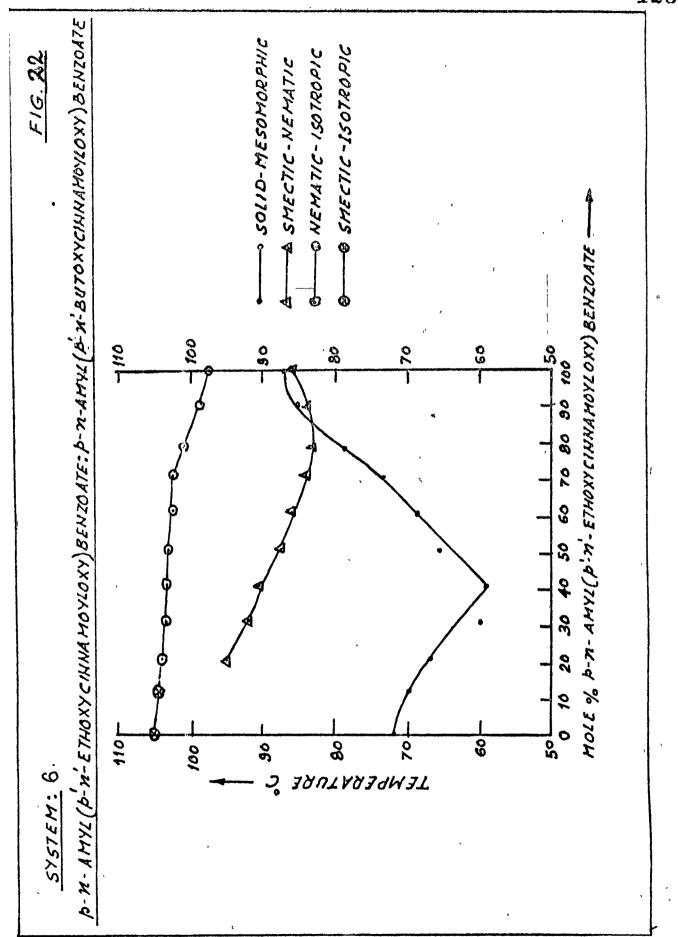
System No. 4


t

<u>Components</u> : (A) n-Amyl		noxycinnamoy: enzoate	loxy)
(B) n-Amyl-		xycinnamoyle enzoate	оху)
Mole % of n-Amyl P-(p'-methoxy-	Transı	tion Tempera	atures(°C)
cinnamoyloxy)benzoate	s.	N.	I.
			
100.00	-	(76.0)	88.0
90.33	-	(81.0)	86.0
80.59	-	(82.5)	83.5
68.80	-	75.0	82.5
60.89	-	70.5	81.5
48.93	-	62.0	83.5
40.89	(55.0)	59.5	85.0
30.78	(65.0)	74.0	89.0
20.60	(76.0)	81.5	91.5
10.34	(82.0)	85.0	94.5
00.00	(86.0)	87.0	97.5

Sintering point = 59°C

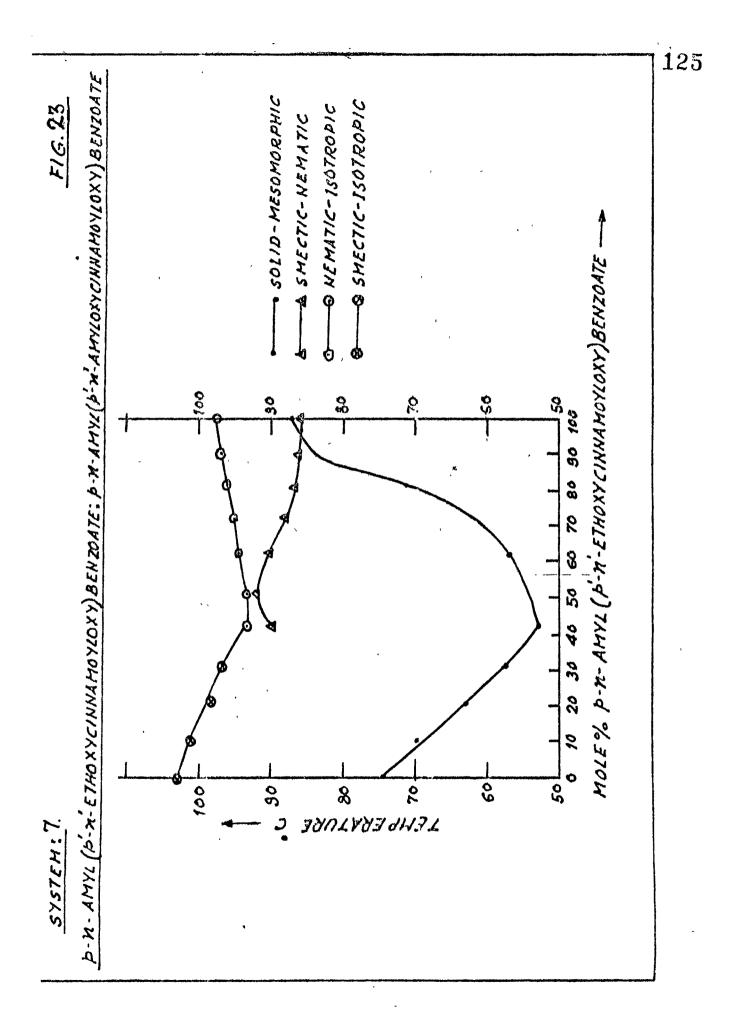
Values in parentheses indicate monotropy.


.

System No. 5 Components : (A) n_Amyl P_(p'.Ethoxycinnamoyloxy) benzoate (B) n_Amyl P_(p'.n. Propoxycinnamoyloxy) benzoate Mole % of Transition temperatures(°C) n-Amyl P-(P'-ethoxycinnamoyloxy) benzoate s. Ν. I. (86.0) 100.00 87.0 97.5 87.61 85.0 86.0 94.5 77.37 82.0 84.5 92.5 69.23 79.5 83.5 90.5 58.13 78.0 82.0 90.0 49.10 77.0 82.0 88.0 41.12 76.0 81.0 87.5 31.22 75.0 79.0 85.5 19.43 75.5 79.5 86.0 9.64 76.0 80.0 86.5 00.00 78.0 82.0 87.0.

Sintering point = 75°C

Values in parentheses indicate monotropy.

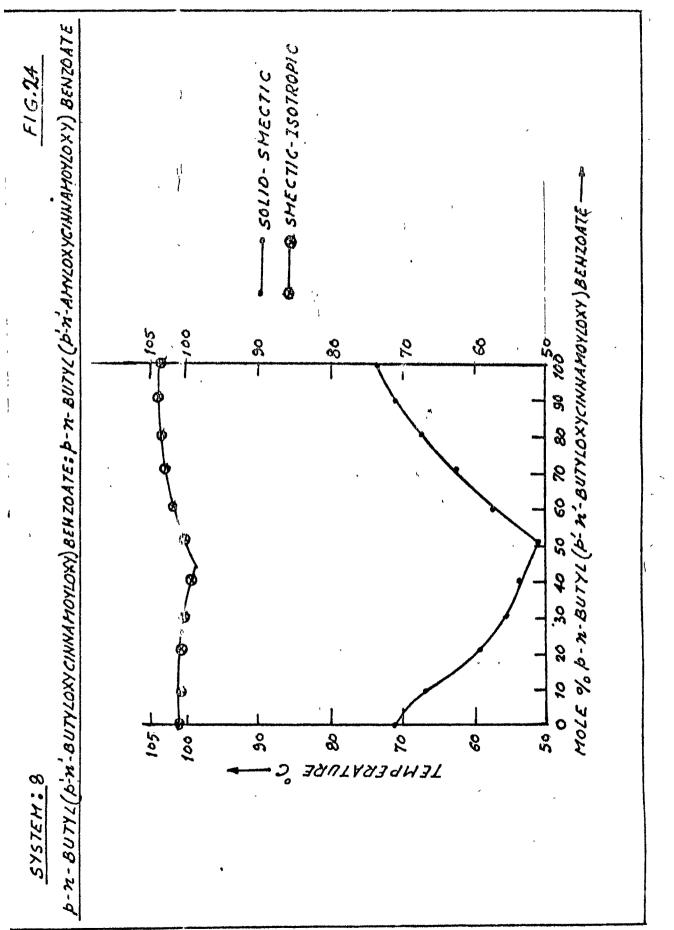

.

System No. 6			
<u>Components</u> : (A) n-Am		hoxycinnamoy benzoate	/loxy)
(B) n-Am		-butoxycinna benzoate	amoyloxy)
Mole % of	Transi	tion fempe	eratures
n-Amyl P-(p'-ethoxy- cinnamoyloxy benzoate	Ś.	N.	Ι.
100.00	(86)	87 .0	97.6
90.65	(84)	, 85 'o	98.5
79.17	78.5	83 `o	101.0
71.47	73.5	84.0	102.5
61.69	68.5	86. 0	102.5
51.76	6 5 .5	87.5	103.0
41.71	59 ° 0	90.5	103.5
31.50	60 ° 0	92 🕚	103.5
21.14	67.0	95 .0	104 .0
12.72	70 ° o	-	104.5
00.00	72.0	-	105 `o

Sintering point 58.5°C

、

Values in parenthesis indicate monotropy.

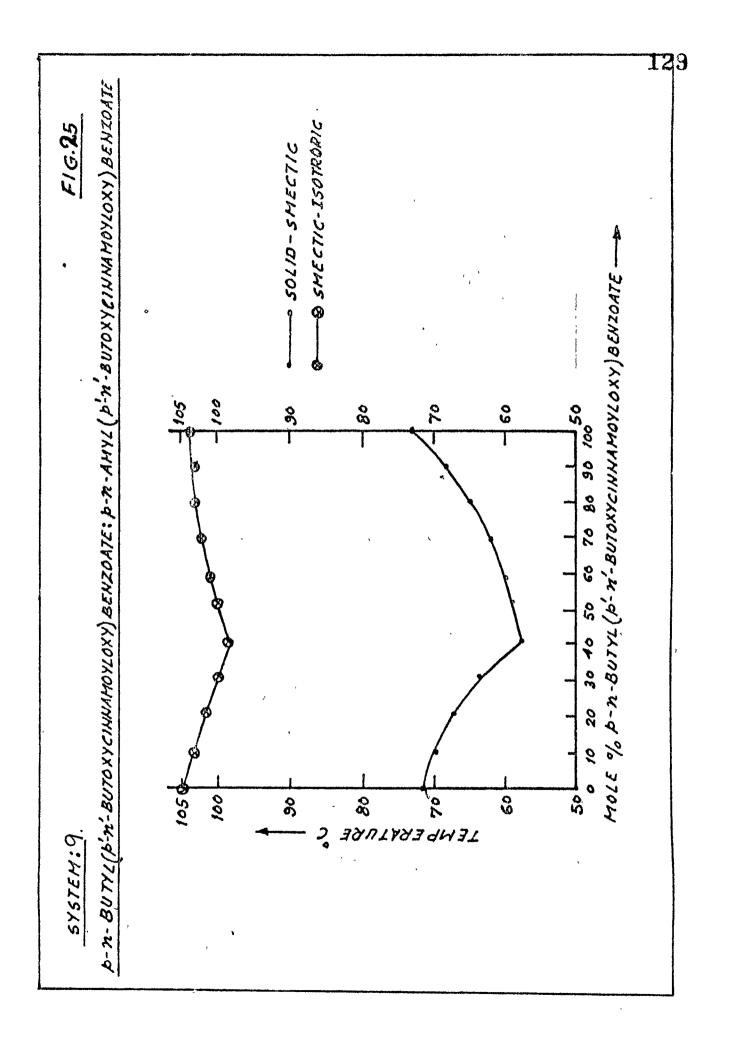


System No. 7			
<u>Components</u> : (A) n-Amyl	P-(p'-etho ben	xycinnamoyl zoate	оху)
(B) n-Amyl	P-(p'-n'- a ben	myloxycinna zoate	moyloxy)
Mole % of	Transition	Temperatu	
n-Amyl P-(p'-ethoxy-			
cinnamoyloxy) benzoate	S. 	N.	I.
100.00	(86.0)	87.0	97.5
90.90	84.0	86.0	97.0
81.61	70.0	86.5	96.0
72.14 -	61.5	88.0	95.0
62.47	57.0	90.0	94.0
51.60	56.0	92.0	93.5
42.50	53.0	90.0	93.5
32.23	58.0	-	97.0
21.72	63.5	-	98.5
10,97	70.0		101.0
00.00	75.0		103.0

Sintering point = 53°C

Value in parenthesis indicates monotropy.

.

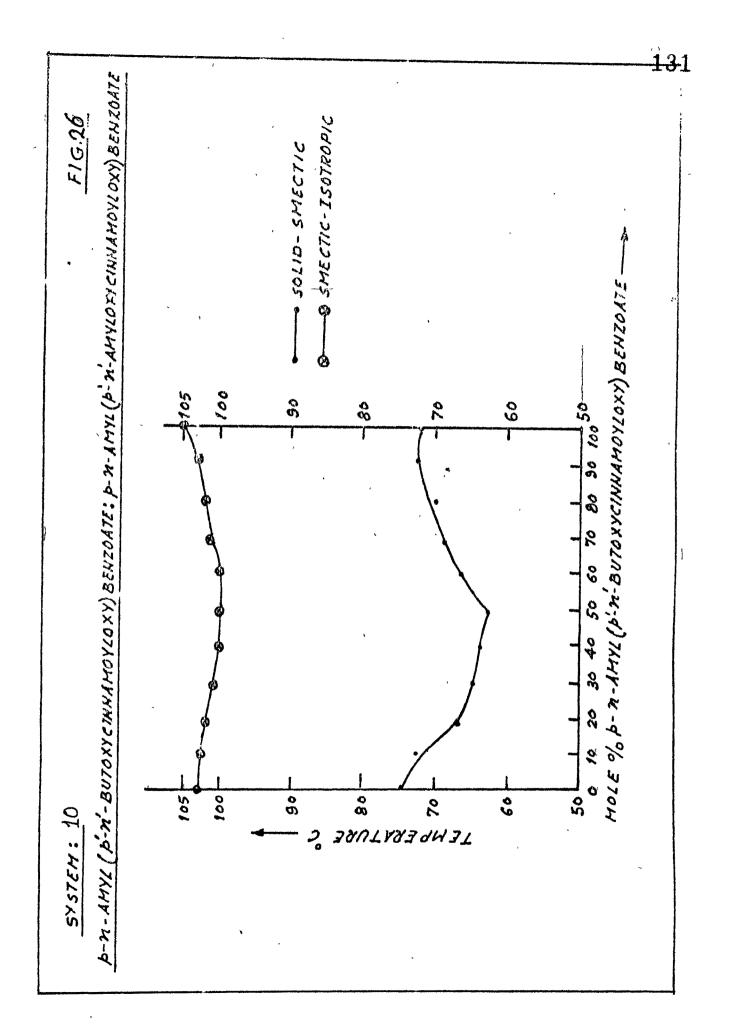

.

System No. 8					
<u>Components</u> : (A) n.Butyl_P_(p'_n_'butoxycinnamoyloxy) benzoate					
(B) n-Butyl-P-(p'-n'-amyloxycinnamoyloxy) benzoate					
Mole % of	Transition				
n-Butyl (p'-n'-butoxycinna- nitkixy) benzoate	s.	N.	I.		
100.00	73.5	_	103.5		
90.30	71.0	-	103.5		
80.55	67.5		103.5		
70.72	62.5	-	103.0		
60.30	57.5	-	102.0		
50.80	51.0		100.5		
40.10	54.0	-	99.5		
30.00	56.0		100.5		
20.80	59.5	-	100.5		
9.85	67.0	-	101.0		
00.00	71.0	-	101.0		
Sintering point = 51.5°C	78m 100, 6m, 889, 809, 149,				

128

•

i.

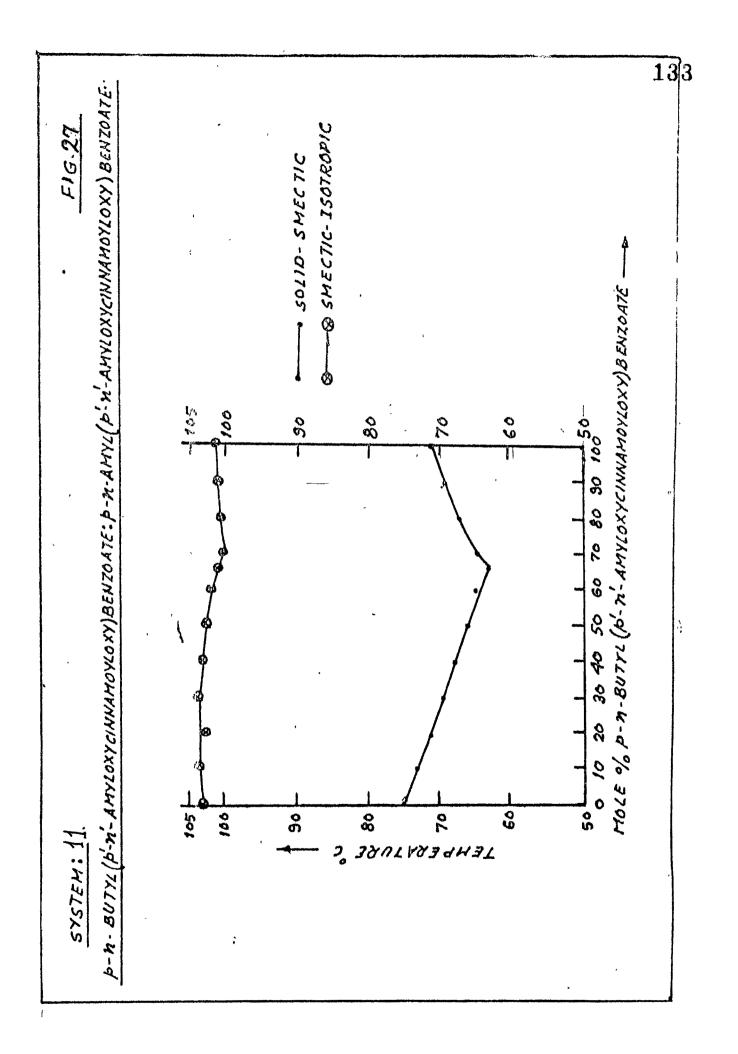


System No. 9

Components : (A) n.Butyl P-(p'.n' butoxycinnamoyloxy) benzoate (B) n.Amyl P-(p'.n' butoxycinnamoyloxy) benzoate Mole % of Transition Temperature (°C) n-Butyl-P'-(p's. N. I. bu-oxycinnamoyloxy benzoate ------100.00 73.5 103.5 89.73 68.0 103.0 79.80 65.0 103.0 69.74 62.0 102.0 58.84 60.0 101.0 51.86 59.0 100.0 40.83 58.0 99.0 30.73 64.0 ----100.0 20.56 67.5 ____ 102.0 10.31 70.0 ----103.5 -00.00 72.0 105.0

Sintering point = 58°

.

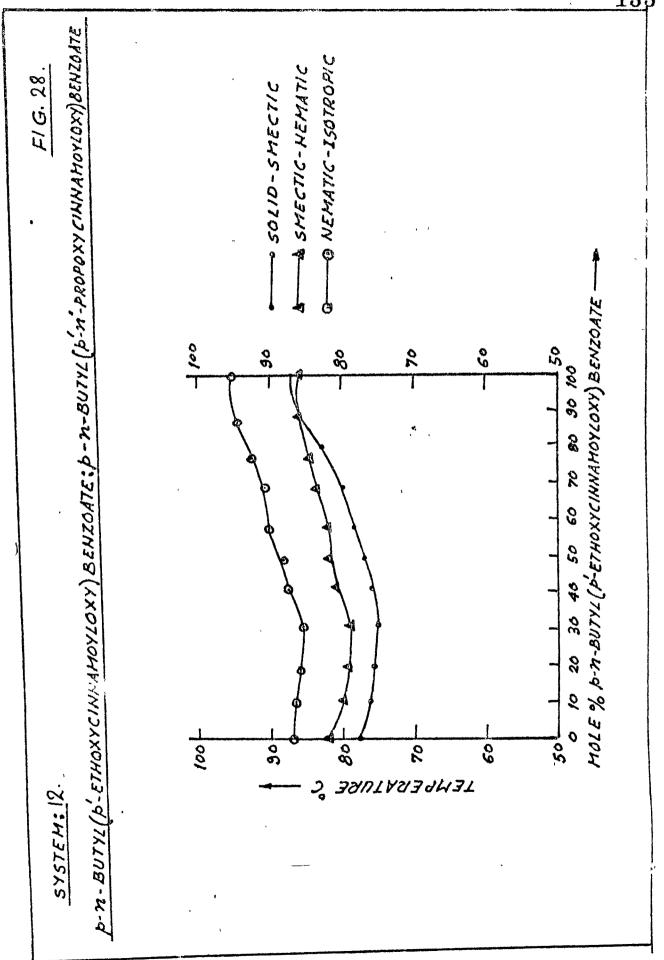


L

System No.10

<u>Components</u> : (A) n-Amyl		oxycinnamo benzoate	yloxy)
(B) n-Amyl	_P_(p'_n'-amy	loxycinnam benzoate	noyloxy)
Hol % of P-n-Amyl(p'-n'-	Transition	Temperatur	re (°C)
butomycinnamoyloxy) benzoate	s, 	Ň.	I.
100.00	72.0	-	105.0
89.25	73.0	-	103.0
80.53	70.0		102.0
70.70	69.0	-	101.5
59.80	66.5	-	100.0
50.84	63.5		100.0
40.80	64.0	-	100.0
30.70	65.0	-	101.0
20.56	67.0	-	102.0
10.30	73.0		103.0
00.00	75.0	-	103.0

Sintering point = 63°C

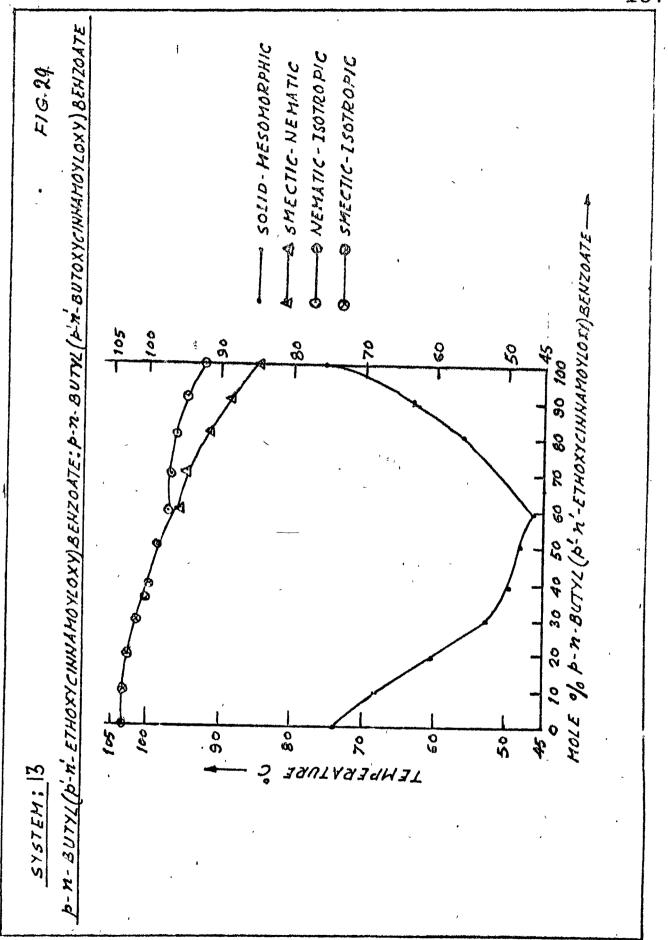


System No. 11 Components : (A) n_Butyl P_(p'_n'_amyloxycinnamoyloxy) Benzoate (B) P-n-Amyl-P-(p'-n'-amyloxycinnamoyloxy) Benzoate - - -Mole % of Transition Temperature (°C) n-Butyl-P(p'-n'amyloxycinnamoyloxy S. Ν. I. benzoate 100.00 71.0 101.0 90.25 69.5 101.0 80.53 67.5 100.5 70.70 65.0 100.0 59.80 65.0 102.0 50.84 66.0 102.5 40.80 68.0 103.0 30.70 69.5 103.5 21.56 71.0 102.5 10.30 73.0 103.5 00.00 75.0 `103.0

TABLE - 33

Sintering point = 65°C

L



System No. 12 Components : (A) n-Butyl-P-(p'-Ethoxycinnamoyloxy) Benzoate (B) n-Butyl-P-(p'-n'-propoxycinnamoyloxy) Benzoate Transition temperatures(°C) Mole % of n-Butyl-P.(p'-S Ι ethoxycinnamoyloxy) Ν benzoate - - ----_ _ _ _ _ _ 76.0 85.0 100.00 92.5 72.0 90.33 83.5 92.0 80.59 70.0 84.0 91.0 70.77 66.0 84.5 90.0 60.89 65.0 85.0 89.5 49.93 60.0 84.5 88.0 40.89 62.0 84.0 86.5 30.78 65.0 83.0 86.0 20.60 67.0 82.5 85.0 10.34 69.5 82.0 83.0 00.00 74.0 83.0 84.0

Sintering point = 60°C

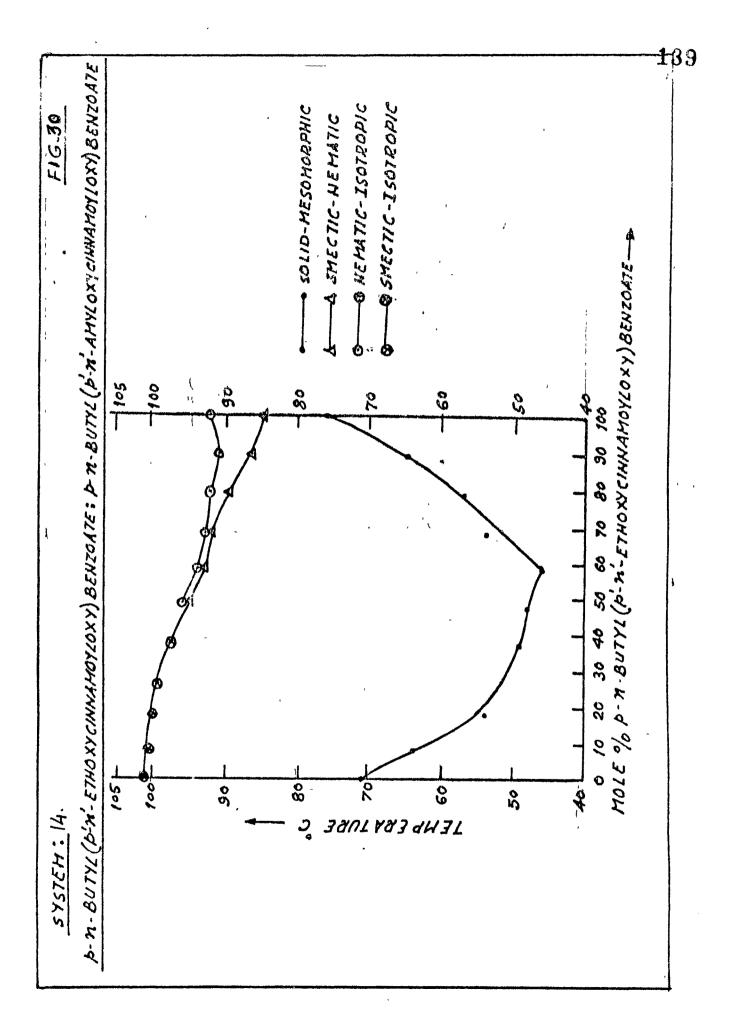
_ _ _ _ _ _ _

Values in parenthesis indicate monotropy.

System No. 13

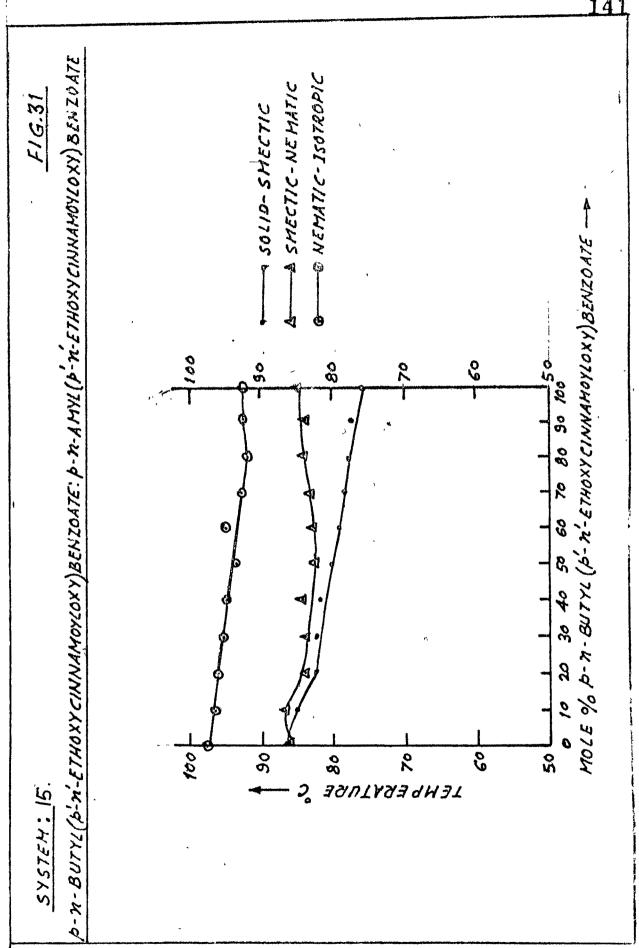
Components	:	(A)	n.Butyl-P-(p'-ethoxycinnamòyloxy) benzoate	
		(B)	n-Butyl-P-(p'-n'-butoxycinnamoyloxy)	

benzoate


Mole % of n-Butyl P(p'-	Transit	ion Temperatures	(in °C)
ethoxycinnamoyloxy)	S.	N .	I.
benzoate			
100.00	76.0	85.0	92.5
90.62	63.0	89.0	95.0
80.14	56.0	91.5	96.5
71.51	51.0	95.0	97.0
61.72	46.5	96.5	97.5
50.18	48.5	. —	99.0
41.77	50.0	-	100.0
31.56	53.0	-	101.5
21.19	60.0	-	103.0
10.97	68.5	-	103.5
		na sa an An an an an an	

Sintering point = 45.5°C

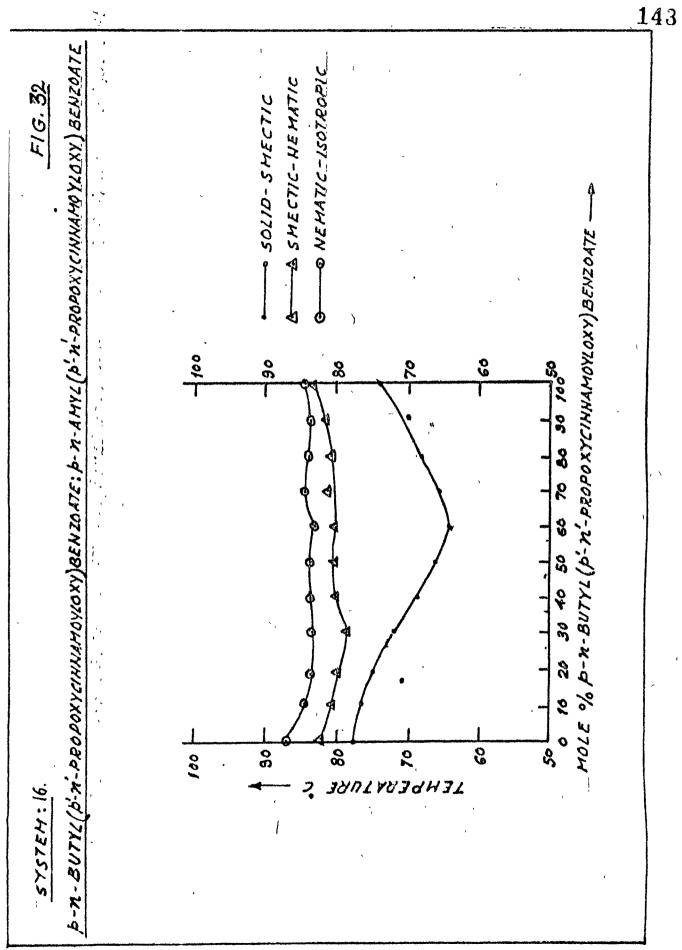
138


.

.

System No. 14 Components : (A) n-Butyl-P-(p' ethoxycinnamoyloxy) benzoate (B) n-Butyl-F-(p'-n'-amyloxycinnamoyloxy) benzoate Transition Temperature (°C) Mole % of n-Butyl P-(p'ethoxycinnamoyloxy) S. Ν. I. benzoate 100.00 76.0 85.0 92.5 90.93 65.0 86.5 91.0 80.67 57.0 90.0 92.5 72.21 54.0 92.0 93.0 62.56 46.0 93.0 94.0 51.69 48.0 95.0 96.0 42.87 49.0 97.5 -34.31 52.0 99.5 ---21.78 59.0 100.0 -12.01 64.0 100.5 ----00.00 71.0 101.0 -

Sintering point = 46°C

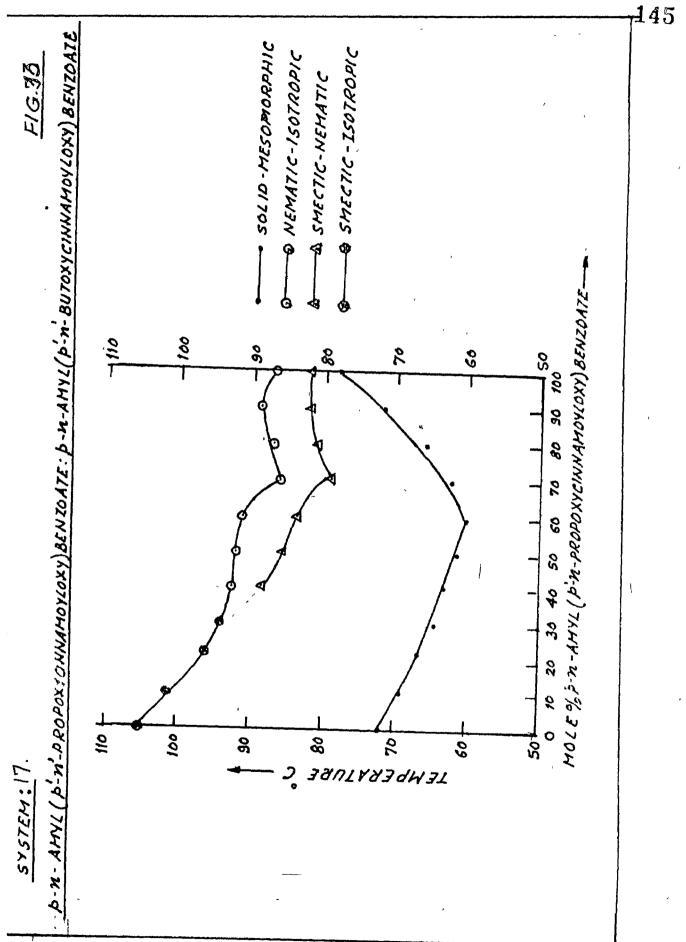


,

System No. 15			
<u>Components</u> : (A) n.	-Butyl-P-(p' e	thoxycinnamoy benzoate	loxy)
(B) n.	-Amyl-P-(p' et	hoxycinnamoyl benzoate	оху)
Mole % of	Transi	tion Temperat	ures (in °C)
n-Butyl-P-(p'- ethoxycinnamoyloxy) benzoate		N.	I.
100.00	76.0	85.0	92.5
90.33	77.5	84.0	92.5
80.59	7 8.0	84.5	92.0
70.77	78.5	83.0	93.0
60.89	79.5	83.0	95.0
50.93	80.0	82.5	93.5
40.89	82.0	84.5	95.0
30.78	82.5	84.0	95.5
20.60	82.5	84.0	96.0
10.34	85.5	86.5	96.5
00.00	(86)	87	97.5
			way day tan tan

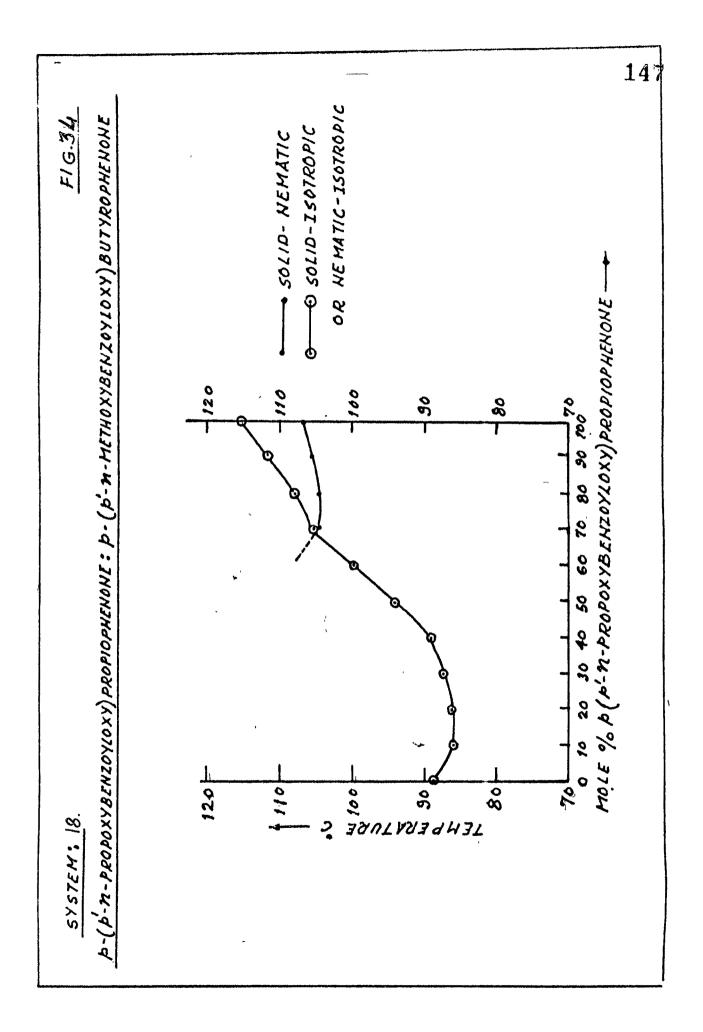
Values in parenthesis indicate monotropy.

ł


`

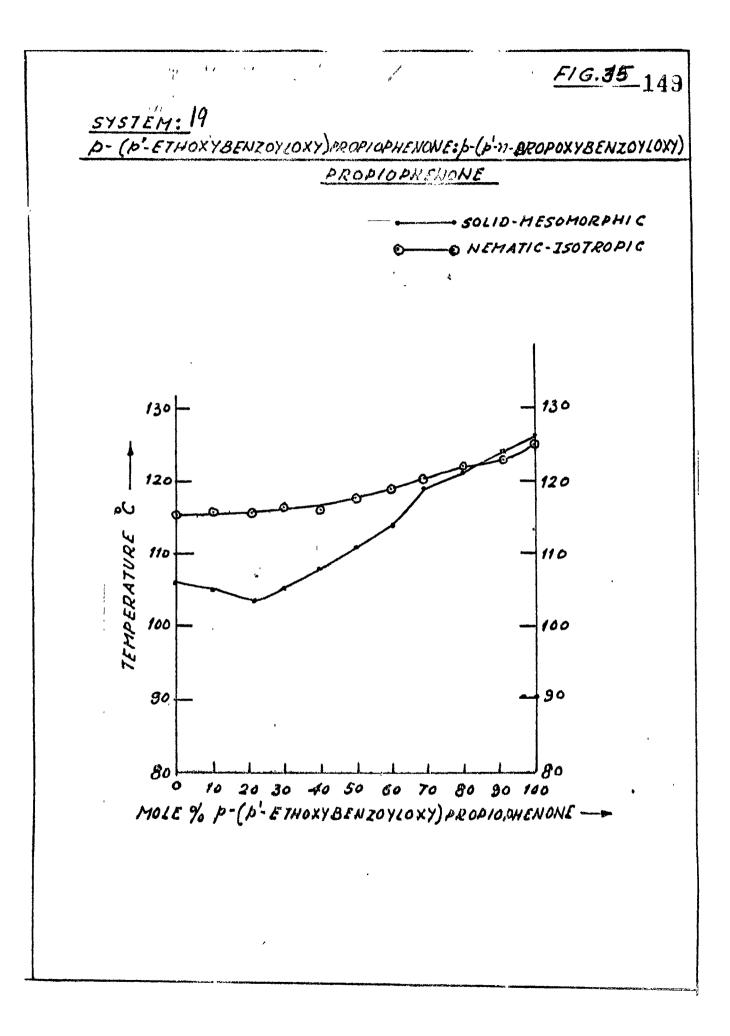
System No. 16		r	
<u>Components</u> : (A) n-Bu	tyl-P-(p'-)	n'-propoxycin benzoate	amoyloxy)
(B) n.Am	yl-P_(p'-n	'-propoxycinna benzoate	amoyloxy)
Mole % of	Transi	tion Temperatu	ires
n-Butyl-P(p'-n'- propoxycinnamoyloxy benzoate	S.	N.	I.
100.00	74.0	83.0	84.0
90.31	70.0	81.5	83.5
80.56	68.0	80.5	83.5
70.71	65.5	81.0	84.0
60.86	64.0	80.0	83.0
50.89	66.0	80.0	83.5
40.87	68.5	80.0	83.5
30.76	72.0	78.5	83.5
21.65	75.0	80.0	83.5
11.45	76.5	80.5	84.5
00.00	78.0	82.0	87.0
••••••••••			

Sintering point = 64°C


r 2

•

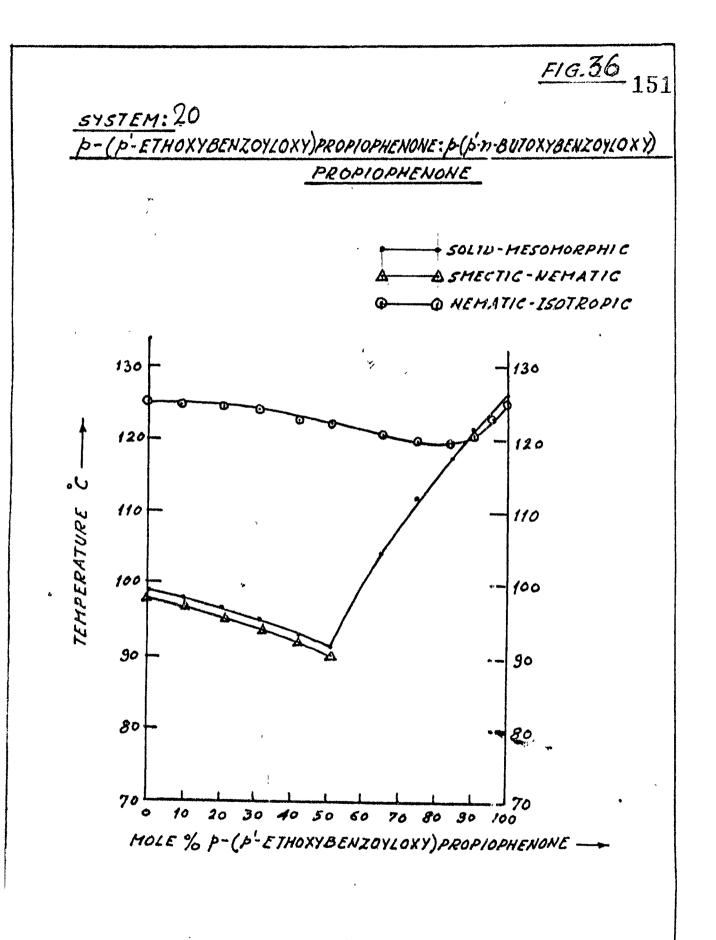
System No. 17 (A) n.Amyl-P-(p'-n'-.propoxy cinnamoyloxy) Components : benzoate (B) n.Amyl-P-(p'-n'-butoxycinnamoyloxy) benzoate Mole % of Transition Temperatures (°C) n-Amyl-P-(p'-n'propoxycinnamoyloxy) s. Ν. I. benzoate 100.00 78.0 82.0 87.5 90.30 72.0 82.0 89.0 80.55 66.5 81.0 87.0 70.72 62.5 79.0 86.0 60.83 60.0 84.0 91.0 50.86 61.5 85.5 92.0 40.83 63.5 88.5 92.5 30.73 64.5 94.0 ----22.62 66.5 , 96.0 ----10.31 69.0 101.0 -00.00 72.0 105.0


Sintering point = 60°C

.

x

System No. 18					
<u>Component</u> : (A) p- (p'-n-propoxybenzoyloxy) propiophenone					
	(B) p- (p'-methoxybenzoyloxy) butyrophenone				
Mole % of F-(p'-n-proponybenzoyloxy	Transition Temperature (°C)				
propiophenone	S	N	I		
100.00	1949 Ala uz 2011 A	106.5	115.5		
90.34	-	105.5	112.0		
80.45		105.0	108.0		
69.39	-	105.0	105.5		
59.73	-	-	100.0		
50.12		-	94.5		
40.34	_	-	89.5		
30.05	-	-	87.5		
20.04	_	_	86.5		
9.88	-	-	87.0		
00.00	-	· _	89.0		



System : 19. (A)	p- (p'-n-ethoxybenze propiopi		
(B) <u>F</u>	p- (p'-n-propoxyben propiop		
	. – – – – – – – – – – – – – – – – – – –		
Mole % of p- (p'-n-ethoxybenzoy)		Temperatur	es (°C)
propiophenone	s.	N	I.
100.00	-	(125)	126.0
91.23		(123)	124.0
80.12		121.5	122.5
69.14		119.0	120.5
59.94	-	114.0	118.5
50.02	-	111.0	117.0
40.18	-	108.0	116.0
29.93	-	105.5	116.5
21.33	-	103.5	115.5
10.11	-	105.0	116.0
00.00	-	106.0	115.5

Values in parenthesis indicate monotropy

-

Sinteing point - 103.5

System - 20	(A) p	- (p'-Ethoxybenzoyloxy) Propiophenone			
	(B) p		-butoxyber opiophenor		
Mole % of p-(p'-Ethoxybe propiophenone	enzoylo	 ×y) 	Transition S.	n Temperat N.	ures(°C) I.
100.00			-	(125)	126.0
95.00		-	-	(122.5)	123.0
90.11		-	-	(120.0)	121.0
85.03		-	-	117.5	119.5
75.23		-	-	112.0	119.5
64.87		-	• .	.104.0	121.0
50.92		(90.())	91.5	122.0
41.89		(92.0))	93.0	122.5
31.08		(93.5	5)	95.0	124.0
20.78		(95.5	5)	96.5	125.0
10.33		(97.0))	98.0	125.0
00.00		(97.5	5)	99.0	125.0

Values in parenthes es indicate monotropy.

Sintering point - 91.5

ı

I.

.

Mole % of Transition Temperatu P- (p'-n-butoxy- benzoyloxy) butyro- phenone.	ures (°C) I.
100.00 (98.0) -	100.0
90.98 (96.0) -	99.0
80.07 (94.0) -	9 7 .0
71.88 (93.0) -	95.0
65.02 92.5 -	94.0
58 .7 9 90 . 5 -	95.0
50.11 87.5 -	96.0
40.78 83.5 -	97.5
30.05 79.0 _	99.0
20.11 74.0 -	100.0
10.94 78.0 -	100.0
00.00 82.0 -	100.5

~

-

.

Values in parentheses indicate monotropy.

-

.