
CHAPTER-2
INVERSE SERIES RELATION I

2.1 INTRODUCTION
Having motivated by the inversion formula put forward 

recently by Singhal and S.Kumari [1], in the form :
En/m]

(2.1.1) -

F(n) - £ yk
k=0

k. p-Xn+Xmk , p-Xn+k. £(n> - I ‘-F > p-Xn+k < k
k=0 v

an attempt has been made in this chapter to provide a further 
extension of these inverse series relations in the light of the 
Gould's inverse pair :

F(a)
(2.1.2) -

f(a)

E (~l)k C a+£k> f(a+bk-k),
k=0

E C F(a+bk-k),k=0 *
(see (1.2.16)).

In fact, the proposed general inverse series relation which 
is stated below as theorem-1 provides a very useful unification 
of the above mentioned pairs, for besides yielding the special 
instances of (2.1.1) and (2.1.2), it also giveB rise to a large 
number of other inverse series relations including the Riordan's 
classes of inverse relations given in Tables 1 to 6.
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THEOREM - 1
(2.1.3) u(a)

M
E
k=0

yk VC a+bk) 
k! T(1+p-ar-brk-k)

if. and only if

(2.1.4) V(a) 

where

M£ (-y)k P~a^7brX r(p-ar+k) u(a+bk)
k=0 k*

M =
' [-a/b], if
„ Qo. if

’a* is positive and b is a negative integer 
'a‘ and 'b‘ are positive integers.

2.2 PROOF OF THE THEOREM
In the inverse pair (1.2.31) of Gould and Hsu, put

= p-nr+i-l, and b^=mr-l. for all i. Then after a little
simplification and modification one finds the following inverse 
relations.

(2.2.1) ■
E <-l)k C i ) r(p-nr+mrk-k+j) gt . k=0

g.
3E

k=0
t iikr 3 % p-nr+mrk1 ; K k J r(1+p-nr+mrj-j+k)

This inverse pair provides a useful tool in the proof of 
theorem-1. Yet another (preliminary) result which will also be 
used in the proof, is that if p(x) is a polynomial in x of degree 
less than n, then

n .(2.2.2) £ (-D ( J 5 p(a+bk) - 0. nil.
k=0

In the first place, employing the method due to Gould [3], 
the theorem will be proved by setting a = n (n«0,l,2 .... ),and
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b = ~m (m=l,2,3,....) that is, when M = [n/m].
For the sake of simplicity, [n/m] will be denoted by N.
If a denotes the right hand member of (2.1.3),then on making 

use of (2.1.4) (with M = [n/m] = N), one gets

o
N N-k . . ^.E E (-nJ yk J
k=0 j=0

(p-nr+mrk+mrj) r(p-nr+mrk+j) 
kl j ! F(1+p-nr+mrk-k) u(n-mk-mj),

which with the aid of an easily justifiable relation :

N N-k N j
(2.2.3) E E A(k,j) = E E A(k,j-k),k=0 j=0 j=0 k=0

takes the form :
N . p-nr+mrj k .

(2.2.4) 0 *» E (~y)J --- tt--- u(n-mj) E (-D C v ) '>0 j-0 K

r(p-nr+mrk-k+j)
• r(p-nr+mrk-k+1) ’

Now since,
r(p-nr+mrk-k+j)
F(p-nr+mrk-k+l)

(2.2.4) becomes
N . p-nr+mrj j . j-1

o- - u(n) + E C-y)J --- -t-- u(n-mj) . E C-1 )K ( {) E « ksj=l J • k=0 K s=0 s

which in view of (2.2.2) vanishes for all j>l and consequently, 
a *= u(n).
With this the proof of the first part is completed.

! f| (p-nr+mrk-k+j-i) 
i=l
j-1

- Es=0 a k s
s
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In order to prove the converse part, take 
N . p-nr+mrkE (~y)K --si-- r(p-nr+k) u(n-mk) = R -

k=0

Then on making use of (2.1.3), and £2.2.3) in succession 
one arrives at

N . V(n-mj) j . . (p-nr+mrk) T(p-nr+k)
(2'2-5) ** “jSo y A*-11 r( l+p-nr-Hnrj-jHOO

It will now be shown that the inner series in (2.2.5) is 
equal to ^j0- In fact, denoting this inner series by g^, and 
replacing r(p-nr+k) by f^, one gets

(2.2.6) gj JE c-Dk C i )k=0 K

p-nr+mrk
 fr(1+p-nr+mrj-j+k) k

In view of (2.2.1), the relation (2.2.6) is invertible in 
the form

j k i
(2.2.7) f* E (“D ( k ) r(p-nr+mrk-k+j) g. .3 k=0 K K
wherein on setting

- < l >
one finds

fj = r(p-nr+j).
Whereas in (2.2.6). the same substitution yields the

relation -
, 0 . E (-D kC kj> k«0 15

(p-nr+mrk) T(p-nr+k)
^ j J F(1+p-nr+mrj-j+k)

Thus, (2.2. 5} becomes
N . V(n-mj)Ai = V(n) + E yJ --p--- <5 ,
j=l J• Jo
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and thus

r(p-ar-brk+j-k)
r(1+p-ar-brk-k)

oo p-ar-brj j(2.2.9) = u(a) + £ --- n--- u(a+bj) £ (-1)K( .J) .
j=l J‘ k=0 K

r{p-ar-brk+j-k) 
_________

Since, the inner series in this last expression is same as 
the inner series occuring in (2.2.4), it follows that the

M = V(n);
which completes the proof of the converse part, and hence the 
proof of the theorem when M = [n/m].

The proof of theorem-1 corresponding to the case M= oo which 
runs almost parallel to the above, involves the use of the double 
infinite series manipulation in the form as stated below.

oo oo oo N
(2.2.8) £ £ B(n.k) = £ £ B(n-k,k)

n=0 k=0 n=0 k=0

In order to prove the first part it may be observed that in 
view of the relation (2.1.4), the right hand side of (2.1.3), 
denoted for brevity by A, can be expressed in the form :

00 00
A = E E <■k=0 j=0

-i v-i.* (p-ar-brk-brj) T(p-ar- 1)J yk + J ------- T-T—rr- w P 8 :------------ ;—s—brk+j)
j ! r(1+p-ar-brk-k) u(a+bk+bj).

oID
JZ4->c•rl4
->

3a(D
X

I>■.
oSto to 03t M- r+ rr r+ rr a rr

 ® i—* ■a o

x A Wuo

X
I+•o I 01 h I tr h O-i.•f)H
Io

8 W
 m

ii

<1
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expression (2.2.9) leads to the relation
A * u(a),

which completes the proof of the first part for the case M= <b . 
Converse1y, put 

co p-ar-brk£ (_y)K ---—--- F(p-ar+k) u(a+bk) » 9 .
k=0 K*

Then on making use of the relations (2.1.3), and (2.2.8) in 
turn, one arrives at

(2.2.10) 9
uuE yJ
j=0

V(a+bj)
j!

E (-l)k C l ) (p-ar-brk) ' 
k=0

T(p-ar+k)
r(l+p-ar-brj-j+k) '

Again, it is easy to see that the inner series occuring in 
(2.2.1Q) is of the same form as that of (2.2.5). Thus, employing 
the method used to obtain the orth ogonal series relation 
corresponding to the inner series in (2.2.5). one finds the 
following orthogonal relation implied by the inner series of 
(2.2.10).

(2.2.11) C ° > 2 k i
E C-l) C Z >k=0

(p-ar-brk) T(p-ar+k) 
r(l+p-ar-brj-j+k)

With this orthogonal relation, the expression (2.2.10) gives 
© - VCa).
This completes the proof of the second part when M *» oo, and 

hence the proof of the theorem.
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2.3 ALTERNATIVE FORMS OF THEOREM-1
In this section several alternative forms of theorem-1, 

involving the binomial coefficients, are given which will be used 
in the next section in order to illustrate the various particular 

cases.
First see that theorem-1 when rewritten in terms of binomial 

coefficients, reads (when y=l)

u( a)
(2.3.1) "

E CP~arbr}b V(a+bk) , 
k=0

V( a)
M
T (-1

p-ar-brk

This pair of inverse relations enables one to obtain some 
more alternative pairs. For instance, on multiplying both the 
relations in (2.3.1) by p-ar, and putting (p-ar) u(a) = u*(a) and,

T#f(p-ar) V(a)= V (a), one gets the pair

/* *u (a)
(2.3.2) ■

*V (a)

M
E C
k=0

p-ar-brk-1
k

p-ar
p-ar-brk-k

E C-l)k CP-*1”?*-1
k=0 K

u (a+bk)

V *( a+bk),

Further, on replacing p by p+1 and, r by -r 
transformed to

M
f P+i k

(2.3.3) <

u*(a) = r £p+ar+brk . P+ar+1
kt0 V k J p+ar+brk-k+1

MV («) - E C-U* CPT+k) u*(a+bk)
k=0

(2.3.2) gets

V *{a+bk),
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Again in view of the formula CRiordan [2,p.l])

(2.3.4.) (-D n< a;n-1)

the above pair (2.3.1) takes the form:

M

(2.3.5) -

u(a) = E C-Dk c“p+ar+frk+k“1> V(a+bk) 
k=0 *

V(a)
M p-ar-brk _n+ar_iE —C P+®r ) u (a+bk)
k=0 p-ar+k

Also, applying the formula (2.3.4) to the pair (2.3.2), and 

then replacing -p by p, one finds the relations :

(2.3.6) ^

u«o . E (-Dk (p+ar+vrl!+k> 
k=0

V(a) * £ CPtar) u(a+bk) .k=0 k

p+ar
p+ar+brk+k V(a+bk),

Lastly, the substitutions br=-l and a=n (n=0,1.2, 
theorem-1, give useful pair of relations

.) in

M
(2.3.7) u(n) - E 

k=0
V(n+bk)

k!
M

V(n) = E (-D
k=0

k u(n+bk) 
k!

2.4 PARTICULAR CASES
It is not difficult to see that the pair (2.3.6) under the 

substitutions p=0 and r«l. readily yields the inversion pair 
(2.1.2); whereas theorem-1 with a=n, b=-ra (n=0,l.2....; 
m“l,2,3,...) and with r replaced by X. reduces to the inverse
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pair (2.1.1). Thus, the polynomials f^(x,y,r,m) given by (1.1.12) 

and those associated to it namely, the polynomials of generalized 
Humbert (1.2.23), Humbert, Kinney etc. are contained in theorem-1 
together with their inverse series relations (see (1.2.26) to 
(1.2.30)).

On the other hand, the inverse series relations classified 
into the simplest type pairs, the Gould classes, the simpler 
Chebyshev classes etc. (see section-1.3) may be deduced 
(directly) from theorem-1 or they may be obtained in a 
straightforward manner form the inverse pairs of relations given 
in section-2.3.

As an illustration, consider the pair (2.3.7) which is 
capable of yielding the "simplest inverse relations" given in 
table-1 (section-1.3).In fact, when b»-l the inverse relations in 
(2.3.7) gets reduced to
(2.4.1) u(n) = £ V(n-k) V(n) = £ (-l)k -U--]?Tk> •

k=0 k=0 K‘

If these series are reversed, then (2.4.1) reads as

(2.4.2) u(n) - £ . V(n) - £ (~l)n_k f
k=0 K}’ k=0 tn KJ•

This inversion pair, with u(n) replaced by an/n! and,
replaced by bn/ni. transforms to

an
nE <k=0 b n

n _.£ (-l)n K C
k=0

V(n)

which is the simplest pair No.(l) in Table-1 (of section-1.3).
Likewise, putting b=l, replacing k by k-n and . then putting 

u(n)= n!an, V(n)=n!bn in (2.3.7), one arrives at the second 
simplest pair (of Table-1) :
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an £ <k=n n
£ (-l)n+k C
k=n

a k

The remaining pairs follow in a similar manner (see 

Table-7 at the end of this section).
In order to get an inverse series relation belonging to the 

Gould classes, set a=*n a nonnegative integer, b=-l, and r=l-q in 

(2.3.1), so that

u(n)

V(n)

£ ^p-(l-q)n+(l-q)k^ V{n_k)
k=0 K

£ (-1) 
k»0

p-(l-q)n+(1-q)k 
________ .p-(l- :q)n+k5 u(n-k)

This may be put by reversing the series, in the form

u{n) - £ CP^qi"k > V(k) .
k»0 K

nv(n) « £ (-1)
k=0

«« ^p+qn-k^p+qn-k ^ k ' 1 ' *

which is the inversion pair No.(l) in Table-2.

In an analogous way, one can obtain all the inverse relations 
quoted in Table-1 to 6, by specializing the parameters b.r, and p 
involved in the pairs (2.3.1) to (2.3.7) as indicated in the 
following tables.
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Table-7: Reducibi1ities to simplest inverse pairs

Inverse pair 
(citation)

b u(n) V(n)
pair
No.
in

Table-1

' -1 a /n! n Vn! (1)

1 n! an n* bn (2)

-1 (p-n)ian (p-n)!bn (3)
(2.3.7)

-1 an/(p+n)! bn/(p+n)! (4)

1 (p+n)»an (p+n)*bn (5)

-1
s.

an/n!(n-l)! bn/n!(n-l)I (6)

Table-8 : Reducibi1ities to Gould classes

Inversion pair 
(citation) 
with a=n

b r P Pair No. 
in

Table-2

(2.3.1) -1 1-q P (1)

(2.3.3) -1 q-1 P (2)
(2.3.6) 1 q-1 P (3)
(2.3.5) 1 q-1 -p-1 (4)

44



Table-9 : Reducibi1 it ies to simpler Chebyshev classes

Inversion pair 
(citation) 
with a=n

b r P Pair No. 
in

Table-3

(2.3.6) -2 1 0 (1)

(2.3.5) -2 1 -1 (2)
(2.3.1) 2 -1 0 (3)
(2.3.3) 2 1 0 (4)
(2.3.1) -1 -1 0 (5)
(2.3.3) -1 1 0 (6)

Table-10 : Reducibi1ities to Chebyshev classes

Inversion pair 
(citation) with a=n

b r P Pair No. 
in

Table-4

(2.3.6) c 1 0 (1)

(2.3.5) c 1 -1 (2)
(2.3.1) .c -1 0 (3)
(2.3.3) c 1 0 (4)
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Table-11 : Reducibili ties to simpler Legendre classes

Inversion pair 
(citation) 
with a=n

b r p Pair No. 
inTable-5

(2.3.5) -1 2 -p-1 (1)

(2.3.6) -1 2 P (2)
(2.3.3) 1 2 P (3)
(2.3.1) 1 -2 P (4)
(2.3.6) -2 2 P (5)
(2.3.5) -2 2 -p-1 (6)

Table-12 : Reducibilities to Legendre-Cbebyshev classes

Inversion pair (citation) 
with a=n

b r P Pair No. 
inTable-6

(2.3.6) -1 c P (1)

(2.3.6) 1 c P (2)
(2.3.1) -1 -c P (3)

. (2.3.1) 1 -c P £4)

(2.3.5) -1 c i •o 1 l-
» 
,

(5)

(2.3.5) 1 c -p-1 (6)
(2.3.3) -1 c p (7)
(2.3.3) 1 e p (8)
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It is to be pointed out here that if the various parameters 
involved in theorem-1 are particularized suitably in the light 
of the series expansion of the Bessel function :

(2.4.35 Jn(x)
09
Ek=0

(~l)k (x/2)n+2k 
r(ntk+l) k!

leads to the (known) Neumann's expansion ( Rainville [1], 
Watson [l.p.132]) :

(2.4.4) (x/2)n - £ r(n+k) Jn+2k(x)
k=0
(n is a nonnegative integer).
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