
CHAPTER-1
A BRIEF ACCOUNT OF DEVELOPMENT OF INVERSE SERIES RELATIONS AND

ASSOCIATED POLYNOMIALS

1.1 GENERALIZED HYPERGEOMETRIC SERIES AND ASSOCIATED POLYNOMIALS 
One of the several ways in which the classical orthogonal 

polynomials and their various generalizations are introduced is 
through the generalized hypergeometric series F which isr &
defined as below.

(1.1.1)

where
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a(a+l)...(a+n-1), 

• 1.
„ r(a+n)/T(a),

if n is a positive integer 
if n is zero
for arbitrary non zero *a* 
and n.

The above series converges under one of the following 
conditions.
(i) |x| < co , if r < s (ii) |x|<l, if r * s+1

fi r(iii) IxJ =1. if Re ( £ b. - £ a.) >0 .j=l J iel 1

The ^Fo function which is an elegant generalization of
well Known Gauss hypergeometric function F (a, b; c; x) is of2 1

prime importance in the theory of Special functions because most 
of the Special functions of mathematical physics.chemistry, 
astronomy, and statistics and, also those of electro-magnetic 
theory, statics, dynamics, fiber optics, vibration phenomena etc. 
are special cases of F
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When one of the numerator parameters assumes a negative 

integral value, the series representing this function becomes 

terminating in which case it represents a polynomial in its 

argument. The theory of various classical polynomials which are 

special cases of F_ . has been enriched by many eminent 

mathematicians like G.Szego, H.Bateman, P.E.Bedient, L.Carlitz,

R. P.Boas, W.N.Bailey, A.Erd£lyi, R.C.Buck. E.D. Rainville,

S. O.Rice, P.Humbert, R.L.Shively, sister M. Celine, D.Dikinson, 

H.W.Gould. R.Askey, W.A. Al-Salam, H.Exton. J.L. Burchnall, T.W. 

Chaundy, G.Gasper, H.M. Srivastava, T.S.Chihara, M.Rahman, M.E.H. 

Ismail, J.A. Wilson, A. Verma, R.P. Agarwal. C.M.Joshi, R.K. 

Saxena, N.K. Thakre and others. Several known polynomials which 

are expressible as special cases of F are listed below.

, , (1+oc)(1.1.2) Ltc<;(x) = ----=—0.
n n! .^F^-njl+oc.'X)

(Laguerre polynomial).

(1.1.4) P(ot-,,,(x)

= (2x)n p* / -n n 12 0 K 2 ’ 2 2'

[n/2]
= T

(-l)k n!(2x)n~2k
Li

k=0 k! (n-2k)i

(Hermite polynomial).

(1+oc)
(x) - ■ n, 2F1^ n' 1+oc+^5+n

n <-n)k(H«)n ^
k=0 (l+oc)^ n! k!

-2, ; -x )

1-x

n (-nhd+oc+^+n), (1+oc)= E --- *--------- !J (l-x)k
k=0 (1+oc)^ n ! k ! 2

(Jacobi polynomial);

(1.1.5) Pn(x) = 2F1(-n. n+1 ,- 1; )
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n (-n). (n+1), (1-x)^
a £ ------------*---------------* --------

k»0 k! kJ 2k

alternatively,

(1/2) (2x)n n n 1 i ?
(1.1.6) P (x) * --------- 2------- -F. ( ^ =% + -f; ± - n ; -oO

n . 2 12 2 2 2n I

[n/2] (~l)k (1/2). (2x)n'2k
a E . --------------------------------—--------------------------

k=0 k! (n-2k)!

(Legendre polynomial),

(»>)_ (2x)n _ _ - _9
(1.1.7) (£{x) - ----- 2----------- 2F1 ( 2 ' 2 + 2 ; 1_v"n; "x >

n!

En/2] (-l)k (v) . (2x)n-2k
« E ---------------------------------------

k«=0 k! (n-2k)!

(Gegenbauer polynomial),

(1.1.8) Qn(x;a./3,N) 3F2 (-n, 1+a+fi+n, -x ; 1+oc, -N ; 1)

n (-n). (l-ha+/3+n). (-x).
« E ----- ------------------- ---------- - (n*0.1.2.......... N)

k=0 (I4«)k (-N)k k«

(Hahn polynomial (W.Hahn [l])).

(1.1.9) R (x(x+y+6+l); o n
4F3 l+oc+/?+n, x+y+6+1, -x; 1 

1+a, fi+6+1, y+1;

n (~n)k Cl+«-»/5+n)k (x+r+iS+l)k (~x)k
k=»0 (l*Nx)k <r+l)k k!

(Racah polynomial (Askey and Wilson [1])).
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(1.1.10) P (x2) « (a+b) (a+c) (a+d) .
n n n n

[-n. a+b+c+d+n-1, a+ix, a-ix; 1*
a+b. a+c, a+d ;

n (-n). (a+b+c+d+n-1), (a+ix). (a-ix),
= (a+b) (a+c) (a+d) £ ------------------ -------- ------- -

k=o (a+b)k (a+c)k (a+d)k k!
(Wilson polynomial ( Askey and Wilson [1])).

Two worth mentioning generalizations of polynomials of
Laguerre. Legendre. Gegenbauer, Jacobi etc. are the polynomials 
c cgn(x,r,s) and fn(x,y,r,m) studied by R. Panda [1], and J.P. 

Singhal and Savita Kumari [1]. respectively. They are defined by 
the explicit forms as given below.

(1.1.11)
c [n/s]

g (x, r, s) = £n k=0

and

(1.1.12)
_ [n/m]f°(x,y,r.m) = £
n ‘ k=0

When

n-sk
(n-sk)!

yk x '

,-c-nr+mrk, kk ^ y ''n-mk*n-mk

n
■ (a} (nlii!bi,n>*■

these polynomials admit the following 
representations.

hypergeometric

(1.1.13) f
(c)(a ); (b ); X 1 = --- !

p q J n!
Fp+r q+r

A(s;-n), A(r-s;c+n). (a ) ; (-s)°(r-s)r sx/rr
r

A(r;c), (bq5;

where r> s£ 1, and A(m,X) denotes the sequence of m parameters
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X x+lm ' m ......
parameters a^>a2.... ap

— , and (a ) denotes the sequence of p m p

n ' p y*
b=i J n J

q 1
i n (b.) >i2i 1 n J

mr+mq+m mp+mr-l
A(m;-n),A(rm;1-c-rn),A(m;l-b -m);

’1

A(rm-l;l-(-rn),A(m;l-a -n);P

rm, .mq-mp+1 _(rm) (-m) ’ r -myx(rm-l) rm-1

where A(m,*X ) stands for the set A(m;X, ).... A(m;X ).P 1 P

1.2 INVERSE SERIES RELATIONS
Let (Un> and {Vn> be two sequences which are so related that

/•

(1.2.1)
Un

Vn

N
E A(n,k) V. 
k=0
N
E B(n.k) U. k=0

where N may be finite or infinite.
The pair (1.2.1) is known as a pair of inverse series 

relations, and each one of the series is called an inverse 
series of the other. Such inverse series relations are useful in 
the study of combinatorial identities in several ways (see 
Riordan [2]). Apart from this, such relations also occur in
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Approximation theory, Distribution theory. Partition theory. 
Coding theory (see e.g. sloane [1]) and also, in Probability 

theory (Feller [1]).

The simplest type of pair of inverse relations is

(1.2.2) •

°n - Jo'"1'* < bk-

b - E <~l>k C " )
n k=0 K k ,

which is suggested by the well known expansion formulae
lx+l)n - EC?)**. *"= e" (-1) n+kC "> (Xti) k

k=0 k k-0 k

It is not difficult to see that each of the defining 
relations (1.1.2) to (1.1.12) can be viewed as one of the 
relations of. the pair of inverse relations of the type (1.2.1). 
Their corresponding inverse relations have been obtained by using 
varried techniques; such as generating function relation, 
summation formula, orthogonal property, difference and shift 

operators and, recurrence relations (see for instance Rainville 
[13. Riordan [2]).

Given below are the pairs of inverse relations of various 
polynomials defined by (1.1.2) to (1.1.8), (1.1.11) and (1.1.12).

(1.2.3)

l£°°(x)
n (-l)k (1-hx) xk 
j, ___________ n____
k=0 (1-Kx)k (n-k) 5 k!

n (-1) n! (1+oc)n£ --------------k=0 (n-k)! (1-Hx).
2 L<“>(x)

(pair of inverse relation of Laguerre polynomial)
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(1.2.4) -

[n/2]
H (x) = E 

k=0

[n/23
= Ek=0

(-l)k n! (2x)r‘ 2k 

k! (n-2k)!

n! Hn-2k(x) 
2n k! (n-2k)

(pair of inverse relation of Hermite polynomial)

(1.2.5) <
Pioc'ft) (x) 
n

(1-x) n
,n2" (1+a) n

n (-n)v(l+oc+^+n)v(l+ot)= E ---- ------- c— ------ (l-x)K
k=0 (1+oc)^ 2 k! ni

n (-n), (1-Hx4f3) (l+«+/3+2k) ,
= E ---- -------------------- p}aJi}(x)

k=0 (i+o£+/3)n+^+i (l-hx)k

(pair of inverse relation of Jacobi polynomial).

(1.2.6) -

P (x) = E n k=0

[n/2] (-l)k (l/2)n_k (2k)n 2k

(2x) n Ek=0

k! (n-2k)

[n/2] (2n-4k+l) n! Pn_2k<x>
(3/2) . k!n-k

(pair of inverse relation of Legendre polynomial)

(1.2.7) -

CU(x)
n

(2x) n

[n/2] (-l)k (v)n_k (2x)n_2k
Ek=0 k! (n-2k)

[n/2] (v+n-2k) n!
k=0 ^n-k+l k!

Cn-2k(x)

(pair of inverse relation of Gegenbauer polynomial).
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Qn(x;ct,/3,N)

{1.2.8} ■

(-x) n
(1+ac) ( —N)n n

n (-n)^{l-Hx+0+n)R (-x}^
k=0 (l-KJt)k (“N)k k!

n (-n), (l-Hx+/3+2k)E ---- *------------ Q (X;oc,^,N)
k=0 (l-Kx+^-l-k)^ ki

(pair of inverse relation of Hahn polynomial (Gasper {!])).

(1.2.9} -

gn(x,r,s) *
[n/s] (c+rk)
E ----k=0 (n-sk).'

n-sk ^k x

Y X * n n
sn (-l)sn_k(c+(rk/s)) (c)
E ---------------k=0 (c) Q .... (sn-k)irn-sn+k+l

— g£(x.r.s}

(pair of inverse relation of Panda's polynomial (Singhal and 
S.Kumari [4])).

(1.2.10)

„ [n/m]
f„(x„y,r.m) - £ (

k=0
-c-nr+mrk kk J y rn-mk n-mk

[n/m] c+nr-mrk _c_nr+v c*" - E <-y)k c £r *> t^cx.y.r.m)
k=0 c+nr-k

(pair of inverse relation of Singhal and S.Kumari's polynomial 
(Singhal and S.Kumari [1])).

A systematic study of the inverse series relations was taken 
up for the first time in the midst of this century. In fact, it 
appears from the works of Gould ([1] to [6]) that initially,
such relations were merely an; out come of a study of
binomial series transformations; but 1ater on, an independent
development took place, and as a result of that a number of
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inverse pairs were discovered and also studied at length, by 
Gould, Carlitz, Riordan and others. The main aspects however, of 
their study were to obtain combinatorial identities and/or to 
obtain inverse series relations of particular polynomials. A 
brief account of this is given below which is follwed by some 
recent relevant results due to Singhal and S.Kumari.

In 1956, in an attempt to generalize the Vandermonde’s 
convolution identity

E ( ) < k^ > = Crt“>j=0 3 3 J

Gould 11.Eq.(7),p.85] proved that
QD(1.2.11) E A,(a,b) ZK - xa , 
k=0 K

where
(1.2.12) Ak(a,b) = Cakbk), and Z= (x-1) x~b.

By making use of the result (1.2.11), he obtained a binomial 
series transformation as well as its inverse transformation 
(see [3,theorems 1 and 2]), whence he deduced that

F(n) = E (-l>kC£> (a*bK) f( k), 
k=o K n

(1.2.13) ^

f (n) nE (-D
k=0

C ®^bn An_k(a+bk-k,b) F(k),

wherein Ak(a,b) is same as defined in (1.2.12) 
The orthogonal series relation viz.

(1.2.14) E (~Dk A (a+bk.b) Ca)“C 
k=0 K K

0
n )

9



supplied by the pair (1.2.13) was further used by Gould who, in 
1962, proved a more general pair of inverse relations ([4, 
p.394]) which is given below.

F(a)
M

= E
k=0

(-l)k Ak(a.b) f(a+bk-k)

(1.2.15) • if. and only if

Mf(a) = £ ( £ ^ F(a+bk-k),
k=0 K

where M=[a/(l-b)] is finite if 'a' is positivie and 'b' is zero 
or a negative integer, otherwise M=oo .

This general pair possesses a number of particular cases, 
for example when b=2, one finds

(1.2.16)
F(a) ■ £ (-1) A. (a,2) f(a+k),k=0 K

f(a) = E C £ ) F(a+k)
k=0

(for other special cases refer to Gould [4.p.395]).
By making a slight modification in (1.2.13), Gould 

introduced (in 1964) yet another inversion pair [5.p.326] :

G(n') n .E (-1) * ( I!)k=o K
ca+n+bk> f(X)

(1.2.17) ■ if, and only if

f(x) = E (-1)* C 5 ) ( “+tn+k >■* 
.k=0 K K

a+bk+k+1
a+bn+k+1 G(k),

and thereby showed that the Bessel polynomial
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(1.2.18) c a*n> Y (a)(x)= E C k > C a+"+k) C t+k> k! c-x/2) *
*1 X* ^ Q J» 11 «»

the Legendre polynomial (cf.(1.2.5))

(1.2.19) P (x) « E <-l)k ( I ) ( "^ ) {^)k , 
n , _ k n zk=0

and the Chebyshev polynomial Un(x) ~ sin(n+l)s/sine, where 
x = cose, possess the inverse series relations given by

(1.2.20) C arJ'2n ) C a+n) n! (x/2) n

n k
= E (-Dk=0

a+2k+l (a+2n+l c a+2n+l
n-k

» r a+k 5 Y{ko)(x).

(1.2.21) ( 2n > . 1-x ^ n J 1 2
n)n - E
k=0

2k+l
2n+l

- 2n+l .1 n-k J pk(x).

and
(1.2.22) 2n ( 1-X)n * n k

E (-Dk=0
k+1n+1 ^ 2n+2 . n-k * Uk(x)

respectively.
In 1965, he introduced a generalized Humbert polynomial

(1.2.23) P (m,x,y,p,C) n
[n/m]
E Ck-0

p-n+mk. , p ^ k J S-mlT _p-n-k+mk k. .n-mkC y (-mx)

and obtained its inverse series in the form (Gould [6]):

[n/m](1.2.24) < P M-ireO" - <-l)k (P^+k) £=2±2!i Cn-k-P yk
k-0

•Pn-mk<m-x-y-P-C)-
by establishing a novel type of inversion pair
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(1.2.25) ■

[n/m]
F(n) * E A. (p-n.m) f(n-mk) 

k=o
if. and only if

[n/m] v
f(n) - E (-1) A. (p-n,1) F(n-mk). k=0 K

wherein A^fa.b) is same as defined in (1.2.12).
Several important particular cases of this generalized 

Humbert polynomial (1.2.23) such as the polynomials of Humbert
rr (x) * P (m,x.l.-v»,l), Kinney P (m.x) Mn,m n n Fn(m,x,l,-l/m.l).
Pincherle : p (x) * Pn(3,x,1.-1/2,1). Gegenbauer C^(x) =

P (2,x,l.-v.l), Legendre: P (x) = P (2,x,1,-1/2.1) etc. are listed n n n
below along with their inverse series representations which are 
immediate consequences of the inverse series (1.2.24).

(mx)n-n*

(1.2.26) «

(1.2.27) «

[n/m]
n„ (x)"n.m - Ek=0
(-mx)n [n/m]

- Ek*0n!

[n/m]
Pn(m,x) n M o

(-mx)n [n/m]
- E (n! X* ii o

T (-i>-n+mk-k+l) k! (n-mk)!

.k -v-n+mk F(-v-n+k+l) v . .' -v-n+k k! ;

(mx) n-mk
r(-(1/m)-n+mk-k+1) ki (n-mk)i '

k -(l/m)-n+mk r(-(l/m)-n+k+l)’ -(l/m)-n+k k!

.P_ . (m.x)n-mk

(1.2.28) -

[n/3] ,3„> n~3k*n(x) * r((l/2)-n+2k) ki (n-3k)5

(3x)n _tn£3], ..k -(l/2)-n+3k r((l/2)-n+k) y, , .
M -(l/2)-n+k vi rn-qiclx;n: k=0 k! n~3k ’
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(1.2.29) -

[n/2]
(X) = Ek=0

2x)n [n/2]

(~2x) n-2k
r(-y-n+k+l) k! (n-2k)!

n:
^ , ^k -v-n+2k r(-i>-n+k+l)kr0 K~ -y-n+k k! v'n-2klx;'

(1.2.30) -

Pn (x)

(~2x)tl ,^k -(1/2) ~n+2k r( (l/2)-n4-k) p . .
n! “k^0 1 11 -(l/2)-n+k k! rn-2kl }

[n/2 ]
Ek=0

(-2x) n-2k
r((1/2)-n+k) k! (n-2k)!'

In 1973, the inversion pairs (1.2.13) and (1.2.17) were 
further extended in (or unified to) an elegant form by Gould and 
Hsu [1], who proved that if {a^> and {b^> be two sequences of 
numbers such that

nn (a,+xb.) * v'(x.n) * 0 
i = l

for all non-negative x and n, and y>(x.O) =» 1, then

(1.2.31) -

n .f(n) = £ (-1)K ( ") v'(k.n) g(k)
k=0

if, and only if

n k ng(n) = £ (-1)KC " ) <ak+i+Jt bv4.iJ V'Cn.k+l) f£k)
k=0 k+l‘

In their work [1], Gould and Hsu however do not discuss the 
reducibilities of (1.2.31) to the inverse series relations of 
various particular polynomials, yet it can be shown that the 
inverse relations of the polynomials quoted in (1.1.2) to
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(1.1.10) are obtainable from this general pair.
For instance, the inverse relations involving the Laguerre 

polynomial (x) (see (1.1.2)) may be obtained from (1.2.31) by 
setting ai=l. bi=0 for all i. Similarly the Jacobi polynomial and 
its inverse series relation (1.2.5) follow from (1.2.31) when a^= 
oc+^3+i , and b.. = l for all i. It is interesting to see that the 
inverse relations of the recently introduced orthogonal 
polynomials of Racah (1.1.19), and of Wilson given in (1.1.10) 
can also be deduced from (1.2.31) which are mentioned below.

(1.2.32)
(~x) (x+r+6 + l)n n(l+ct) (1+/5+5) (1+y) n n n

n
Ek=0

(-n)k(l-Hx+/3+2k) 
(oc+/3+k+l)n+1 k!

. Rk(x(x+r+<$ + l) r .<5) 

(inverse relation of Racah polynomial);

(a+ix) (a-ixl ________n________n(a+b)n(a+c)n(a+d)n

n (-n)k (a+b+c+d+k+fk-1) C sc2 )

k=0 (a+b)k(a+c)k(a+d)k(a+b+c+d+k-l)n+1 ki

(inverse relation of Wilson polynomial).

Recently, having motivated by the desirability to deducing 
the inverse relations of the . general classes of polynomials 
(f^(x,y,r,m)> and (g^(x.r.s)} defined in (1.1.13) and (1.1.11), 

Singhal and S.Kumari ([1],[4]) in their study of classical 
polynomials, proved two more general inversion pairs which are as 
stated below.
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1.2.34) «

[n/m] vF(n) = E Yk=0
if. and only if

tn/m]
f (n) E (

k=0

..p-Xn+Xmk,. ,, C k ) r(r>~mk)

p-Xn+J^ P-Xntxmk 
v k ' p-Xn+k

where p and X are arbitrary parameters; and

F(n)
[n/s]
Ek=0 C p+qsk-sn-sk *> f (k)

if, and only if

(1.2.35) - f (n) snE
k=0

p+qk-k
p+qsn-k

and

- p+qsn-k. ^ sn-k J F(k)

_ p+qk-k 
k=0 P+<Jn“k

(p+qn k^ F(k)=0 m=l,2,3___
n

On making use of the inversion formulae (1.2.34) and
(1.2.35) they deduced the inverse series relations of fc(x,y,r,m)

n
and g^(x,r,s) respectively, which are as mentioned in (1.2.10) 

and (1.2.9). As shown by them, the special instances of the pair 
(1.2.10) (or (1.2.34)) are the inverse series relations of the 
generalized Humbert polynomial and those associated to it 
(see (1.2.26) to (1.2.30)). On the other hand, the particular 
cases of the relations in (1.2.35) include the inverse relations 
of the classical orthogonal polynomials like Hermite polynomial 
Hn(x), Laguerre polynomial (x) .Jacobi polynomial P^a'^(x)

and its associated polynomials such as the Gegenbauer 
polynomial : (v + (l/2))n C^(x) « (2w)n P^~‘ 1/2 5 'y~‘1/2 s } (x) , the
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Ultraspherical polynomial: ' ;(x). the Chebyshev polynomials:
(1/2) T (x) - ni p(“1/2'-1/2>(x) 

n n n (of first kind) and
(3/2) U (x) = (n+1)! p(1/2'1/2)(x) (of second kind), 

n n n
Further, in view of the fact that the general hypergeometric 

polynomial considered by R.N. Jain [1] viz.

(c k) ^c ^ n(1.2.36) F^C'*J[(ap);(bq);x3 - ’

p+k q+k

-n, A(k+1 ,-c+n), (ap); (k+l)* *x 

A(k;c).(bq);

(k is a positive integer).

the Brafman polynomial (Brafman [1]) :

(1.2.37) B [(a );(b );x] = F n p q P+s q
A(s; n),,

V
• -a.
,bq ;

and the Rainvilie's polynomial (Rainville [1])

n (c) (c+n). C-n)v(1.2.38) f (x) = £ n * K
n k=0 (c/2)klc/2+(l/2))k n«

x

are particular cases of the set {g^(x.r.s)} (Panda [1]); the 

inverse series relations of these polynomials can easily be 

obtained from (1.2.9) in the forms as given below (in the same 

order).

(1.2.39) (k-l)(]t 1)n xn n£j~o
(-n?j(c)kn(ctkj)(bi)n.-.(bq)n

(c)kn-n+j+1 <al’n’ * ’

. F<C'k) [(ap);(bq);x]
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(k+1) (k+l)n s=l. andC with r = v * n
(-l)n (a1)n...(ap)n

n! tbl)n-‘-(bq,n

r=k a positive integer).

n(1.2.40) x* = £
sn n!(b.) ...(b )______1 n_____q n

k=0 (sn-k)! (a ) .{a ) k!In p n
B“ ((ap):(b );x]

(c) (a.) ... (a ), -iu sn In p n , , ,sn _ . _ . _ .(with r - ---------------~— (-1) , and r=s), andn (b.) ...(b) n!In q n

„ „ n (-ir (c+2k) (c)-5(1.2.41) 4° xn = £ ------------- :--^
k=0 Jn {c)n+k+l (n~k)!

fk(x)

(with s=l, r=2, and x is replaced by -4x)

1.3 CLASSIFICATION OF INVERSION PAIRS
The earlier works of Gould ([1] to [4]) on inversion of 

series evoked a wave of interest that was reflected in the works 
of John Riordan who studied the inverse series relations at 
length by classifying them into several classes namely, the 
simplest type pairs, Gould classes, simpler Chebyshev classes, 
Chebyshev classes., simpler Legendre classes and, the
Legendre-Chebyshev classes of inverse relations.

All the classes are recorded in the following tables.
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Table-1 : Simplest Inverse Relations
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Table-2 : Gould desses of inverse relations

an Z An,k bn V n+ k<-i> n,k a.k

An ,k Bn, k

(1) p+qk-k .1 n-k }
p+qk-k . 
p+qn-k

p+qn-k . 
n-k

(2) p+qn-n+1
p+qk-n+1

p+qk-k1 n-k 1
p+qn-k
n-k )

(3) p+qn-n .1 k-n 1
p+qn-n
p+qk-n

p+qk-n1 k-n J

(4) p+qk-k+1
p+qn-k+1 .p+qn-n.1 k-n }

, p+qk-n1 k-n )

(Riordan [2,Table - 2.2, p.52])

Table-3 : Simpler Chebyshev inverse relations

(1)

(2)

(3)

- E <I> »■k n-2k

_ r n-2k+l .n. . n ~ L n-k+1 *kJ n-2k

= _ _ ,n+2k.n £ ( k } bn+2k

(4) an = E n+k+l

(5) an - E <T>
(6) = E n+l

n n- k+1

.n+2k. .1 k } n+2k

n-k

.n+l-k' x 1 Vk

bn = S H?k ("kk) an-2k

’n = E C-Dk t"**) »n.2Jt

, _ , ,k n+2k ,n+k, abn = E (_1) n+k“ ( k } a n+2k

bn = E (~l>k (^k) an+2k

bn-S<-1>kSl <T>%-k

b„ *E l-Dk (nkk)

(Riondan [2,Table-2.3,p.62])
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Table-4 Chebyshev classes of inverse relations
a = T. a , b ;b=S (-i>k a , a
n n,k n+ck n n,k n+ck

A ,, n, k B Vn ,k

(1) ( n )1 k ’ nn+ck+k
,n+ck+k.1 k )

(2) n+ck+1
n-k+1 ( n )1 k }

.n+ck+k. t k )

(3) . n-t-ck.1 k } n+ck ^ 
n

n+k-1. k J

(4) n+1 .n+ck.1 k ’ <r>
n+ck-k+1

(Riordan [2, Table-2.4, p-63])

Table-5 : Simpler Legendre inverse relations
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Table-6 : Legendre-Chebyshev classes of inverse relations

an
£ An,k

a £ <-l>n+k
n,k

A , n ,k Bn »k

(1) .p+cn. ln-k ’ p+cnp+ck
-p+n+ck-k-1.C _ )n-k

(2) K-n
p+cnp+ck

.p+ck+k-n-1.1 k-n }

(3) .p+ck ' n-k }
p+ck
p+cn

.p+cn+n-k-1.1 . n-X }

(4) p+ck. lk-n 1
p+ck
p+cn

.p+cn-n+k-1.1 k-n }

(5) p+ck+1
p+cn-n+k+1 ,p+cn. ln-k }

-p+n+ck-k.1 n-k }

(6) p+ck+1
p+cn+n-k+1 ,p+cn. lk-n S .p+ck+k-n.1 k-n '

(7) p+cn+1
p+ck-n+k+1

-p+ck. ln-k J -p+cn+n-k.1 n-k J

(8) p+cn+1 -p+ck lk-n ; -p+cn-n+k.1 k-n Jp+ck-k+n+1

CRiordan [2, Table - 2.6, p.69])
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1.4 BASIC HYPERGEOMETRIC SERIES AND ASSOCIATED POLYNOMIALS
Nearly thirty years after the Gauss's introduction of

hypergeometric series, E. Heine ([1],[2]) introduced an
interesting extension of this series in the form:

(l-qa) (l-qb) (l-qa)(l-qa+1)(l~qb)(l~qb+1) „
(1.4.1) 1+ -------------  x + ----------- ------------- =— x “*+...(l~qC) (1-q) (l~qC)(l-qC+A) €i-q)C1-q )

(c * 0,-1,-2___ ; |x|<l. |q|<1}.

Prior to this introduction, he defined a 'basic analogue' of 
a number 'a' in the form l-qa

[a;q3 = __ .
where The arbitary number q (^l) is called the base.

From this it readily follows that as q -»4, [a;q]-*a, and 
that the series in (1.4.1) approches to the Gauss hypergeometric 
series

, , ab .. , a(a+l)b(b+l) ..2 ,c c(c+1) 1.2 x

(c * 0,-1.-2____ |x|<1).

Thus, Heine's series defines a basic analogue (or a 
q-analogue) of the Gauss series ; and for this reason the Heine's 
series is called a basic hypergeometric series (BHS) or a 
q-hypergeometric series.

Just as it happened with the Gauss series that it was Known 
in other particular forms before its introduction, this q-series 
(1.4.1) was also known in special forms prior to its
introduction. For example, the identity
1 + £ (-1 )n { q11()/2 + qn(3n+l)/2 } B ® (l-q11)

n=l n=l
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was given by Leonhard Euler in 1748 A.D.: also the triple product 
identity

oof] { (1—xq n) tl-qn+1 x'1) Cl-qn+1)^ 
n=0 £ (-17 nq n2/2 xnn=-oo

and the Theta Functions: B (z,q), i= 1.2,3,4 were given by Carl 
Gustav Jacob Jacobi in 1829 A.D. But it was not until about 
sixteen years later that the field of BHS acquired an independent 
status when Heine (see [1],[2].[3]) introduced the q-series 
(1.4.1) and carried out a systematic study of it. During this 
study, he put forward a basic analogue of binomial theorem, basic 
transformation formulas, basic analogue of the Gauss's summation 
formula, and also discussed the q-contiguous functions relations 
(for detail, see Gasper and Rahman [1]). A q-Gamma function which
he defined in the form

coVx) = nM n=l
i-qn

1-qx+n-1

differs slightly from Thomae's definition [1];
i-x 00 1-qn

r (x) - (1-q)1 x n ---•
q n=l l-qx n i

Since then the field of BHS has developed notably in the 
hands of many eminent researchers among whom the names of 
F.H.Jackson, W.N.Bailey, D.B.Sears, L.J. Rogers, W. Hahn, L.J. 
Slater, L.Carlitz, H.Exton, R.P. Agarwal, G.E. Andrews, R.Askey, 
W.A. Al-Salam, H.M. Srivastava. A.Verma. M.E.H. Ismail, T.H. 
Koornwinder, J.A. Wilson, G.Gasper, S.C. Milne, M.Rahman, V.K. 
Jain are worth mentioning. It would not be out of place to say 
that quite a good number of formulae given by S. Ramanujan may be 
viewed as the special cases of the results involving BHS.
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To denote the series in (1.4,1), Heine used the notation
<j>(a,b,c,q,x) . However, the other notations:

2<f>^ ( a , b; C ; q , X) , q. 1

are often used in analysis, in terms of which the series (1.4.1) 
is representable in the form

oo (a ; q) (b; q)
(1.4.2) (a „ b; c; q, x) n n n xn=0 (c;q) (q;q)n n
where (a,-q) = [a] is a basic factorial function defined as below,n n

(a;q)n = -
(1-a)(1-aq) . . 
1.

[a] / [aq11]
QD ^ CD

(l-aqn 1), n=l.2,3___
n=0
n is arbitrary,

00 kin which [a]^ = (a.-q)^ =kno(l-aq ), 0<q<l.
A generalization of (1.4.2) which provides a basic analogue 

of (1.1.1) is function defined as ( Askey and Wilson [1], 
also see Gasper and Rahman [1]):

(1.4.3)
n=0 [blln...[bs]n [q]n

{ , „ , >s-r+l(-l)n qn(n-i)/*|

The infinite basic series in (1.4.3) converges for all x if 
0<|q|<1 and r < s. If 0<jq|<l and r = s+1 then it converges for 
|x|<1. The various specializations of this function 
include the basic exponential functions defined by ( cf. W.Hahn 
[2], Gasper and Rahman [1]) :

eq(x) 1
00

( 0 ; - ; q , X ) - E 
k=0

kX
[q]K (|x|<l)
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and
_ , , , . . ^ k(k-l)/z xk . ,Eq(x) * o<J>o(-;"'£J'x) = E q Tq] * l~x3~ ;
M k=0 lMJk ’ CD

the basic sine and cosine functions viz.

_. x .,3 2 2,Sm x = j— (~;q ;q .-x ), sin x 1-q 2
(^(O.Ojq 2q 2-x 3

2 2Cos X = Q<J>4 (- ; q; q , -qx ) , 2 2cos x = <j> (0.0;q;q ,-x 7,

also, the Basic Gamma, and Beta functions given by

rq(x) - tql^d-q)1"55 and

ftq(x,y) = d-q) t<|>0 f q7-' «!• qx 1

Moreover, the basic Bessel functions are also expressible 
in the particular d> functions by means of the followingr »g

(X/2)V z4>i(0,0;qV+1;q.-X2/4).

(x/2)V 04>1(-;ql>+1;q,-x2qW'fl/4},

(for further detail refer to Hahn ([1].[2J)# Gasper and Rahman 
[1], and H.Exton [!}).'

As the choice a.( s q^t) ■ q~n, for at least one i (l£i<r), 
n=0,1.....reduces the infinite series in (1.4.3) to a terminating 
series, the basic hypergeometric representations of various 
basic polynomials may be obtained by specializing the

relations.

(1.4.4) J^l,(Xiq)
tq"*1]

CD

t<l300
and

(1.4.5) J^2)(x;q)
[q*'*1]

00

to
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parameters in (1.4.3). As an illustration, putting r=l.s=l, a^= 

q , b^ = ocq (=q ), one gets by replacing x by -xq , a 
basic Laguerre polynomial

. T (oc) . % n(1.4.6) L (x;q) = -----
[q]

. , -n oc+n+1.iq>i (q ;ocq ; q . -xq ) .
n

This polynomial was studied by D.S.Moak [1], and also, it 
was taken into account by A1-Salam and Verma [3] who constructed 
a pair of biorthogonal polynomials: (x,-k| q) and Y^a^(x;kjq) 

which are known as q-Konhauser polynomials. It is worth 
mentioning that the polynomial

(1.4.7) Z^°°(x;k|q)
r ■, , -kn k,[<xq]kn J (q ; q }j

(qk;qk3n j=0 (qk; qk) j jK

qk j (n+tx-H. )+k j (kj-i) /2 ^kj

reduces to the polynomial (1.4.6) when k=l.
Amongst the other 'ordinary' polynomials, the Jacobi 

polynomial P^'^fx) is worth noting here for, it possesses two 

basic analogues. The one is given by (cf. Gasper and Rahman [1]):

(1.4.8) pn(X;a,/?;q) = ^ (q n.o^3q n+1; ocq; q, xq).

which is known as ’little* q.-Jacobi polynomial, and the other is 
given by • ■

~ri n+l(1.4.9) (x;a,b,c;q) = a<|>2 (q , abq , x; aq, cq; q, q)
known as ’big* q-Jacobi polynomial.

The little q-Jacobi polynomial (1.4.8), with provides
foe}two more basic analogues of the Laguerre polynomial ;(x); they 

are the Wall polynomial, and the stieltjes - Wigert polynomial as
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stated below (Gasper and Rahman [l.p.196]).

(1.4.10) V?n(x;a„q)
, un r.i n(n+l)/2 £ , n ,
(-1) la],, q E I i J" 1*0 3

j ( j-4)/2

[a] . J
/ ~n , j . (-q x) J

and j 2
(1.4.11) S (x;p,q) - (-1)" q"n(2n+4)/2fp] £ [ n. ] ---- (-x/q)j.

n n j=0 3 [p]j

Another q-polynomlal with g<|>2 - representation besides the 
•big* q-polynomial (1.4.9), is basic Hahn polynomial defined as

(1.4.12) Qn(x;oc,/3,N|q) = 3<t>2
q~n. a/?qn+1, q X; q,q

<*q. Q -N

(cf. (1.1.8)).
Recently, in the study of general orthogonal q-polynomials, 

R. Askey and J.A. Wilson [1] considered the q-extensions of the 
Racah polynomial and Wilson polynomial (stated in (1.1.9) and 
(1.1.10)) in the forms

(1.4.13) Wn(x.-a,b,c,N|q) - 4<J>3
■ -n . n+1 —x x-N _ _q , abq , q , cq ;q,q

-Naq, q ,bcq;

and

P (x;a,b,c,d|q)
(1.4.14) -2-----------------

a n[ab]n[ac]n[ad]n 4^3
-n , , n-1 ie -iOq , abcdq ,ae , ae ;q ,q

ab, ac, ad;

which they call q-Racah polynomial, and Askey-Wilson polynomial 
respectively. It can be seen that these polynomials contain among
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the other polynomials, the q-Jacobi polynomials, q-Hahn 
polynomial.and the continuous q-Jacobi polynomial considered by 
M. Rahman [1] in the form :

(« ft) t*q]P_ (cos© ; q) = ---- ------ - A>n [q]nC-q3n 4^3
q'n, aftqI,T\Vqew.Vqe'-"'; q.q 

ocq , -ftq , -q;

n+1 _^-_i© id

1.5 BASIC INVERSE RELATION
In the early sixties when the inverse series relations were 

being discovered by Gould ([3],[4].[5]), Riordan [2J. and others 
(see e.g. Stanton and Sprott [1]). Carlitz [2] studied several 
inverse series relations and their basic analogues from the point 
of view of deriving the inverse relations involving certain 
polynomials. During his study, he was led to several more 
general inversion pairs. Out of these the following basic pairs 
are worth mentioning [2. p.196].

tn/2]
U„ - ' k 1 vn-2k

(1.5.1) - if, and only if
nfn/2) k(k-i)/z ^ ^ n-kV « E <-l> q*t*-*"2 ---— £ n K ] un k=0 x_n k k n 2k

and

(1.5.2)

tn/2 ] 
k

■ implies

Un = ,4 { t k 1 - f k-l^} V 2k

V = ["e21 <-1)* <,k<k->'2 [ n-k 1 U
n k=0 q 1 k 1 n-2k ■
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It may be observed that the pair (1.5.1) provides a basic 

analogue of the simpler Chebyshev class No.(l) in Table-3', 

whereas the pair (1.5.2) provides a ’one sided' basic inverse 

relation of the class No.(2) of the same table.

In one of his other papers on q-inverse relations, Carlitz 

[3] proved a very general as well as useful result in the form of 

a basic analogue of the pair (1.2.31) due to Gould and Hsu. The
nresult states that if a..+q xbJ*0, and v/(x,n.q)= f] (a..+qx b^).then

(1.5.3) .

f(n5 = £ (-l)k [ P ] y(k.n.q) g(k)
k=0 K

if, and only if 
ng(n) - E (-l)k qktk-n-H)/. £ n } Us±l<av4.i+q bk+i3
k=0 V'Cn.k+l ,q)

f (k)

With the aid of this pair, he obtained certain particular 

inverse series relations including the pair [3,p, 898] :

' f (n) - E C-Dk q^Cfc—«+*)✓* t n 3 £ a+n+kj g(k) 
k=0 K n

(1.5.4) • nr (n) = E C-Dk q***-13/2 [ n ] ilSL*....* r a+n+k,-i
kt0 q 1 k J i-q^n+k+l [ k 3 •

. f(k),
which provides a basic analogue of the pair in (1.2.17) when 

b=l. He also obtained a basic analogue of the pair (1.2.13) in 

the form:

(1.5.5)

f (n) = E (—l)k q3^ 2n+i )/2 £ n 3 £ a+kXj
k X nk=0

n

g(k)

r(n) = y (— 1)k akk ^)/2 r n * 1—q * a+nX, -1
k=0 4 1 k 1X lga+nk-k 1 k[ “v 3

f (k)
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by means of a more general inverse relations [3, p.900]

(1.5,6) -

nf (n)

g(n)

= E (-1) q 
k=0

k k\(k-2n+i)/2 r n[ k lx vd-k.n.q ) gOO,

_ , , ,k kX(k-i)/2 , n , , , „kX. .
= E <-i> 1 k ] ‘Vn+ <5 Vi>k=0

where

[ ° ]1 k J X
(l-q^Jd-q*11 1)X) . . . (l-q(n_k+1)X) 
(l-qkX)(l-qCk+1)X) . . . (l-q^Hl-qN

f (k)
-----------— ,yd-n.k+l.q 5

X*0.

The other consequences of the pair (1,5.3) although not 
discussed in [3], are worth mentioning here. They are the inverse 
series relations of the basic Jacobi polynomials (1.4.8) and 
(1.4.9), the q-Hahn polynomial (1.4.12), and the q-Racah and the 
Askey-WiIson polynomials mentioned in (1.4.13) and (1.4.14) 
respectively. As an illustration, replacing q by q-i and. then 
setting ai = l, bi= -qoc+^3+i , and g(n)= [os/Jqj^x11 / [ocq]n in (1-5.3), 

one finds after a little simplification the following pair of 
inverse relation involving the little q-Jacobi polynomial.

(1.5.8)

f

Pn(x;oc„f3;q)

xn = [«q]n

n- Ek=0
nEk=0

nkq

[q"n]k i^+\ k
------------------ xC«q3k (qlH

[q_n]k (1^3q2k+1)
Pk(x;oc,/3;q) .

In a similar manner, the inverse relations of the other 
polynomials may be obtained in the forms as given below.
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(1.5.9)

Qn(x;ot,f3,N| q)
n
£

r -n, r _ n+1, r -x,[q 3k [a^q 3k [q ]j

-N.
n n k=0

(1.5.10) ■

RnOi(x) ;oc,ft.r .<$ ;q) = E

[q~X]n [qX+V^]n _ n 

[«q3n[/5<5q]n[rq]n k=0

(«q]k -N *tq \ Eq3k

nk
(q"n]k (l-«^q2K+1)

q
i V-i-1W* ]n+l Cg]k

.Qk(x;a,ft,N|q).

basic Hahn polynomial);

r -n,[q ]k r ^ n+1, , -x. , , x+1, [oc^q 3k [ q 3k[r«5q 3k
W6qlk [>q3k [q3k q”k

nk
r -n. ., _ 2k+l.[q 3k )

'^k+1]n+l

-Y y+1
where /u(x) = q + y&q

CM-(x) ;<x,(3,r ,6 ; q)

(pair of inverse relation of basic Racah polynomial)

Pn(cos©; a, b, c, d | q) n [q n]j,[abcdqn 1]k[aeie]k[ae iS]k
= £ _v ~
k=0

(1.5.11) -
[ab]n[ac]nEad]n 

[a9ie)n t»e-ie]n
n

= E

[ab]k [acJk [ad]k [q]k q

r ~n i 2k-l. nk[q Jk (1-abcdq ) q
_____

t [ab]n [ac]n [ad]n k=0 [abcdq 3n+1 [ab]k[ac]k[ad3k

.Pk(cos0;a,b,c,d|q).

(pair of inverse relation of Askey-Wilson polynomial)

On the other hand, the substitutions a.*l, and bj=0 in

(1.5.3) lead to the inverse relations of the basic Laguerre 
(oc)polynomial: 1/ (x;q) defined in (1.4.6), the Wall polynomial :
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W (x; a, q) given in (1.4.10). and the Stieltjes-Wigert polynomial: 
n

S (x;p,q) cited in (1.4.11). In fact, with the aforementioned n
substitutions, the pair (1.5.3) assumes the simplest type of pair 
as given below.

(1.5.12)

*
f (n) -£ (-l)kqk(k-i)/2 [ 

k=0
g(k).

ng(n) = £ 
k=0

^ ^jk qk(k-2n+i)/? £ 3 f(k),

whence the inverse relations of the above mentioned basic 
Laguerre polynomials are easily obtainable. In order to illustrate 
this, set

g(n) . qn(n41)/2 «n ---L_
[°q]„

in (1.5.12), then it follows from (1.4.6) that [«q]nf(n)/[q]n 
defines J(x.-q) and thus. (1.5.12) yields the pair:

(1.5.13)

L<“>(x.-q> - £ aX(**)/* Iq~"]X 1<,qln U'q>k
n ’ k=0 [aq]k [qlk [q]n

n -n.~cm-n(n+i )/2 " Cq 3k t<xq3n k T(a),
_ = q E ----—----- * Lk (X;q)-Lqjn k=0 [ocq]k

Likewise, with f(k) = x /[a]k[q]k , the above pair (1.5.12)
gives

<-l)n [Q]nCq]n qn(n+l)/2 g(n) = Wn(x;a.q)

and consequently, one finds the pair of relations:
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W (x;a,q) = (-l)n [«]„ <,"<"«>/* e‘ (-l)k qk(k^n-«)/a

(1.5.14) ■

n n

xn = [a]n E E kn 1 
k=o

n
c

k=0
[ n 1 • 1 k J

Wv (x; a, q)

mz

[a]k '

and similarly, putting g(k) = q^+^ in (1.5.12) and, 

comparing it with (1.4.11), one arrives at the inverse relations 
involing Stieltjes-Wigert polynomial as mentioned below.

(1.5.15) a

Sn (x; p, q) (-1)" q-n(an+i)/2 [p £ /+k/2
*=o ,

nE v ] £p].

n+n /2 n q x
tp] n £ qk-nk«k^2 [ " ] 

n k=o *
S. (X; p, q)
——
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