CHAPTER-3

INVERSE SERIES RELATION II1

3.1 INTRODUCTION
As mentioned in chapter-1.Carlitz [3] gave a basic inversion

pair in the form :

n
A
(£ = (-pF JAEERIZ LRy kndh) g,
k=0
. ,
P11 gy = f X RN o LRy
=0
£(k)

.

¥ (—n.k+1.qx )
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e da (F=1I% X . Ow0)
1-d* > (1-q TR
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n
w(k.n,q) =N (a.+q P'b.).
i=1 ! :

When A=-br-1, a =1, and bizqu-ar+1~1, the products

w(*k.n.qx) and w(—n.k+1.qk) get particularized respectively, to

qp-ar—brk~k p-ar-brn-n,

(q ©
qp*ar—brn—n+k+1]

{
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]m
p-ar—brk+n~k] ‘
«©

and

,

{

a

and conseguently, the above pair (3.1.1) gets reduced to
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4 B1

n
- k k(k-2n#+)/z n X
An ~§§o (-1)" q, L k ]-brd [qp~ar~brk+n~kL;
(3.1.2) ¢ n
- kK k(k-1)/2 n _. p-ar-brk
B n= L (-1) q, [ X }_brd (i-g ).
k=0
p-ar-brn-n+k+1
lq ]m Ak
\

bt
where., q L, =q

The inverse pair (3.1.2) provides a useful tool in obtaining
a basic analogue of theorem-1 which is proved in section-2 of

this chapter.

An investigation of this theorem for obtaining wvarious
particular cases, leads to certain seemingly new basic analogues
s C 3}
of the polynomials fn(x,y,r,m), Pn(m,x.y,p,C}, nn'm(x). Pn(m,x)
pn(x). Cz(x). and the Legendre polynomial Pn(x) along with their

inverse series relations.
A complete list of the basic analogues of polynomials cited

above, is given in the following table together with. the

notations used for them.
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Table-13 :

Basic polynomials

Ordinary Basic analogue Relations with their
polynomial particular polynomials
(Name)
fg(x.y.r,m)
(of Singhal & fg(x,y.r.mlq) e
S.Kumari)
P (m,x.y,p.C)
(Generalized -p 1-g
Humbert ) Pptm.x.y.p.Cla)p £,7Cx. - ;y.1.m|D
Y (%) > {(x]q) v
M, m Mn,m**19 f (x.1.1.m]q),P (m,x,1,-»,1}{q)
{Humbert)

1/m 1/m
P_(m,x) P_(m.x{q) f 7 (x.1.1,m|q)., nn'm(xlq),
(Kinney) -

P_(m,x,1,7% ,1|q)
- i/2 1 /9
P, (X) pn'q(x) £, (x.1.1.3]q). nn‘s(xlq).
(Pincherle) -1

P (3.x,1,—5 .1]q)
¢k (x) ¢ (x]q) £r(x.1.1.2[q), M, (x|a),
(Gegenbauer) Pn(Z.x,1.~V.llq}

1/2 - /2
P_(x) P_(x|q) £/% (x.1.1.210), M/ x|,
(Legendre) -1

P (2,x,1,—5 .1]q)., P (2.x|q)

The explicit representations and the inverse series relation

of these polynomials are given below.
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—-c~nr+mrk-k+1 ]

. ' [n/m] [q ¥
f°(x,y,r.m{q) = [ 3 = &
n L —o-nr+mrk+1 D . A

) k=0l o (R T R o
s S8
(3.1.3) - s o S
- r*\wlﬁ“
{n/m] . (1-q e
anxn = [ (¥ imrtikk=)/z '
k=0 (qmr_}' :qmr“l )k
—c-nr+
' [q c-nr 1}m .
\ —==rir— fn-mk(XY-r-mla);
lq Jo

. [n/m] {qp~n+mk-k+1] (1-q )p -n+mk-k yk
P (m.x,y.p.Clq) = E p-n+mk+1 = m-1_m-1
x=0 I[q 1y (@™ tal
(3.1.4) - (1-q) PR ((gP-1)x) K,
; "1 )n <" _ {n}/:m](uy)k q(m—s)(k—s)k/z 1-g p-ntmk
1-¢¢ ~ 9l k=0 ("t g,
-n+1
CLALAAS WU 5
“ q )
q 2 o]
P g <L (g RRH  (q™-1)/(1-g)) K
(xjq) = ¢ ——me ,
n.m k=0 [q TR (g™ g™, ra)
(3.1.5) {
~v-n+
¢ oy X7 ={n£m](_1,k gtk (k1) /2 (1-q )
o
- -n+l »
) | [q lo Moomk,mXI D
(qm-l;qm-—l)

X
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(3.1.6) A

[ ~(1/m)-n+mk~k+1 mk

(3.1.7) «

(3.1.8) ¢

P_(m,x| )=[ﬂém} ta ]m(xiqm”l)/(l"q))n_
n AT & (g (/M nimkil m-1__m-1
_. =(1/m)-n+mk
¢ oty R N ’
a® ey, ko -(1/m)-n+k
[q 1,
L [q—-(l/m)—nﬂ]w Pn_mk(m.x[q)
’ m-1 m—-1
(q H| )k
Ph,q!¥)= & YT
’ k=0 ;
la lo (9 i@ )y [al gy
-(1/2)-n+3k
2 {n/3) (1-q )
(q%+q+1) ]’ = {al, kEG (-1H¥ qk(k”’) )
[q—(1/2)—n+k]m
\ (1/2)"““
) fq ]oo pn-—ak.q(X)
2 2
(q :q )k
Cu(x . (n/2] [q—v-n+k+1]m (1+q)n~2k (_x)n—Zk
ntxla) = kgo [q 7 NTZRAL ’
49 o [Alqo  [a9ly
(-x)° -_-{n}/:ZIt—l)k k(k-1)/2 (179 T e,
{QJn k=0 d -~y ~n+K n
{q Jo [al, (1+q)
. C:;_,Zk(xlq)



’ -n+k “Zk n"‘2k
P_(x|q) z[nézl R T G
(3.1.9) " k=0 (q MBI a1, g ey
. . <
—(1/2)-n+2K
1+ (-x)" ={“£2](_1)k k) /2 (i i
[q] - -~ -
n k=0 [q (1/2) n+k]m [al,

L ‘ q(1/2)-—n

{ lo Pn*Zk(x‘q) ;

(cf. (1.2.26) to (1.2.30)).

3.2 MAIN RESULT

The proposed basic analogue of theorem-1, in terms of the

notations of section-1.4, may be stated in the form of

THEOREM-2. If br #-1, then
(3.2.1) F(a) g k iqp—arﬂbrk-xﬁjm G(arbE)
« . a = y — — — - a+
k=0 (g Pr1,g7br 1)k
if, and only if
_.p-ar-brk

= " k _-(br+s)(k-1)k/z (1-q ) F(a+bk)
(222 SInE (e p-ar+tk -br-1_ _-br-1,’

k=0 [a ]m(q :q )k
where

[-a/b]l, if 'a’' is non negative integer and 'b' is a
M= negative integer

o, if 'a’ and 'b' are positive integers.

If br = -1, then the following relations hold true,
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M X [qp—ar+1]

(3.2.3) f(a) = ¢ Y - g(a+bk)
k=0 (@:a)y
if, and only if
M f{a+bk)
k=0 (d 1o(a:a)y

wherein M is same as above.
The proofs of\theorem—z corresponding to the two separate
cases : M = w and M = a positive integer, are as given below.
When both a and b are positive intergers, i.e. when M = o,
the proof of 'if' part uses the method due to Carlitz{3]. wherein

the following well known relation will be employed.

n n
3.2.5) £ V2 2y 2* o e, n=1.2.3.. .
k=0 k=1

¥*
Denoting the right hand side of (3.2.1) by F , and using

{(3.2.2) for G(a+bk), one gets

[qp—ar-brk—k+1]

* b it kX _k+j i(j—)/2 m
F = § L (-1)F y'd gltJ :
. -ar- +
=0 j=0 1 [qp ar-brk J]m
1- p—ar—-brk-br j
T gy~ F(atbk+bi),
qx'gi j q,:9, g
(q!= q—-br-t).

This may be put in the form :
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* © L ags _.p-ar-brj '
(3.2.6) F = F(a) + T (-y)’ qf““‘)/z l(q =3 F(a+bj)
j=1 qi' 173
. [ p—ar—brk-k+1}
J 0¥ 37 GKk2in) /2 g ®
’ ~br- —ar-brk—k+)
k=0 k “~br-a 1 {qp ar-br J}m
Since,
p-ar-brk-k+1 .
La ]m 3-1 p~ar-brk-k+m
p-ar~brk-k+) = n (-9 )
fq 1 m=1
w0
j-1 Xi
= 1
) 150 Ai %
k

is a polynomial in a, of degree (j-1), the inner series in

(3.2.6) transforms to

3 .
3 k(k-1) /2 .
T A, kE [ 53 e 9 (_q: itk

which by means of the result (3.2.5) simplifies to the form

3 _
£ A, q (1-qi73%K
i=0 k=1
-1 i1 i-j4e it i
= £ A (=g a-q;7") .. (1-qf™)a-g))
i=0
As this last expression vanishes for all 1i=0,1,2,...,j-1,

it follows from (3.2.6) that F = F(a) ; which proves that

(3.2.2) implies (3.2.1).
In establishing the ‘only if' part, when M = o, the method

employed here runs parallel to that of Gould [4].
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In fact, writing (3.2.1) and (3.2.2) in the forms

w ©
F(a) = § Ca X G(a+bk) : G(a) = L Da x F(a+bk) ,
k=0 ’ =0 :

it is easy to observe that the wvalidity of the ‘'only if' part

is established if the following orthogonal relation holds true

1, 3=0
0, 0

J
(3.2.7) 650 = E Dy x Caspk,jk = {

Here, the expression corresponding to the series in (3.2.7)

is equal to

(17 q, [ 3 (1-
0 k 7 -br-2 q

]

0

p—ar-brk (

Mo

)
—ar+k
k {qp ar

]

> ¢

wherein replacing 1/[qp~ar+k]m by B, and then denoting the series

k
by Aj, one gets

J
k k(k-1)/2
(3.2.8) A, = £ (-1)°q p-ar—brk
I x=0 * U %l (19 )

—ar-br j—j+k+
[qp ar-br j—j+k 1]

o Bx

The inverse series of (3.2.8) is easily obtainable from the

pair (3.1.2) in the form :

Ay

k k(k-=2j+1)/2
d p—ar-brk~k+j .
Jao

1 [

b
(3.2.9) B, = T (-1)
k=0

J ~or-1" [q

On making substitution Ag=[ J1 in (3.2.9), one gets

p-ar+N ]
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while (3.2.8), with these AN and BN leads to the above menticned
orthogonality relation (3.2.7), which completes the proof of the
‘only if' part and hence, the proof of the theorem for M = w.

If 'a’' is a non—negative integer: n, and 'b' is a negative
integer : -m (m=1,2,3 ...), in which case M = [n/m]., the proof of
the theorem, which runs on the same lines as the proof for the
case M= w, is summarized as below.

In order to prove the 'if' part, put

p—nr+mrk-k+1

& {n}/:m] x L4 1o
= Y — — G(n-mk).
k=0 (qmr 1: qmr 1)k

Then in view of (3.2.2), this becomes

p-nr+mrk-k+1

k=0 j=0 {qp~nr+mrk+3}w
1~qp—nr+mrj+mrk
~ — - ~ F(n-mk-mj) ,
(qmr 1;qmr 1)j (qmr l;qmr l)k
wherein using the known relation (see Gould [6]):
- [n/m] [n/m]-k [n/m] j
(3.2.10) p b A(k,j) = g ¥ A(k,ji-k)
k=0 j=0 j=0 k=0
one obtains ]
[n/m}  qegPTRFtmry
(3.2.11) £ = F(n) + T (~y)J J™*% pn-mj)
j=1 : .
3 (q, qz)J
j ' [ p-nr+mrk-k+1
LR -0k gkkivdze 3y q o
X=0 9 k *mret [qp—nr+mrk+j-k]a;
mr-4

where qQ, =4
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Evidently,

- — = ¢ B,
[P Pr FErK k+_}]m &0 i 9,

with which, (3.2.11) gets transformed to

p-nr+mrj
{n/m] . 1-q s
£  =Fm + £ (-9’ J(3)/2
J-"‘]‘. (q2 :q, )j
-t I k(k=jt)/z o j i-jyk
iEO Bi kEO qz [ k ]mr—1 (-qz )

This, with an apeal to the formula (3.2.5), assumes the

form :
- + 3
* (n/m] . j-gPTrtmry
f = F(n) + T (~ J Jj(j=a) /2
B Y) q, F(n-mj)
j=1 (qz;% ).
J
j-1 j ..
_L1-3+k
E By n (1-q, )
i=0 k=1
It is obvious that the inner series in this last experesion
vanishes for all i=0,1,2,...,j~1, and therefore, one finally gets

*

f = F(n); thus, (3.2.2) implies (3.2.1).
Conversely, in view of (3.2.1), the right hand member of

(3.2.2) denoted for brevity by g*. can be expressed as

_ p-nr+mrk-+mr j ,
g = L E -1y p—nr+k
k=0 j=0 {q Jo
1_qp—ar+brk
G(n-mk-mj)

(qz iq, )k (q2 iq, )j
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[n/m) s J
= ¥ G(n-mj) T (_1)k q:(k—i)/ﬁ [ £ ]mrd (

p—nr+mrk)
j=0 %% ); x=p

1-q

—-nr+mr j~ j+k+
[qp nr+mr j-j 1]m

p-nr+k
(q 1o

If V. denotes the inner series in the last expression given

. -nr+
above, then it can be weasily seen that, with 1/{qp nr k]m

replaced by Wk' it reads as

k qk(k~1)/k [ 3j 1

p~nr+mrk)
2 k 7 mr-a

(3.2.12) Vj = (-1) (1-q

J
=0

k

p-nr+mr j—-j+k+1
4 Jo Wy -

The inverse series of this follows readily from (3.1.2) in

the form :
J k k(k—=23+1)/2 3 Vk
W.= Y% (-1)" gq [ 31 4 = pu oy Sl
3 k=0 2 k "mr-1 [qp nr+mrk-k+ 3 ]m
which with
_ ]
Ve =0 ]
gives

- + 3
W. = 1/(gP7 Iy

»

and censequently the series in (3.2.12) leads to the

orthogonality relation

0 (1“qp—nr+mrk

(3.213) [ ;1 =6 k k(k-1)/z

hi R
=¥ (-1)% g t 21 —
jo k=0 2 k © mr-s [CP nr-t-kl

).

©

-nr+mr j~-j+k+
[gP™mFImrITI 1] .

e o
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thus,

- [n/m]
g = L
j=0

G(n-mj) 5.
(qz‘qz)j jo
G(n), if j=0

) { 0. if =0
which completes the proof of the ‘only if' part, and thé proof of
the theorem for M = [n/m].

The proofs of the relations (3.2.3) and (3.2.4)
corresponding to the cases M = w and M = [n/m] as outlined below,
make use of the formula (3.2.5)

n
qk(k’.’)/z f '}: ] xk =11 (1+x q ).

k=0 k=0
It may be noted here that if, in (3.2.3) and (3.2.4), f(a)
is replaced by {qp_ar+1]a)f(u). then one obtains an elegant (and

convenient) form :

M M
(3.2.14) f(a) =L y* LAWK | g(a) = p (-yyF gHIKTHI/2 Lathh),
X=0 aly Koo - Tal,
In order to prove the inverse series relations when M = o,
take
© X g(a+bk)
ry e =°
k=0 k

Then with the aid of the second relation in (3.2.14) one
gets,

) s g . 3 . . s
p=fla) + g yl gIU)/e LatBD) g kOkmud/e gy glodyk
J=1 j k=0

4
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this in view of the formula (3.2.,5) further simplifies to

j(j-1)/2 f(a+bj)
[q] j

® . s
p=tf) +L v aq ®y,

J
n (i-a
j=1 k=

1
which readily gives p = f(a) and thus the second relation in
(3.2.14) implies the first.

Likewise, with

k qk(k—ﬂ)/z f(a+bk)

[» ]
k§0 (-y) [al

and making an appeal to the first relation in (3.2.14) one

arrives at

w 3 g{a+bj) i
o =g(a) +*L ¥ g7 L (1)
j=1 al ; k=0

k qk(k—x)/& [ i 1.

Here, the formula (3.2.5) gives

0 . gfatbj) J k-1
o =gla) + y? —tgi— I (1-q ).
j=1 h] k=1
which ultimately reduces to o=g(a) as the product term in the
last expressioh vanishes for j 2 1. Hence, the secend part and,
the proof for M = o .
For M = [n/m], the inverse relations may be justified with
the help of the formulas (3.2.10) and (3.2.5) .
In fact, if w denotes the right hand side of (3.2.3), then
making an appeal to (3.2.4) and the relation in (3.2.10), one

finds
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{n/m] 3

< g s . i x
w= ¥ (-y)3 qJ(J—i)/z f(r{lqr;lj) T qk(k—s)/z[ ]_:] (_ql ik
j=0 3 k=0
which may be written as
[n/m] c s s i .
w=fm +L (-l g2 HARD 5 ag"d)
j=1 J k=1
= f(n) ,

since the product term vanishes for j21. Thus, (3.2.4) implies
(3.2.3).
Similarly, denoting by yw the right hand side of (3.2.4) and

making use of (3.2.3) and (3.2.10), one arrives at

[n/m] g(n-mj)

J
j=1 al; k=0
[n/m] g(n-mj) i k-1
= g(n) + ~TqTl n (1-q ) .
j=1 5 x=0
= g{n),

which completes the proof of the inverse relations when M = [n/m].

3.3 PARTICULAR CASES : POLYNOMINALS

In this section, theorem-2 is particularized first, so as
to vyield a basic analogue of the class of polynomials
{f:(x,y,r.m)} together with its inverse refations. The fact that
fg(x.y.r,m) includes a large number of polynomials as discussed
in "section-3.1 leads to the basic analogues of all those

polynomials and their corresponding inverse relations which are
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also discussed in this section. It also includes a basic analogue
of the Gould~-Hopper polynominal.

In order to obtain a basic analogue of the polynomial
fﬁ(x,y,r,m), it may be seen that when a = n (n = 0,1,2,...) and b

=-m {(m =1,2,3...) then, theorem-2 assumes the form

- ~k+
) [ném] . [qp nr+mrk 1}m . L
F(n) = b4 — — (n-
k=0 (qmr 1: qmr 1)k
(3.3.1) { if, and only if

(/M) 4 e (keykge (790 ) Fnmk)

L G(n) = § (=y)" q p—nr+k mr-1 mr-1
k=0 [q 1,(d iq Yy

This inverse pair, with the aid of the substitutions p =-c,

~c~nr+l

and Gn = unxn/[ q ]m. defines a (seemingly new) basic

analogue of the polynomial fg(x.y,r.m) which is denoted by
fg(x.y.r.m|q). and mentioned in (3.1.3) along with its inverse
series relation. This basic pair (i.e.(3.1.3)) with an appeal to

the formula

(1- (1-¢ Y ... (1-7FH,

k k=1, =1 i 1.
(1-q7)(1-q } ... (1-q) .

admits an alternative form:

n-mk
o _ (n/m}l o nrtmrk [aly nmy %
fax.y.ramlay = Ly [ Ty V T 1
(3.3.2) A
n_ ] g(mr ) mlak/z (y _gremnrimrk
a_x = (~y) e - -
x=0 (1-q~ € nr+k ) (™ l:qmr 1)k

- -c-nr+k C .
ST Y L ty.rm|q),
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which is more convenient in examining its limiting case q-—1.

In fact, if y is replaced by (mr-1)y in (3.3.2) and then

limit q-+1 is taken, it would 1lead to the corresponding ordinary

form :
(n/m] -
-c~-nr+mrk n-mk
fg(x,y,r,m) = & C k ) Y nemk X ,
k=0
(3.3.3)
[n/m] -
n X -c-nr+mrk , -c-nr+k c
rox = L (=) =g € x Y ol (x.y.r.m).

n k’O
In an analogous manner, it can be shown that under the

process of replacing G(a) by (1—q)-p+arG(a). y by (g-1)(br+l}y,

—-ar- ~-k+
[qp ar-brk-k 1]oo by

~p+hr+brk+k[

(1-q) ql

rq(p—ar—brk—k+1)

©

p-ar+k+1

and, (g }m by

(1-q) P*arTk g3

s 4]

r -ar+l
q(p )

and then on letting g-+1, theorem—-2 gets transformed to theorem-1
(Chapter-2).

In view of the fact that the class ({f (x.y.r.m)} of
polynomials defined explicitly by (3.3.3) above admits a large
number of polynomials, it would be interesting to take note of
the corresponding particular cases obtainable from the set of
polymomials {fgtx.y.r,m[q)}.

When r=1, c=-p, o = ((qm~1)/(1~é:ﬁz/{q]n, and y is replaced

by {(1—q)/(1~qc)}y, then the pair in (3.1.3) defines a basic
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'nnalogue of the class of polymomials {pn(m.x,y,p,C)} together
with its inverse series relations as given in (3.1.4). Some
further reducibilities of this basic pair, i.e. (3.1.4) give
rise to the basic analogues of several other polynomials as
discussed below.

The special case p = -, C = 1, and ¥y = 1, of the polynomial
Pn(m.x.y,p,C|q) defines a basic analogue of the Humbert
polynomia{_nz’m(xlq) whose explicit form and inverse relation are
stated in (3.1.5). A basic analogue of the kinney polynomial
(1.2.27) is- obtainable from the particular case
Pn(m.x,l,—l/m.;}q), an inverse sBeries of which follows readily
from (3.1.4) (see (3.1.6)). On the other hand, if m = 3, p =-1/2
and y = C = 1, then the pair (3.1.4) vyields a basic Pincherle
polynomials (denoted by Pn,q(X))' along with its inverse series
relation which are stated in (3.1.7). Yet another specialization
viz. Pn(z.x,1.~v.1|q) of Pn(m,x.y,p,clq) defines a basic analogue
of the Gegenbauer polynomial which is mentioned togéther with its
inverse series, in (3.1.8).

Lastly, the substitutionse y = 1, C = 1, m=2, and p=-1/2 in
(3.1.4) yields the pair of a bnsic Legendre polynomial and its
inverse series relation (see (3.1.9)).

It is interesting to point out that +the pair of inverse
relation of basic Kinney polynomial Pn(m,xlq), when written

alternatively as
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{n/m] | {q]
p -1/m -k=(1/m) k
P (m,x|q) = £ [ I ] - -
n k=0 k n-mk (qm 1:qm l)k
qm—l )n-—mk
S m— X
(3.3.4) 1-q L
mk-n- m)
m n [n/m] i-q
-1/ q -1 k (ms)(k—1)k/2 .
[T™ME—x) = £ (-1)q ——
n 1-q k=0 1_qk n-(1/m)
-n+k-{1/m)
. - X 1 P (m.x]|q)

transforms to the ordinary form (Gould {6,p. 7071)

[n/m] _ e -
( P_(m.x) = I« Vmy ROy o) TR

(n/m}
(3.3.5) § ,~1/m , __.n _ _4yk ~(1/m)-n+mk ,-n+k—-(1/m)
C nmb( mx) = gio (-1) (1/m)-n+k C X ) .

) - PamXk

{m,x),

as q—1.
Coming to the particular cases of (3.2.3) and (3.2.4) or
egquivalently those of (3.2.14), it is to be noted that when

a=n{n=0,1.2,...), b=-1, and y=1, so that M=n, one gets the pair

n
f(n) = ¥ g(n-k)

k=0 [9]y
which, by reversing the geries and writing g*(n) for

(-1)k qk(k'-a)/z f(n-k)

.

w
uM o

nqn(n--x)/z

(-1) g(n), takes the form :

*x
n g (k) n
-~k k(k-1)/2 * k{k-2n+1)/2 f(k)
fin) = E (—1)“ q o :g (n) = E q ——
k=0 fal k=0 tal,x
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This inversion pair is essentially the same pair as given in
(1.5.12), whose particular cases are given by (1.5.13), (1.5.14)
and (1.5.15). However, it is to be mentioned here that the pair
(3.2.14) is capable of vyielding a basic analogue of the
Gould—-Hopper polynomial (Gould and Hopper [11)

{n/m] n Kk xn-—mk

m -
Op(*A) = B XTI (A-mk)!

together with its inverse series relation.

In fact, setting a=n (n=0,1,2,...) as before, b=-m
(m=1.2.3....). ¥y = (1-@)' ™ x and g(n) = x"/[q]_in (3.2.14). and
denoting by gz(x,x]q) the polynomial thus obtained, one gets the

following basic Gould-Hopper polynomial

- (n/m] (q1 (1-F®
(3.3.6) gn(x,llq) = ¥ AT % )
k=0 [ql, [al,_ ..
along with its inverse relation
k k-mk

[n/m] _ AT (1-q)

(3.3.7) x® = [q]. ¥ (-1)¥ gktk-1)/2 P (xajq).
n n-mk
k=0 taly [al, .«

3.4 PARTICULAR CASES : RIORDAN'S INVERSE RELATIONS

Besides giving rise to the various basic polynomials, the
inverse series relations given in (3.2.1) and (3.2.2); as well as
those given by (3.2.3) and (3.2.4), also furnish the basic

analogues of the inversion pairs belonging to the Riordan's
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classification (see tables 1 to 6).

With a view to obtain the basic analogues of the simplest
inverse relations which are listed in Table~1, the following
transformed version of the pair of relations (3.2.3) and (3.2.4)

will be used here with a=n (a non-negative integer) and y=1 (see

(3.2.14)).
M g{(n+bk) M ' -

(3.4.1) £(n) = L —ox— : g(n) = [ (-1)K gEik1)/2 f—-(l[’i’—]’l‘—?—
k=0 ‘9 x=0 iy

In this, putting b=-1 and then reversing the series, one

finds
n g
f(n) = ¥ qk(k-—a)/z 'f'"'j"k_"' ;
k=0 ) hx
(3.4.2)
n
gn = ¥ (_1)n+k qk(k—zn-!—s)/z _[___1:’_5_}_(__)___ '
k=0 9} n-x
where g, = qnm"’)/2 g{n).

Now, if f(n) is replaced by f(n)/[q}n and, g, by g, /{q}n.

then (3.4.2) results in the pair

r n
f(n) = T qk(k-—-x)/z[ x}:] g,
k=0
(3.4.3) ¢
n
+k  k(k
g, = E (-1)7F I 10 gy,
=0

- k
which provides a basic analogue of the pair (Table-1, No.(1)):

2 n n +k
f(n) = £C€.Yg, : g. =% -1y £(0y.
k=0 k k n k=0 k
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In a similar manner, the basic analogues of the other
simplest type ﬁairs can also be deduced. The following table

embodies the basic analogues of those pairs which appear in

Table-1.
Table-14 : Basic simplest inverse relations
r - r:v- kik-1)/2 . - ; N k+n k(k-2n+4)/2 o 0o
m =& q cn.l: 9 9, = ¢ q n.k
k=0 k=0
b C D Basic analogue
n.k n.k of clags (No.)
in Table-1
n n
Inverse -1 [k] [k} (1)
series
relations 1 qk [ﬁ] qk [g] (2)
given
; - p-k p-k
in 1 [p—n] [p_n] (3)
(3.4.1)
- p+n p+n
1 [pri) Cptx] (4)
k _ptk k ptk
1 a o] qa [54n] (5)
[a} _ [q] -
-1 _.'n [n 1} _n [n 1] (6)
[aly “k-171 [ql, ‘k-1

In order to obtain the basic analogues of the other classes
namely, the Gould classes, simpler Chebyshev classes, Chebyshev
classes, simpler Legendre classes. and the Legendre-Chebyshev
classes, the following inverse pairs which are deduced from

theorem—-2, will be used.
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First note that theorem-2 when r is replaced by -r, ‘a’ 1s

replaced by a non-negative integer:n, and G(n) by {q]p+rnGn/[q]m.

assumes the form :

[ M [ql G{n+bk)
F(n) = Yk p+rn+rbk
k=0 (q}p+rn+rbk-k (qz;qs)k
(3.4.4) ¢
ptrn+rbk
M 1-g
k k(k—)/z
G(n) = L (~y)" q
x=0 1 l'_qp+rn+k
.
.{q}p+rn+k F{n+bk)
{q}pﬂ'n (q!. :qx)k

~4

where1r1<&=q T and M is finite or infinite according as b is &

negative or a positive integer.

+
P¥R - and

Further, if F(n) and G(n) are replaced by F(n)/1-q

G(n)/l—qp+rn respectively then (3.4.4) gets transformed to the
pair
F(n) = g k 1-—qp+rn+1 EQ3p+rn+rbk G(n+bk)
k=0 Y 1-qPtrntrbk-k+1 [q] (q :q.) '
1 q p+rn+rbk-k PR VRN
(3.4.5) {
M [q] F(n+bk)
Gn) = T (_y)k qr(kﬂi)/h p+rn+k
L k=0 EQ]p+rn (qz;qa)k

Next, if the base q is inverted, then theorem-2 with a=n as

before, results in the form as given below.

¢ M . (q—p+rn+rbk+krl;q*1}m
F(h) = T vy G(n+bk) ,
k=0 (qz:qz)k
(3.4.6)
¥k k(k=1)/z 1 PP k)
G(n) = L (-¥)" q -p+rn-k (q_:q), °
k=0 i-q L%k
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in which q, = qbrﬂ.

A little simplification in (3.4.6) leads to the pair

) _ . -p+rn
F _ M k 1-q {q}—p+rn+rbk+k G(n+bk)
(n) = k§0 Y g PHrRirok+k [q] (q :q )
- a q -p+rn+rbk Q9 'k
(3.4.7) A
M (ql_ F(n+bk)
6(n) = T (—y)k q:(k—i)/? p+rn ,
\ k=0 {q}~p+rn—k (q,:q,)y

-p+rn

which on replacing F(n) by (1-q ) F(n) and, G(n) by

(1-q P**™y G(n), gives
[ M {ql_ _4 G{(n+bk)
F(n) = T yk p+rn+rbk+k-1 ,
k=0 [qj~p+rn+rbk—1 (qzzqz)k
(3.4.8) 4 °
-p+rn+rbk
M 1-q
= ok k(k—1)/2
G(n) kEO( Y) q, 1~q-p+rn—k
) [4)_p4pp—y F(N+DK)

[q]*p+rn~k~1(qz;qz)k

By appropriately specializing the parameters involved in
these inverse series relations, one gets the seemingly new basic
analogues of the aforementioned classes. For example, to get a
basic analogue of the pair(2) of Table-2, put b=-1, and y=1 in
(3.4.5) so that M=n. In this case, by reversing the series, one

finds
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(3.4.9) A«

Here,

the above

r

(3.4.10)4

_ ptrn+l

n 1-q (q] G(k)
F(n) = §0 p+rk-n+k+1 [a] prrk ( -r-1_ —rwl)
k=0 1-q Upsrk+k-n 9 q n-k
M
G(n) = q~(r+1)(n-1)n/z T (-1)n*k q (r+1) (k—2n+1) /2
k=0
£Q]p+rn+n~k F(k)
-r-1 -r-1
(el ypn (4 :q ) -k

~{r#)(n-1)n/z

the substitution G({n) = q g(n) transforms

pair in the form :

__ptrn+l

F(n) = E —{r+1)(k-1)k/2 1-q [QJp+rk
k=0 e 1- p+rk+k-n+1 [q]
i d 9 p+rk+k—n
g(k)
n
g(n} = § (1)Kt g~(r#)(k-2nh1) /2
k=0
[q]p+rn+n—k F(Xk)
-r-1 -r-1 :
talpypn (@7 7@ )k

which with r=m-1, provides a basic analogue of Gould class(2) in

Table-2.

Analogously, taking b=i, y=1 and, replacing p by -p in

(3.4.7), one readily gets the pair

4

(3.4.11)4

__ptrn
F(n) = ; 19 (91, rnerkex G(RTK)
k=0 1- p+rn+rk+k [q] ( r+l1 r+1) ’
d Upsrntrx ‘4 9 X
= - k (r+1)k(k-1) /2 {Q]pfrn F(n+k)
G(n) = F (-1)" gq r+l_ r+1
k=0 (el pppnx (3 730 T
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in which on replacing k by k-n, one gets

p+rn

F(n) = ¥ 1-q [Q]p+rk+k~n G(k)
N +rk+k— r+1 r+1
k=n 1-¢PTFTET 0 pq) (@ d T,
(3.4.12)4
G(n) = I (_1)k+n q(rh)(n(nu)+k(k-1n—1))/z
L k=n
[q]p+rn F(Xx)
r+l r+l

(el iynen—x 9 59 T)yop

(r+1)n{nts) /2

In this pair, on putting 6G(n) = ¢q g(n). one

arrives at the inverse relations

. __p+rn (r+1) (k+1 )k/2
Fm) = (1-q ) q [q}p+rk+k n 9
+ -_
k=n (1__qp rk+k n) {q]p+r (qr+1;qr+1)k_n
(3.4.13)
g(n) = kz (_Dk«t—n q(rh)k(k-zn«-&)/z

[q] F(k)

r+l r+l
ptra+n-k (q 9 )k~n

p+rn

fal

which on replacing r by m-1, serves as a basic analogue of the
Gould class (3) of Table-2.

Likewise, the other basic pairs may be obtained from (3.4.4)
to (3.4.8) with the aid of the substitutions as indicated in the

following tables.
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Table-15 : Basic analogues of Gould Classes

ORI ARG N I T T L W T1Y

Basic
Inversion pair - analogue of
(citation) bl p | Cpx Y Class {No.}
Fith y=1,r=p-1 in Table-2
-k tek-k
[9)psmk-x q “_qpnk ) 9lpsen-k-1
(3.4.49) e | e = g (1}
{0lpsmk-n (950 Dp-g [lpemn-n (4 50 Jpy
+mn-pt -
(alpemtx (-7 ™ Gyt
{3.4.5) 1y p | m — prp— {2
[9)psek-nst (@ 50 Jpx {9} pimn-n {4 59 gk
14 18-
¢ lalpemk-p-1 (g (¢lpmn-n
(3.4.7) 1t -p n - — {3)
[Q}pflk-k {q:q J-p N]pim-k {9:9 Jx-p
™ (Wpran 10" (gl nen
(3.4.8) 1 {-p1 | » — — (4
[9)pak-k (9750 )y {9} psan-ke1 (030 )gp
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Fim) = . y Gyt ginebk) :

Table-16

- Basic analogues of simpler Chebyshev classes

6o = Y-yt qEE2 g L paen)

Iaversion pair

Basic apalogue
of Class {Mo.)

{9)p-2x41 (lfz:q‘zl;

{4)y (q'z:q'zn

(citation) bip | « y Cok Dy x in
bith rsl Table-3
(k- 110 [a)y
(3.4.7) 20 0 - -1 —T i Y
{a)p-2x (9756 i [k (4 50 X
(gl (), (174
(3.4.8) 2| A —T I (2)
[qlp-2x (g 50 Ny {adp-ke1 (@ 50 N
. B2k MRk
(3.4.4) 2] 0] 1 1 [ ] B [n ] 3
" - _qnﬂ X
is 1" nik
(3.4.5) 20 0] 1} 1] ——— [ ] [ ] i
1 _qmm X "
(k- [ty €
{3.4.4) -1 0] 2 1 3 5 {5)
falp-2x (8°:0 ") faly (@ ;0 i
+1
(lpy (1-g"") lq)
(3.4.5) al o2 1 ot " (6)
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Table-17 : Basic analogues of Chebyshev classes

(] . {aly
P = Ly p —— Gth); 6t = L0* ¢ g g
g% 1)y (qQ :q )y
Bagic
Toversion pair analogue of
{citation) P o Cok Dpx Class {No.)
pith r=i in Table-4
[
i-q nsbkk n
(3.4.7) 0 | b | ——— [ ] [ ] ()
l_qn*hhk " "
nibkk I—q"mﬂ n
(3.4.8) 1 | M — [ ] (2)
[ X ] 1 _qn Kkt X
nibk l—qnm nik
{3.4.4) 0 | [ } ———n [ ] {3)
A l-q““ X
l-qm1 nibk nik
(3.4.5) 0 b-1 ——— [ ] (4)
1 _qmbk k¢l " [ "
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Table-18 : Basic analogues of simpler Legendre classes
1 -
=z o™ e em ;om = 3 (M QB e
Basic
nversion pair analogue of
citation) b | p o< Cax Do x Class (Ho.)
ith y=1,r=2 in Table-5
+2k41
(4lpensk (- Ll
{3.4.9) -1 -p-l |-} T3 T tn
(adpex (97 :9 dyx (qhpenekel (90 hpt
ptin
([Qpensx-1 1-07 ) lelpean
{3.4.7) -1 - |- T3 T3 {2)
ladpsak (9 50 Dpx [Qpsnsk (@ 50 Jpx
I qpmfl P2k piatk
(3.4.5) 1 p 11 —— ] [ ] {3)
l_qpﬂxfkfl - ko
p+2k l-qpm pintk
(3.4.4) 1 p i1 [ ] vy (4)
k-n l—qp'm k-n
Table-18{a} : Basic analogues of simpler Legendre classes
[n/2] laly 6(n-2%) LT - [qly P(s-2%)
P = 5 (W gy ——— e x g
k=0 lq ¢ g x=0 (g 59
Basic
Inversion pair analogue of
(citation) by Cnk bpk Class (No.)
bm y=-1,r22 in Teble-5
: I A W Pt
{3.4.7) -2 1 -p —— [ ] [ ] {5)
1_«p’f:.'n 3k X i
ptln-3k !_qpﬁn-ﬁﬂ ptin
{3.4.9) -2 1 -p-t [ ] —— {6)
X 1 _qprn ktl k

77




b i taot Yk s s, ot on]

u- ' uded -y : THUsN-NO+d
o A b1 ob) (b} (122" 1-a®) - (3 . 1t~ | 1-0 d 1 (c've)
X+u-ud+dyp) (puosad=T) X+4(D)
-l us+d N~u T+~ N4NO+d
73) B 25k =R e Cgmo-'1z0-0) ke T o | t-o- 4 | 1- (s'v°€)
-utuo+din) ( b-1) ¥+d(b}
X Trunsd
U . +Y~Usud+d U~y Ao+d
a xﬂu+ov oo T+X b} (ol 140! {d} 5 o a .
9) Uoed - TRy ey . I~ T+ T+ Sl T (g°v'¢g)
(B} ([ yopa® ) (b}
X~ H b) THHPU-UD4d(pY X-u¢ bt by AI+Sp)
l uﬁwﬂa 8 a+o=+xmuw+n b - =3 | 140~ t-d- | 1~ (e°v'c)
(B} ({,x04a® D b}
u-X(_ p:_ _b) Uo+d(p) U-M¢ Bt by U+X-Xo+dpp) .
) Tfammwt_ﬂ ~ 2 “o”n 1 -3 -2 d 1 (v ¥°€)
L OLT b b) :D.vnauu - b: b) ..T.x+xu0n::
) - “‘wﬂcummo- 1-2 ~xw¢a 1 0 | 1-o- a - )
(D) (y5,ab-T) (b}
[T . ~Usus+d U xo+d
@ BATELE 7 ke TEM T i = 149 | T4 a- t ('v'e)
uo+drp) acu+nvac T-U-Y+x0+d(p)
- : X+u-ussd x-u : Xo+d
e X nu+o..v ~+onuv (b} .a+uyv u+u..vV (bl - -2 14+0- a- 1- (L'b e}
uo+drpy ﬁco+nvcav ﬂx=+x|xu+anu~
9~01qel ut . . , OuX Y3y
("ON} 891D ¥'ug uy A 4 » d q (u0§393E3)
30 enboivue Iped vormIeAu}
areseg
&t - - x.:
COL N 2/ g umzepa® weuA) 2 = (00 00 X 5y et 2= (UM

SORET D ASUSAIOYD--eapuslier jo senbopeur ateseg

6i-®1quy

78



