CHAPTER-1

A BRIEF ACCOUNT OF DEVELOPMENT OF INVERSE SERIES RELATIONS AND
ASSOCIATED POLYNOMIALS

1.1 GENERALIZED HYPERGEOMETRIC SERIES AND ASSOCIATED POLYNOMIALS

One of the several ways in which the classical orthogonal
polynomials and their various generalizations are introduced is
through the generalized hypergeometric series rI"g which is

defined as below.

n
a., Y. o (a,) {a_) X
(1.1.1) rFs[ 1 rx] = ¢ o L .
= 1
bl" ’bs' n=0 (bl)n (bs)n n
whe:e
a(a+l)...(a+n-1), if n is a positive integer
(a)n = 1, if n is zero
F{a+n) /T (a), for arbitrary non zero ‘a‘’

and n.

The above Beries converges under one of the following
conditions.
(i) |x] <o, if r £ 8 (ii) |x]<1, if r = s+l

-] r
(iii) |x} = 1, if Re( L b. - T ai) >0
j=1 3 ra

The PF; function which is an elegant generalization of

"well known Gauss hypergeometric function 2F1(a, b; ¢; x} is of
prime importance in the theory of Special functions because most

pf the Special functions of mathematical physics,chemistry,

astronomy, and statistics and, also those of electro-magnetic

theéry. séatics, dynamice, fiber optice, vibration phenomena etc.

are special cases of rr;



When one of the numerator parameters assumes a negative
integral value, the series representing this function becomes
terminating in which case it represents a polynomial in its
argument. The theory of various classical polynomials which are
special cases of rFE. has been enriched by many eminent
mathematicians 1like G.Szegd, H.Bateman, P.E.Bedient, L.Carlitz,
R.P.Boas, W.N.Bailey. A.Erdelyi, R.C.Buck, E.D. Rainville,
S5.0.Rice, P.Humbert, R.L.Shively, sister M. Celine, D.Dikinson,
H.W.Gould, R.Askey, W.A. Al-Salam, H.Exton, J.L. Burchnall, T.W.
Chaundy. G.Gasper, H.M. Srivastava, T.S.Chihara, M.Rahman, M.E.H.
Ismail, J.A. Wilson, A. Verma, R.P. Agarwal, C.M.Joshi, R.K.

Saxena, N.K. Thakre and others. Several known polynomials which

are expressible as special cases of ng are listed below.

(1+x) N (-n), (1+x)
D F (-n:ltxix) = T k n
k=0 (1+x), n! k!

S

(
(1.1.2) Lna)(x) = -

(Laguerre polynomial},

- n -n oo 1 __ -2
R N SR YE ) L
Zo X' (n-2K)
(Hermite polynomial),
)
(x.,f3) -
(1.1.4) P Bixy = — JF,(-n, léa#Btn ; 14 355 )
n (-n)y (l+ocHB+n), (1+oc)
p> k D 10k
k=0 (1+), n! k! 2

(Jacobi polynomial);

(1.1.5) P (x) = ,F (-n, n+1; 1; 12X



n (-—n)k(n+1)k(1—x)k
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k=0 k! k: 2

alternatively,

(1/2)n(2x)“
(1.1.6) P_(x) = — JFy ¢
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N =
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(n/2] (1" (1/2) _, (2x)

)
k=0 k! (n-2k)!
(Legendre polynomial},

) (2x)"
. 0 -n n_ 1. e —x 2
(1.1.7) Cﬁ(x) = JFi 3. 242 1w X7

k n-2k

={nézl -1)F @) (2%)
k=0 k!  (n-2k)!

(Gegenbauer polynomial),

(1.1.8) Qn(x:a,ﬁ.N) = 3F2 (-n, l4a4B3+n, -x ; 1l+a,-N ; 1)

(-n) (1l+a+3+n) (—-x)
k k XK  (n=0.1.2.....N)

n
= E

k=0 (14} —N)k k!

x ¢

(Hahn polynomial (W.Hahn [1])),

(1.1-9) Rn(x(x*?‘"é"'l): “:ﬁayaé)

.= F

[ -n, l4x+3+n, x4p+d+1, -x; 1 ]
43

1+, pB+6+1, y+1:

n (~-n)k (1+«*ﬁ+n)k (x+'.v+6+1)k (-x)k

-

z
k=0 (1+o:)k fﬁ+6+1)k (r+;)k k!

(Racah pclynomial (Askey and Wilson {1])).



2
(1.1.10) Pn(x ) (a+b)n (a+c)n (a+d)n

F

-n, a+b+c+d+n-1, a+ix, a-ix; 1
4 3

a+b, a+c, a+d ;

n (—-n)k(a+b+c+d+n~1)k (a+ix)k(a~ix)k
= (a+b)n (a+c)n (a+d)n b
k=0 (a+h)k (a+c)k (a+d)k k!

(Wilson polynomial ( Askey and Wilson [1])).

Two worth mentioning generalizations of polynomials of
Laguerre, Legendre, Gegenbauer, Jacobi etc. are the polynomials
gg(x.r,s) and fg(x,y,r.m) studied by R. Panda [1]}, and J.P.
Singhal and Savita Kumari [1], respectively. They are defined by

the explicit forms as given below.

n/s] {c+rk)

k=0 (n-sk)!
and
{n/m]
c _ —-c-nr-+mr k n—mk
(1.1.12) fn(xjy,r.m) = ¥ ( X Y ¥ nemk X .
k=0
When
p g -4
y_ = n (a.) } {n! n {b.) } .
n j=1 37 i=g D
these polynomials admit the following hypergeometric
representations.
(c)
1.1.13 fc"’-s[ ; ; ] - _n
( ) n.p.q (ap) (bq) X "

F

A(s;-n), A(r-s:c+n), (a_); (-s5)°(r-s) "x/r
‘ptr “g+r p .

A(r; ., (b_);
(r;c), ¢ q)

where v> s2 1, and A{(m,\) denotes the sequence of m parameters
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% , L%E e A+$~1 , and (ap) denotes the sequence of p
parameters al,az,...,ap

~4

(b.)
1 i'm }

31 .a

(1.1.14) £° [(a_ );:(b.); x] = x" p(a) n!
1. n.p.q pli(by)s jgl i'n L

F A(m;-n)., A(rm;1-c-rn).A{m:1-b ~m);
‘mr+mg+m " mp+mr-1 d
A(rm—l:l—(—rn).A(m;l—ap~n);

(rm)rm(~m)mq—mp+l “m
rm-1 yx
(rm-1)
where A(m;xp) stands for the set A(nukl),...,A(m;xp}.

1.2 INVERSE SERIES RELATIONS

Let {Un} and {Vn} be two sequences which are so related that

’ N
Uy = I AGLR Y
(1.2.1)
N
vV = ¢ B(n,k) U
R = ko

where N may be finite or infinite.

The pair (1.2.1) is known as a pair of inverse series
relations, and each one of the‘ series is called an inverse
series of the other. Such inverse series relations are useful in
the study of combinatorial identities in several ways (see

Riordan [2]). Apart from this, such relations also occur in



Approximation theory, Distribution theory, Partition theory,
Coding theory (seée e.g. sloane {1]) and also, in Probability

theory (Feller [11).

The simplest type of pair of inverse relations is

n k n
a = YT (1) ( > b, .,
n x=0 k k
(1.2.2) <
r keny
b = T (-1) a
k n k=0 k k .

which is suggested by the well known expansion formulae

n n
) = Py x*. x"= g DO e

k=0 k=0

k

It is not difficult to see that each of the defining
relations (1.1.2) to (1.1.12) can be viewed as one of the
relations of the pair of inverse relations of the type (1.2.1).
Their corresponding inverse relations have been obtained by using
varried techniques; such as .genérating function relation,
summation formula, orthogonal property, difference and shift
operators and, recurrence relations (see for instance Rainville
{1}, Riordan [2]).

Given below are the pairs of inverse relations of various

peolynomials defined by (1.1.2) to (1.1.8), (1.1.11) and (1.1.12).

(o) n (-n¥ (1) xX
Lh (x) = ¢ ,
k=0 (14x), (n-k)! k!
(1.2.3) 1 k
X
n (-1)¥ n! (14)
< = T n Lia)CX)
\ k=0 (n-k)! (1+a),

(pair of inverse relation of Laguerre polynomial);



(/2] (-1)% nt (20772
Hn(x) = ¥ .
(1.2.4) - k=0 _ k! {(n-2k)!
o =[n£2] n! Hn~2k(X)
| k=0 2™ %1 (n-2k)!
{pair of inverse relation of Hermite polynomial),
( (-n), (1+octB+n) ) (1+)
n -n +x+34n +x
PP ) = g k — no1-x)k
(1.2.5) 4 k=0 (1+oc)k 27 k! n!
n
(1-x) _ ; (~n)k(1+u+ﬁ)k(1+u+ﬁ+2k) p(a'ﬁ)(x)
n - k
L. 2 (1+a)n k=0 (1+«+{3)n+k+1 (1+«x)k
(pair of inverse relation of Jacobi polynomial),
| (n/2)  (-0F /2y, 202
Pn(x) = ¥ ,
k=0 k! (n-2k)!
(1.2.6) A
[n/2] (2n-4k+1) n! P__ . (X)
(2x}n = T n-2k
k=0 (3/2)n__k k!
(pair of inverse relation of Legendre polynomial),
) [n/21 (-0F @) (202K
Cn(X) = r
k=0 ; k! (n-2k)!
(1.2.7) A
n [n/2] (¥+n-2k) n!
(2x) = ¥ Cn—2k(x)
k=0 W) _pq X!

- {pair of inverse relation of Gegenbauer polynomial),



n  (-n), (1+x434n), {(-x)
Q_(x:.3.N) = [ k kX
k=0 (14a), (=N}, k!
{1.2.8) ¢
(-x)n n (—n)k(1+a+ﬁ+2k)
= T Qk(x;a,ﬁ,N)

- a= i

(14o)  (-N) k=0 (l4oc#B+k) ., k!
\

(pair of inverse relation of Hahn polynomial (Gasper {(11)),

[n/8] (c+rk)__
gg(x'r,s) = z ..__..__.,.,Il_._‘?..’.‘. yk xk
k=0 (n~-sk)!

(1.2.9) ¢

sn-k
sn (-1) (c+(rk/s)) (c)rn c

Y. x = I gk(x.r.s)
. ~F}!
k=0 (c) . _cn+k+r (BPK)!

(pair of inverse relation of Panda's polynomial (Singhal and
S.Kumari {4})).

1 [n/m]

c _ ~C-nr+mr k n-mk
fn(x.y.r.m) = ¥ C X Y Yhomk ¥ .
k=0
(1.2.10) A
[n/m] ctnr-mrk
y. = (- e (O € (xy.r.m)
n k n-mk
L k=0 c+nr—k

(pair of inverse relation of Singhal and S.Kumari's polynomial

(Singhal_and S.Kumari [1]1)).

A systematic study of the inverse series relations was taken
up for the first time in the midst of this century. In fact, it
appears from the works of Gould ([1] to [6]) that initially,
such relations were merely an out come of a study of
binomial series transfdrmations; but later on, an independent

development took place, and as a result of that a number of



inverse pairs were discovered and also studied at length, by
Gould, Carlitz, Riordan and others. The main aspects however, of
their study were to obtain combinatorial identities and/or to
obtain inverse series relations of particular polynomials. A
brief account of this is given below which is follwed by some
recent relevant results due to Singhal and S.Kumari.
In 1956, in an attempt to generalize the Vandermonde's

convolution identity

;: ¢ty Py = ™

§=0 J k-3 J

Gould [1.Eq.(7).p.85] proved that

w

(1.2.11) L Ag(a,b) AL
X=0
where
(1.2.12) Aa.p) = 2o ca;bk), and 2= (x-1) x P.

By making use of the result (1.2.11), he obtained a binomial
series transformation as well as its inverse transformation

(see [3,theorems 1 and 2]), whence he deduced that

-~

a+bk

n )y f£(Xx),

n
F(n) = § (-1)

'S T
k=0 k

(1.2.13) o

n k a+bn -1
£(n) = £ (=Y PP A (atbk-k.b) F(k),
k=0

wherein Ak(a,b) is same as defined in (1.2.12).

The orthogonal series relation viz.

k 0

n
(1.2.14) r (-1) "

A___(a+bk,b) ( 2) =¢(
x=0 n-k k

)



supplied by the pair (1.2.13) was further used by Gould who, in
1962, proved a more general pair of inverse relations ({4.

p.394]) which is given below.

. M
F(a) = (-1)
. k=0

k A, (a.b) f(a+bk-k)

(1.2.15) < if, and only if

M
f(a) = T ( 2 ) F(a+bk-k).
k=0

where M=[a/(1-b)] i1s finite if 'a' is positivie and 'b' is =zero
or a negative integer, otherwise M=w .
This general pair possesses a number of particular cases,

for example when b=2, one finds

r o k
Fla) = £ (-1F & (a.2) f(atk),
(1.2.16) | k=0
® a
fa) = £ (3> Flas)
i X=0

(for other special cases refer to Gould [4,p.395])).
By making a slight modification in (1.2.13), Gould

introduced (in 1964) yet another inversion pair [5.p.326]

[ n

6i) = ¥ (-1)* ¢ Ty < °+2fbk Yy £(X),
X=0
(1.2.17) A if, and only if
n
- _a k ., n a+bn+k .-1+ a+bk+k+1
£(x) k§0 CLTC ) CT T ) STnvksr Gk,

and thereby showed that the Bessel polynomial
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n
(1.2.18) *‘;’") Yn(a)(x)= £ ()¢ a*:”‘) ¢ i*k) k! (-x/2) ¥
k=0

the Legendre polynomial (c¢f.(1.2.5))

n

- ..k . n n+k 1-x.k
(1.2.19) P (x) = E (-1)7C,>C 7)) 557 .
k=0
and the Chebyshev polynomial Un(x) = @gin(n+l)e/sine, where

X = cose®, possess the inverse series relationg given by

(1.2.20) "‘;2“) C ‘;‘”“) n! (xs2) °

n
= _q:k a+2k+1 a+2n+l atk (a)
= EY ammer O oax 2 O ) YT
n
2n 1-x.n _ 2k+1 2n+1
(1.2.21) ( n )« 3 yoo= ;_ Sntl C n—k p) Pk(x).
k=0
and
n
n n _ _a Kk k+1 2n+2

respectively.

In 1965, he introduced a generalized Humbert polynomial

[n/m}] __ —— -
(1.2.23) P_(m,x,y,p.C) = E (P ¢ Py cPrRTIHRK K py)nomk
X=0

and obtained its inverse series in the form (Gould [6]):

' {n/m] _ _ o
(1.2.24) ¢ g)(—mx)" = §F (-1)¥ (P ;+k) pg_g:r}x:k chk-p Jk

t—3

Pp mk(m-%.Y.P.C),

by establishing a novel type of inversion pair
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. [n/m]
F(n) = T A (p-n.m) f(n-mk)
k=0
if, and only if
(1.2.25) A
(n/m] k
fin) = T (-1) Ak(p—n.l) F(n-mk),
i k=0

wherein Ak(a.h) is same as defined in (1.2.12).

Several important particular cases of this generalized
Humbert polynomial (1.2.23) such as the polynomials of Humbert
nﬁ'm(x) = Pn(m,x.l,—v,l). Kinney : Pn(m.x) = P (mx,1,-1/m,1),.
Pincherle : b (x) = P (3,x,1,-1/2,1), Gegenbauer : C,(x) =
Pn(z,x,1,~v.1). Legendre: Pn(x)= Pn(2.x,1.~1/2.1) etc. are listed
below along with their inverse Beries representations which are
immediate consequences of the inverse smeries (1.2.24).

[ {n/m] (s )Pk

o4
Mo = B Mo kK1) KT (nemk) !

(1.2.26) ¢ ,_ n
(~mx) (n/m]} kX -v-n+mk TI'(-v-n+k+1l) - _»

R L X n-mk,m{*)?
[ {n/m} n-mk
P (m,x) = ¥, (mx) .
n k=0 F(-(1/m)—n+mk-k+1) k! (n-mk)!
(1.2.27) { ,__.n
(I )% —(/m)-ntmk  C(=(1/m)-n+k+l)
n! x=0 -(1/m}-n+k k!
.Pn_mk(m.x):
[ in/3] n-3k
n oo ((72)-n+2K) KT (n-3K)!
(1.2.28) 4
(3 08 ko —q/zy-nesk reaszzienen )
| TRl TR =(1/2)-n+k Y n-3k (X0

12



¥ (%) ={n{:2} ('-ZX)n“Zk
n k=0 r(-»-n+k+1) k! (n-2k)!
(1.2.29) § ,_,_ 40
(-2x) _.{“,EZ}(__“k w-n+2k Tl-v-ntk+l) @,
w7 s X7 n-2k (X
{ (n/2] o n-2k
P (x) = [ (-2%) L
n L, FI72-n+k) kT (n-2K) !
(1.2.30) n
(C2a 21k —Qy2i-neek o DlU/2ontk) o
nt X=0 -{1/2)-n+k k! n-2k :

In 1973, the inversion pairs (1.2.13) and (1.2.17) were
further extended in (or unified to) an elegant form by Gould and
Hsu [1]}, who proved that if {ai) and {bi) be two sequences of

numbers such that

(ai+xbi) = y{x,n) # O

3 o

i=1

for all non-negative x and n, and y¢(x,0) = 1, then

. n
fn) = £ (-1 ¢ 1) wikom) gt
k=0
(1.2.31) A if, and only if
i k, n -1
g(n) = £ (-DNC T (a,+k by, winkeD)™ £(k).
| X=0

In their work {1]., Gould and Hsu however do not discuss the
reducibilities of (1.2.31) to the inverse series relations of
various particular polynomials, yet it can be shown that the

inverse relations of the polynomials quoted in (1.1.2) to

i3



{1.1.10) are obtainable from this general pair.

For instance. the inverse relations involving the Laguerrs

(x
n

setting ai=1. bi=0 for all i. Similarly the Jacobi polynomial and

polynomial L )(x) (see (1.1.2)) may be obtained from (1.2.31) by
its inverse series relation (1.2.5) follow from (1.2.31) when a,=
«x+3+1, and bi=1 for all i. It is interesting to see that the
inverse relations of the recently introduced orthogonal
polynomials of Racah {(1.1.19), and of Wilson given in (1.1.10)

can also be deduced from (1.2.31) which are mentioned below.

(-x)n(X+r+t5+1)n n (—n)k(lﬁm+ﬁ+2k)
(1.2.32)  gwy nwEesy (iey. - LB
n n n k=0 (ox+3+k+1) k!
n+l
Rk(x(x+r+6+1);a,ﬁ.y.é)
(inverse relation of Racah polynomial);
{at+ix)_ (a-ix)
(1.2.33) n n

(a+b)n(a+c)n(a+d)n

n  (-n), (atbtctd+k+lk-1) Pk(x?)

k=0 (a+b); (a+c), (a+d), (a+btc+d+k-1) ., k!

(inverse relation of Wilson polynomial).

Recently, having motivated by the desirability to deducing
the inverse relations of the .general classes of polynomials
{fg(x.y.r.m)} and {gg(x,r,s)} defined in (1.1.12) and (1.1.11).
Singhal and S.Kumari ([1).,[4]) in their study of classical
polynomials, proved two more general inversicn pairs which are as

stated below.
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(n/m} -xn+xmk

Fin) = § vy (P ) f(n-mk)
k=0
(1.2.34) { if, and only if
{n/m]
- _on K p*xn+k p-An+imk _
f(n) = kEO {(-y) ¢ p) SNtk Fin mk{,

where p and A are arbitrary parameters; and

[ (n/s]
Fn) = £ (PF9978)
x=0

if, and only if

sn
- p+gk-k p+gsn~
(1.2.35) { f(n) = kEO e G 5 roo
and
n
PO PrITH Fo=0. nems, m=1,2.3,
k=0

.

On making use of the inversion formulae (1.2.34) and
{1.2.35) they deduced the inverse series relations of fg(x,y,r,m)
and gg(x,r,s) respectively, which are as mentioned in (1.2.10)
and (1.2.9). As shown by them, the. special instances of the pair
(1.2.10) (or (1.2.34)) are the inverse series relations of the
generalized Humbert polynomial and those associated to it
(see (1.2.26) to (1.2.30)). On the other hand, the particular
cages of the relations in (1.2.35) include the inverse relations
of the classical orthogonal polynomials like Hermite polynomial
Hn(x), Laguerre polynomial Lé“)(x),Jacobi polynomial Péa‘ﬁ)(x)

and its associated polynomials such as the Gegenbauer

(p (1723 ,V—(1/2))

n n {(x), the

polynomial: (v+(1/2)); Co(x) = (2v)

15



Ultraspherical polynomial:

Pga'“)(x). the Chebyshev polynomials:

(1/2)_ T_(x) = n! Pé“ifz"l/z’(x) (of first kind). and

(1/2.1/2)
(3/2)n Un(X) (n+1)! Pn

{x) (of second kind).
Further, in view of the fact that the general hypergeometric
polynomial considered by R.N. Jain [1] viz.

(c)n
nt

(c'k) . » b
(1.2.36) Fn {(ap).(bq).xl

-n. A(k+lictn), (a ); (k+1)F 1k }

F
prk-atk [ A(k:e). (BO);

(k is a positive integer),

the Brafman polynomial (Brafman [1])

s ) ) - A(s:;-n).a,,....a_; X
(1.2.37) Bn [(ap),(bq),x] "p+qu [ 1 p ]
bl,-‘-,bq s »
and the Rainville's polynomial (Rainville [1]):
~ n (c)_ (ctn), (-n)
(1.2.38) f_(x) = [ n k L e X

k=0 (C/Z)k(c/2+(1/2))k n!

are particular cases of the set {gi(x.r.s)} (Panda {1]):; the
inverse series relations of these polynomials can easily be
obtained from (1.2.9) in the forms as given below (in the same

order).

(1.2.39) (k-1)¥-1)n .n g’'n

j=0 (C)kn~n+j+1(al)n"'(up)n

(c.k) ) .
. Fj ((ap).(bq),x]

16



¢ with y_ = (k+1) . s=1, and

r=k a positive integer),

sn n‘{(b,) ...{(b)
(1.2.40) x" = ¥ 1'n q.n By [(a ):(by):x]
k=0 (sn-k)! Lal)n...(ap)n k!
(c)__(a.)_...(a.)
{with Yy = sn_1i'n p.r (~1)sn. and r=s), and
(bl)n"‘(bq)n n'
Loon o (-D* (evzm) ey
(1.2.41) 4" x" = ¢ _ £, (x)
k=0 yn (C)n+k+1 (n-k)!

(with s=1, r=2, and x is replaced by -4x).

1.3. CLASSIFICATION OF INVERSION PAIRS

The earlier works of Gould ({1] to ([4]) on inversion of
series evoked a wave of interest that was reflected in the works
of John Riordan who studied the inverse series relations at
length by classifying them into several classes namely, the
simplest type pairs, Gould classes, simpler Chebyshev classes,
Chebyshev classes, simpler Legendre classes and, the
Legendre~Chebyshev classes of inverse relations.

All the classes are recorded in the following tables.

17



Table-1

Simplest Inverse Relations

(1)

(2)

(3)

(4)

(3)

(6)

]
e R=

(-1) (

L (-1) (

bn= r (-1)

n+k ,p+n

p+k) a

k

n+k ,pt+k

p+n) x

n+k n! n-1
xt o (k-1) 2

(Riordan [2.Table2.1, p.49])




Table~2 : Gould classes of inverse relations
a = z An'k bk ; bn = % "7 Bn,éc a
An,k Bn,k
(1) ( pgfi;k ) -gfg%f%— ( Prank,
@ | EEER WL o
(3) ( PranTn L (Praxm)
@ | BEED amT | omT
(Riordan [2.Table - 2.2, p.521)
Table-3 : Simpler Chebyshev inverse relations
(i a, = X (;) b, -2k b, =L (—lik Egi (n;k) %n-2x
(23} a, > EE%%%i (ﬁ) bh-2x b, =L -1¥ (n;k) *n-2k
(D a, =X Egiéf (n;Zk) £n+2k b, =& (_1)k {n;k) ®n+2k
51 a_=f b, b =f (-DF X (K e
) a, =Lty b | b= (DX (“;")» a__,

(Riondan [2,Table-2.3,p.621)
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Table—4

Chebyshev classes of inverse relations

X
“n T x An,k n+ek ) bn = I 0 nn.k Seck
An.x Bk
n n n+ck+k
(1 Cx ) nckk (k)
n+ck+1 n n+ck+k
(2) kTl ( k ) { k )
n+ck n+ck nt+k-1
(3) { " ) ( k )
n+l n+ck n+k
@ weekxer Cx ) T
(Riordan [2, Table-2.4, p-63])
Table~-35 Simpler Legendre inverse relations
_ p+n+k - _1yntk p+2k+1 p+2n
(1) a, = L ( } bk =3 (-1) pFntk+l ( ak
= P+2n _ _q1 0tk _p+2n p+n+k
(2) 8 = o ) bk =L (-1 p+n+k ( ) %%
- p+n+k - _1yntk _p+2n+l p+2k
(3) L ¢ ) bk =¥ (-1) PHntk+l ( ) ay
- p+2k = _1y0tk p+2k p+n+k
(4) a, r( k-n ) bk r (-1 PHnik ( k-n ) ay
- p+2n - _1+k pten p+2n-3k
(5) z ) bk LD S U x 0 ) %
- p+2n-4k+1 _p+2n _ _q4:K ,p+2n-3k
(6} a, =L pten—k+1 ( ) =L (-7« 3 ) A, ok
'bn-2k

(Riordan [2, Table-2.5, p.68])
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Table-6 : Legendre-Chebyshev classes of inverse relations

a = z An‘k bk : bn = X (—u"*k ah'k a,
An,k Bn.k
(1) (B¥om) e R S
(2) (Prem) BreR (PreprienTh
(3) (Prek, Brek (PropinTRol,
(4) (Prek, -g{—?c—g (PrepTavk-l,
o | g, @
o | EE
7 | ae
(8 Pizﬁrjiinﬂ St (PrEn

(Riordan [2, Table - 2.6, p.69])
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1.4 BASIC HYPERGEOMETRIC SERIES AND ASSOCIATED POLYNOMIALS
Nearly thirty vyears after the Gauss's introduction of
hypergeometric series, E. Heine ([13.021) introduced an

interesting extension of this series in the form:

(1-¢®) (1-¢P) (1-¢® (1-a**hr (1-a®) (1-g"h
(1.4.1) 1+ x + - x “+. ..
(1-¢%) (1-q) (1-¢%) (1-a°*}) (1-q)(1-q%)
(c® 0,-1,-2,...; |x}]<1, ]Jq|<1).

Prior to this introduction, he defined a 'basic analogue’' of

a number 'a' in the form a
1-q
1-q
where the arbitary number g (#1) is called the base.

fa:q] =

From this it readily follows that as gq-1., [a:gql~-~a, and

that the series in (1.4.1) approches to the Gauss hypergeometric

series
ab a(a+l)b(b+l) 2
1+ = Y~ 1.2 Xt
(c ® 0,-1,-2,...; |x|<1).

Thus, Heine's series defines a basic analogue (or a
g-analogue) of the Gauss series ; and for this reason the Heine's
series is called a basic hypergeometric series (BHS) or a
g-hypergeometric series.

Just as it happened with the Gauss series that it was known
in other particular forms before its introduction, this ¢g-series
{(1.4.1) was also known in special forms prior to its

introduction. For example, the identity

© ®
1+ ¢ (-1)" { qn(3n 1y/2 qn(3n+1)/2 Y= (l—qn)
= 1

n=1 n=
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was given by Leonhard Euler in 1748 A.D.: also the triple product

identity

0 © 2

M oA-xa™ (1-¢™'x™ (1-¢™hy = £ (-1) Mg "2 K"
n=0 n=-w

and the Theta Functions: ei(z,q), i= 1,2,3.,4 were given by Carl
Gustav Jacob Jacobi in 1829 A.D. But it was not until about
sixteen years later that the field of BHS acquired an independent
status when Heine (see {1].[2].[31) introduced the g-series
(1.4.1) and carried out a systematic study of it. During this
study. he put forward a basic analogue of binomial theorem, basic
transformation formulas, basic analogue of the Gauss's summation
formula, and alsoc discussed the g-contiguous functions relations

(for detail, see Gasper and Rahman {1]). A g—-Gamma function which
S

£

he defined in the form

1-~qn

’ (L4]

Fe) =N~
q n=1 1__qx-!-n 1

differs slightly from Thomae's definition [1]:

1~qn

«©
N —=m-1
=1 1__qx-m 1

1-x
r = 1i-
q(X) ( aq)

n

Since then the field of BHS has developed notably in the
hands of many eminent researchers among whom the names of
F.H.Jackson, W.N.Bailey, D.B.Sears., L.J. Rogers, W. Hahn, L.J.
Slater, L.Carlitz, H.Exton, R.P. Agarwal, G.E. Andrews, R.Askey,
W.A. Al-Oalam, H.M. OSrivastava, A.Verma., M.E.H. Ismail, T.H.
Koornwinder, J.A. Wilson, G.Gasper, S.C. Milne, M.Rahman, V.K.
Jain are worth mentioning. It would not be out of place to say
that quite a good number of formulae given ?y S. Ramanujan may be

viewed as the special cases of the results involving BHS.
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To denote the series in (1.4.1), Heine wused the notation

¢(a.b.c.g.x) . However, the other notations:

. a.b; q, x
jbl(a,b,c,q.x). 2¢1 [ c; ]

are often used in analysis., in terms of which the series (1.4.1)

is representable in the form

o (a:q)_ (b:;q)
(1.4.2) 2¢1(a,b:c;q’X) = L X = X"
n=0 (C;q)n (q;q}n

where (a;q)n = [a]nis a basic factorial function defined as below.

(1-a)(1-aq) ... (1-ag™ %), n=1.2,3,...
(a;q)n = 1. n=0
n . .
(al, / laq' ], . n is arbitrary,

©
in which [al, = (a;q), = 0_(1-ag"), 0<q<l.

A generalization of (1.4.2) which provides a basic analogue
of (1.1.1) is rdg function defined as ( Askey and Wilson [1].

also see Gasper and Rahman [1]):
n

... l8 X
n [r]n

n=0 [by1,...[b. 1 [q]

w {31]

a,,...,a_: q.X%
(1.4.3) ¢, [ 1 r ]

bl,...,bs; n

s
. {(__1}n cIn(n-i)/z}

The infinite basic series in (1.4.3) converges for all x if

-r+l

0<|q}<1 and r = s. If 0<}{q}<1 and r = s+l then it converges for
[x]<1. The various specializations of this r¢;[xj function
include the basic expenential functions defined by ( cf. W.Hahn

[2], Gasper and Rahman [11])

) xk
eq(x) = B (0:i-:q.x) = E f—~gv=

1
W& ai ) f§Z¥ (]x}<1)



and

o) k
_ . - k(k-1)/2 _x~ _ _ .
E (x) = 4, (—5-:q.%) kEO q Tql, [-x1, :

the basic sine and cosine functions viz.

. . x 3.2 __2 . - X L3 2
Slnqx = 1q o (—:aT:a% -x ), Bin X = 7. ,$,(0.0:q g F-x %.
= 2 _ax? = cq:q 2-x 9

Cosqx = 045 (-:q:q9",—-gqx "}, cosqx = 24&(0.0.q.q . X g,

also, the Basic Gamma, and Beta functions given by

1-x
Fg(x) = [ql (1) 7% 4 (0:-:97. and

1
- - Y. .. X

Bgx.y) = (1-q) P, [ @7 -5 q. 97 1.

Moreover, the Dbasic Bessel functions are also expressible

in the particular r¢; functions by means of the following

relations.
[qv+1]

(1.4.9) 3V xq) = —2 (2)” $, (0,08 iq.-x%/4).
(al, *

and
[qv+1]

(1.4.5) 3P (x;q) = ——2 x/2)” ¢, (-:0"  ia.x%" /4,
[ql,

(for further detail refer to Hahn ([1].({2]). Gasper and Rahman
[}], and H.Exton [1]).

As the choice a ( = q%) = q ", for atleast one i (1<i<r),
n=0,1,...,reduces the infinite series in (1.4.3) to a terminating
series, the Dbasic hypergeometric representations of wvarious

basic polynomials may Dbe obtained by ppecializing the
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parameters in (1.4.3). As an illustration, putting r=i,s=1, a,=

- . oot
q n, b1 = xq (5qa+1), one gets by replacing x Dby —an 1,

basic Laguerre polynomial

(x) {“Q]n ~Ti x+n+1

(1.4.6) L ~"(x:q) = 1¢§ (g " ;xq:q.-xq ).
lal,

This polynomial was studied by D.S.Moak [1], and also, it

was taken into account by Al-Salam and Verma [3] who constructed

()

n (x:kjQ)

a pair of Dbiorthogonal polynomials: Zé“)(x;qu) and Y
which are known as qg-Konhauser polynomials. It is worth
mentioning that the polynomial

(o) [xql, . N (q k1, qk)j

(1.4.7y Z_ ~'(x:k|q) = ——— L .
n d%:®) 370 (&*: &), [xql.

n J JK

qkj(n+a+1)+kj(kj—1)/2 ij

reduces to the polynomial t1.4.6) when k=1.
Amongst the other 'ordinary' polynomials, the Jacobi
polynomial Pé“’ﬁ)(x) is worth noting here for, it possesses two

basic analogues. The one is given by (cf. Gasper and Rahman [1]):

- +
(1.4.8) p_ (x:.3:0) = b, (3 Nopa ™ xa: g, xa).

which is known as 'little' g-—-Jacobi polynomial, and the other is
given by
= -n n+l . )
(1.4.9) Pn(x,a,b,c,q) = s@a (g . abg ., X; aq, cq: q. q)
known as 'big' qg-Jacobi polynomial.
Thg little g-Jacobi polynomial (1.4.8). with =0 provides

two more basic analogues of the Laguerre polynomial Lé“)(x); they

are the Wall polynomial, and the stieltjes -~ Wigert polynomial as
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stated below (Gasper and Rahman (1.p.1986]).

n qj(j'slfz
(1.4.10) Wn(x:a.q) = (-»)" {a]n qn(n+1)/2 r I ? 1
j:zO fal.
]
(~-q“nx}j
and 2
n _-n(zn+s)/z n n a’ 3
(1.4.11) 8 (x;p.q) = (-1)" q (Pl , L [ 51 — (=@~

Ancther g-polynomial with 3¢E - representation besides the

‘big' gq-polynomial (1.4.9), is basic Hahn polynomial defined as

- + —
a ™. apg™?t, q7*; q.q }

N
xq, 9

(1.4.12) Q (x:x.B.Nlq) = ¢, {

(cf. (1.1.8)).
Recently, in the study of general orthogonal g-polynomials,
R. Askey and J.A. Wilson [1] considered the g—extensions of the
Racah polynomial and Wilson polynomial (stated in (1.1.9) and

(1.1.10)) in the forms

— + -_— -
q n, abqn 1, a x, cqx N:q.q
(1.4.13) W _(x:a.b,c.Njq) = ¢,

aq. aN,beq:
and
P (x:a.b,c,d|q) q ™, abedq™ !.aei?, ae%;q .,
(1.4.14) 2 - b, _
a [ab]n[ac]n[ad]n ab, ac, ad;

which they call g-Racah polynomial, and Askey-Wilson polynomial

respectively. It can be seen that these polynomials contain among
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the other polynonials, the g-Jacobi pclynomials, g-Hahn
polynomial ,and the continuous gq-Jacobi polynomial considered by

M. Rahman {1] in the form :

P;“’ﬁ)(cose:q)=

- + e . -i6
leq) [-Aq) a ™™, o™t vgel® .vge 1% q.q}
4v3 xq, —3q, —4q:

lal,[-al,

1.5 BASIC INVERSE RELATION

In the early sixties when the inverse series relations were
being discovered by Gould ({3]).[4]1.[5]). Riordan {2]}. and others
{see e.g. Stanton and Sprott [1]), Carlitz [2] studied several
inverse series relations and their basic analogues from the point
of view of deriving the inverse relations involving certain
polynomials. During his study, he was led to several more
general inversion pairs. Out of these the following basic pairs

are worth mentioning [2, p.196].

r [n/2] n
Un = B D xd Voo
(1.5.1) £ if, and only if
[n/2] 1-q"
k k(k-1)/2 -k
vV = £ (-1) g — I 1 U _
. n x=0 1-§ k k n-2k
and
; [n/2] .
= n _ n
% = E, { [ k1 {k—ﬂ} Vn-2x
(1.5.2) 4 implies
{n/2] '
= _a Kk _K(k—t)/2 n—-k
\ v x§o (-1)" q [ 71 U o -
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It may be observed that the pair (1.5.1) provides a basic
analogue of the simpler Chebyshev <class No.(1) in Table-3,
whereas the pair (1.5.2) provides a ‘'one sided' basic inverse
relation of the class No.(2) of the same table.

In one of his other papers on g-inverse relations, Carlitz
[3] proved a very general.as well as useful result in the form of

a basic analogue of the pair (1.2.31) due to Gould and Hsu. The
N
result states that if ai+q'xbi#0. and y(x.,n.q)= ] (ai+§x b;).then

=4

[ k qk(k*x)/z

n
f(n) = ¥ (-1) [ %1 wk.n.q) g(k)
k=0

(1.5.3) 4 if, and only if
-k
n (a +q b )
g(n) = ¢ (~1)k qk(k—znﬂ)/z [ : 1 k+1 k+1 £(K).
q k=0 vin,k+1,q)

With the aid of this pair. he obtained certain particular

inverse series relations including the pair ([3,p, 898]

n
£(n) = [ (-1 gKKTERHI/2 pon g patntky gy
k=0
(1.5.4)
n a+2k+l
- 11k _kK(k-1)/2 n i-q” ™ = a+n+k, -1
g(n) kEO( HTa . 1-q@ KT 7% 71
f(k),

which provides a basic analogue of the pair in (1.2.17) when

b=1. He also obtained a basic analogue of the pair (1.2.13) in

the form:
n
f(n) = T (*1)k qkh(k~2n+1}/z [ ; ]x [a+khl g(x)
k=0 n
(1.5.5) n a+kx~k
= _11K JAr(k=)/2 o n 1-¢7 ™™ atnhg -
gin) = L (-1)" g Dxdn amex D1
(k)
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by means of a more general inverse relations [3, p.900]

n
- A
fn) = f (-1 N2 LR wikin,dY) gk,
X=0
(1.5.6) .
g(n}) = L (-1)k qu(k_i)/z [ 2 ] (ak+1+ qubk+1)
k=0
£ (k)
- )\' Y
where w(-n,k+1.q )
(1-q™) (1-q (P71 | (1-g(PkHLR,
[ %1, = ™ k¥~ 7N - - 0.
(1-q 7 )(1-g }.o.. (1= ) (1-q )

The other consequences of the pair (1.5.3) although not
discussed in [3], are worth mentioning here. They are the inverse
series relations of the basic Jacobi polynomials (1.4.8) and
(1.4.9), the g-Hahn polynomial (1.4.12). and the g-Racah and the
Askey-Wilson polynomials mentioned in (1.4.13) and (1.4.14)

E

respectively. As an illustration, replacing q by q and., then

setting a;=1, b.= -a***1 and g(n)= (epal %" / [xq)_ in (1.5.3),
one finds after a little simplification the following pair of

inverse relation involving the little g-Jacobi polynomial.

n+l

hat &)
n [q ], [x3q ]
P,(x:x.3:q) = L k L x* qk,
(1.5.8) 1 k=0 [xql, [qly
. no o La7) (1-epg®*tY
x' = [xq], k}:o q Py (x;x.f3:q).

[xql, [x3a**] .

In a similar manner, the inverse relations of the other

polynomials may be obtained in the forms as given below.
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-n n+l -
n [a 1, [o3q I, [qa 7]
Q (x:x.3.Njq) = ¢ k - L k qk,
(1.5.9) +
- _N n nk [q.—n]k ( 1“‘“f§q2k+1 )
tq 71 = [a "1 [{xql, q %+ 1

-Qk(x;aoﬁanq) N

(pair of inverse relation of basic Hahn polynomial);

1,0a 71, rsa®

k g4

( n [q ™™, g™
R (n(x):x.B.7.6:q) = E -
k=0 [xql, [B6ql, [rql, [4]y a

(1.5.10) ¢

1, (s

-n 2k+1
nk [aq ]k (1-of3q )

q
0 loa™ 1 L. fa),

-X
[q n

o (aq}n{ﬁéq]n[rq3n k

(o B=]

It

- Rk(H(x) ;anﬁ'?"é;q)'

where m(x) = q ~+ yéqx+1

(pair of inverse relation of basic Racah polynomial):

(P (coso:a.b.c.dla) n [q ")y labedq" 1, fae’® ) rae T,
=E k_,
(1.5.11y 4 [=Pintecinladdy k=0  [ably [acly [adl, [qly q
{aeiel [ae—ie] n [q"n] (1—abcdq2k’1) an
n n - k
X-1

\ [ab]n [ac]n [ad)n k=0 {[abcdq ]n+1 [ab]k{ac]k[ad]k

.Pk(cose;a,b.c,d]q).
({pair of inverse relation of Askey-Wilson polynomial).

On the other hand, the substitutions ai=1. and bi=0 in

(1.5.3) lead to the inverse relations of the basic Laguerre

polynomial: Lé“)(x:q) defined in (1.4.6), the Wall polynomial



Wh(x;a,q) given in (1.4.10). and the Stielt jes-Wigert polynomial:
Sn{x;p,q) cited in (1.4.11). In fact, with the aforementioned
subgstitutions, the pair (1.5.3) assumes the simplest type of pair

as inen below.

n
fn) = ¢ (-1)F &2 0 2y goa.
k=0
(1.5.12) 1
n
g(n) = T (_1)k qk(k-ﬂnﬂ)/z [ :3 £(k),
X=0

whence the inverse relations of the above mentioned basic
Laguerre polynomials are easily obtainable. In order to illustrate

this, set

n._n
{(1-q) X
g(n) = qn(n+1)/z +an

[«ql
in (1.5.12), then it follows from (1.4.6) that [o:q}nf(n)/[q)n

defines Lx(;x)(x:q) and thus. (1.5.12) yields the pair:

K(kta) sz L 1y lealy (1-qF (&M x)*

laqly [aly (a1

(1.5.13) -
b 1
n - n {q 1, [xql]
:;] - q—-om ni{nts) /2 T k n qk L(}?)(x;q).
. n k=0 - [“‘ﬂk

Likewise, with f(k) = xk/(a]k{q]k , the above pair (i.5.12)
gives

n nin+) /2

(-1)" [al,lql g g(n) = W (x:a.q)

and consequently, one finds the pair of relations:
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n
ni{in+) /2 T (-1)k qk(k—zn-s)/a

. n
W (x;a,q) = (~1) [a]l_ g
n n k=0
[ 21 Xt
) k [a]k :
(1.5.14) «
n W (x;a.,q)
n -k n k
x =f(al., & q I ]
T x=o k {Q]k

\ 2
gHK /2) & in (1.5.12) and,

and similarly, putting g(k)

comparing it with (1.4.11), one arrives at the inverse relations

involing Stielt jes-Wigert polynomial as mentioned below.

2
-n(zn+1) /2 [p] 1)k qk +k/2.

(_.
(o]
[ n ] __Ei_
k (el

-

fr1n

_ (_qD
Sn(x,p.q) = (=1} g n

(1.5.15) A
Sk(x;p.q)

k-nk+sk’ /2 [ ™
k fply
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