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THEORETICAL AND EXPERIMENTAL DEVELOPMENT 

5.0 General:
Theoretical developments to explain failure 

mechanism in rocks although, originated from classical 
theories of failure of materials, hut it is the Griffith’s 
theory of brittle ^fracture developed from experiments on 
glass forms the basis for the edifice, of failure theories 
in rock. The manufacturing process of glass materials and 
natural process of rock formation specifically for igneous 
rocks may have certain similarities and therefore Griffith’s 
concept as a base for rock materials is legitimate adoption. 
However to commence from atomic and subatomic levels as in 
glass materials as attempted by Griffith might be perhaps 
not possible for a rock material since sequence of formation 
are unknown. Therefore keeping the basic premise unaltered 
a theoretical development with experimental observation 
becomes the only approach to,produce a rational and 
realiastic theory for understanding the failure mechanism 
in rocks. The present investigation proposes to develop a 
theoretical model primarily based on Griffith’s theory 
keeping in view the subsequent developments attempted by 
various research workers in the filed of rock mechanics.
To test the theoretical model it is proposed to conduct a 
series of experiments. One of the fundamental canon of an 
experiment is the fulfillment of the conditions formulating 
the theory. Amongst the experimental techniques available



to investigate the failure in rock materials Brazil set up 77 
which to a fair degree satisfies the theoretical conditions 
of discs and rings subjected to diametral loading. Further 
the preparation of test specimen is simple and does not 
involve elaborate cumbersome procedures as required in other 
tests. The prime requirement of uniform distribution is also 
easily attainable by the use of properly designed grips.

5.1 Hypothesis:
c Igneous rocks are the consequence of the 

process of cooling of magma,. The process involves a change 
in pressure and temperature over a period of time. It is not 
possible to conceive nature of pressure - temperature cycle 
taking place during the process. Neverthless the conception 
that the nature of the stresses as hydrostatic is possible to 
accept. The process of differential thermal changes should 
produce stresses which can remain unrelieved and locked.
Thus igneous rocks represent a mass with a pre-stress which 
when subjected to external loads triggers the mechanism of 
failure and manifests into the behaviour of rock materials 
leading to ultimate failure. The concept of ’locked stresses' 
has been acceptable by all research workers but it has not 
been possible to determine the value of pre-stress locked 
during the process of cooling magma. It is hypothesized 
that there is a clear manifestation of pre-stress in the 
nature of stress strain curve and it should be possible to 
determine that value which triggers the phenomenon of 
failure in rock materials.



5.2 Stress-strain characteristics;
5.2.1 Complete stress-strain behaviour

The rocks, in general, behave elastically 
in various forms until the first initiation of crack 
takes place in the material. The actual behaviour or the 
complete stress-strain curve of the rock can be described 
as below:

The stress-strain curve (Fig 5.1) can be 
divided in to following zones.

(a) Non linear zone
(b) Linear zone
(c) Pre-failure zone
(d) Fracture
(e) Post failure zone

(a) The zone OP is a non-linear zone, which is
•v

slightly convex upwards. The behaviour is very nearly 
elastic.
(b) The zone PQ is a linear zone, where stress 
is proportional to strain with in elastic limit and obey 
Hooke's law. This behaviour is called linearly elastic.
(c) The zone QR begins with decreasing slope of 
stress-strain curve up to zero with increasing stress.
This is the region where irreversible changes are induced 
in the rock and loading unloading cycle at this portion
of curve gives different paths in successive cycles leading 
to permanent set at. zero stress. If the material is 
unloaded a curve AB is traced and then if reloaded a curve
BC is traced which lies below the curve OPQR but meets 
before point R is reached.



FIG. 5 I THE COMPLETE STRESS - STRAIN CURVE

FOR ROCK



80(d) As the pre-failure zone is passed, the 
failure is reached at a point R. The stress value 
corresponding to this point is called uniaxial compressive 
strength of the rock denoted as Co„ The stress value two 
third o.f this value is the precise point of yield stress 
denoted as (Ty corresponding to the point Q in stress-strain 
curve.
(e) The zone RS starts at the maximum of R in 
stress-strain curve giving a negative slope to the 
stress-strain curve. An unloading cycle DE give rise to 
large parmanent set and then if reloaded EP approaches at 
a stress lower then that corresponding to C. This zone is 
characteristic of brittle behaviour and a sudden breaking 
of the specimen is expected at R giving fracture of the 
specimen. The process of failure is a continuous and 
occurs progressively throughout the brittle region RS 
till the rock completely disintegrates.

5.2 Estimation of pre-stress:
The load displacement curve shows that 

initial portion is concave upwards signifying displacement 
to be increasing with the load. From this it may be 
implied that the locked stress or pre-load in the flaws 
and microcracks inherent in the rock is getting released.
The estimation of pre-load or locked stress can be obtained 
from the geometrical characteristics of the curve. To 
accentuate the geometrical characteristics it is proposed 
to transfer the load displacement plot on natural scale to 
a plot on semilogarithmic scale. This plot produces a
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FIG. 5* ESTIMATION OF PRE-STRESS



82characteristic hump exhibiting the departure from the 
virgin line indicative of previous stress history. From 
this geometrical characteristic it is possible to find 
out a value of pre-load by a well known geometrical 
construction. It consists in (a) selecting a point A at 
the point of maximum curvature or minimum radius on the 
curved portion, (b) setting a horizontal line AB and 
tangent to the curve AC and further (c) bisecting the 
angle BAC between the lines AB and AC to determine the 
point of intersection E with the virgin line. The load 
coordinate of E reads the value of pre-load.(Fig 5.2)

5.2.3 Constitutive relationship:
A constitutive law or relationship represents 

a mathematical model that explains the behaviour of a 
material. Constitutive relationship can permit reproduction 
of the observed response of a continuous medium. The 
establishment of constitutive relationship based on 
observations made at the microscopic level can impart 
physical significance in engineering. Following are the 
five essential steps for the development of a viable 
constitutive law.
(I) Mathematical formulation
(II) Identification of significant parameters
(III) Determination of parameters
(IV) Verification against experimental data
(V) Development of a relevent solution scheme
incorporating constitutive relationship



5.2.3.1 Mathematical formulation:
Fig 5.3 portrays a typical observed 

stress-strain curve for a rock. Mathematically it 
represents a hyperbolic response curve signifying higher 
order constitutive relation. For uniaxial loading it can

Sinh (Xfc )............. * . . 5.1
Maximum external compressive stress 
Maximum internal pre-stress
Strain
A material constant

5.2.3.2 Identification of significant parameter:
It is postulated that the failure in the 

rock material is triggered when the stress ratio between 
external compressive stress and internal pre-stress @I (To 

exceeds unity, whence
Sinh (X £ ) = 1, the value of X can then be found out
from experimental curve from the strain value at 0/(To= 1.
Article 5.2.2 explained the determination of CT . Further
from test conditions in Brazil test on discs and rings 
O' 0~22 = 33 “ 0 therefore there must be a specific ratio
between strains in two directions.

5.2.3.3 Determination of the parameters:
The value of pre-stress can be found out

j

through a geometrical construction and also possibly from 
theoretical analysis. The value of can be determined 
from strain value corresponding to the unit stress ratio. 
The strain ratios4can be determined from independent tests.

be expressed as

cr/<r0 =
where Cr/o^ =

£ -
and >\ -
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5.2.3.4 Verification against experimental data;

It is proposed to compare the experimental 
observations in Brazil test on disc and rings in the next 
chapter with the proposed mathematical relation.

5.2.3.5 Development of a relevent solution scheme 
incorporating constitutive relationship:

Currently employed techniques for solutions 
of boundary value problems in the field of rockmechanics, 
are finite difference, finite element and boundary integral 
methods besides the classical elastic solution techniques. 
All these techniques call for a constitutive relationship 
which can be expressible in incremental forms and also 
possible to subject to inversion processes. The developed 
constitutive relationship should be able to fulfil these 
requirements since its relationship formulation is 
mathematically simple.

5.3 Failure criteria:
5.3.1 Griffiths theory:

The Coulomb - Navier and Mohr’s theories of 
failure are dealing with the mechanism of fracture and 
yield in terms of appearance of tensile and shear fracture 
surfaces at macroscopic level precluding the mechanism at 
microscopic level* Griffith (1921) hypothesized that 
fracture is caused due to stress concentrations at the 
tips of minute ’Griffith Cracks’ which arersupposed to 
pervade the material causing the crack to propagate and 
ultimately contribute to macroscopic failure. The fracture



is initiated when the maximum stress near the tip of the 

most favourably oriented crack reaches a value 
characteristic of the material, Inglis (1913) determined 

the maximum stress for a thin elastic strip of unit 
thickness containing an elliptical hole oriented with its 
long axis perpendicular to the applied tensile stress

°^ax ■ 2 % /f" • • • • 5-2 .

where CT is the applied meanstress 2C = length of the crack 

^ = radius of curvature at the apex. Griffith sought the 

configuration which minimised the total free energy of the 
system, the crack would • then be in a state of equillibrium 
and thus on the verge of extension. Griffith computed the 
difference of energy Wg in the strip with and without hole.

W0 = TTC2 (P / E . . . . 5.3e p
The surface energy resulting from the formation of the crack
is Ws - 4 C T . . . • 5.4 •

\

Where T is the surface tension. Hence the elliptical hole 
has decreased the totalenergy by
W = W -W_ = IT C2cr 2 /E-4CT . . 5.5

e s p
Instability will result and the crack will propagate if

kw/^c^O if ike total energy becomes the maximum hence.

CTp «* J2 E T /TTC - To . . 5.6
where To is the tensile strength of the material. The 

criterion for fracture will be
(cr^ - (J3)2 - - 8 To (CHj + 0^ ) . . 5.7

86

such that randomly distributed and oriented cracks occur
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throughout the body in two dimensional case at an angle 
Cos. 20 =
similarly if 0^7 0^ and 30^ +0^ > 0 

the fracture will occur when 03|=-To when 0=0 
H2 - 4 To (CT+ To) • 5‘

which is a parabola passing through A (Fig 5*4).

5.3.2 . Empirical strength criterion;

rock discontinuities generally show that the relationships 
between major and minor principal stresses and between normal 
and shear stresses at failure are non-linear. Hoek and Brown 
(1980) developed empirical strength criterion using 
non-linear failure envelope as predicted by classical 
Griffith criterion. The empirical relationship between the 
principal stress at failure is written as

in which m and s are constants that depend on the properties 
of rock and on the extent to which it had been broken before 
being subjected to the principal stresses. The equation may 
be rewritten in the form as

in which Ojn and are the principal stresses normalized
with respect to

by putting 0^=0 in equation 5.9 the uniaxial compressive 
strength of the rock is obtained as '

The experimental data for intact rock and

VCo " °3/Co + /m VCo + S 5.9

5.10
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^cn S Cno 5.11

For intact rock material S = 1.0 and 0~ = Co ascn
required. For previously broken rock S<1 and the 
compressive strength at zero confining pressure is given 
by equation 5.11. For a completely granulated specimen or 
a rock aggrigate S = 0. The uniaxial tensile strength of 
a specimen if found by putting 03j = 0 in equation 5.9 
and solving the resulting equation for 0^ = TQ to obtain
To = Co/2 " /m^ + 4 S ) • • • 5.12

When S = 0, TQ 3 0 as would be expected for completely 
broken material. For intact rock material with S = 1.0, 
and m » 1, m = Cq/T0. However because of the difficulty 
involved in adopting the uniaxial tensile strength as a 
fundamental rock property it is prefereable to treat 'm* 
simply as an empirical curve fitting parameter. The value 
of 'm' will decrease as the degree of prior fracturing of 
a specimen increases. For a general non-linear failure 
criterion the relation between normal and shear stress is 
written as:

<r= °3
2TLm*C +mC /8 m o

5.13

and H - (CT- 0^ ) /1 + m CQ/4 *Cm . 5.14

in which TJm = J(C^-O^) . . . 5.15
From it can be seen that the normalized values of "C and 

CT = CT J CQ andTn = i:/C0 which further ,
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may be related by an equation of the form.

n A (cr - o;jBtn' 5.16
in which rr is the normalized tensile strength of the rock tn
given by

^ (m - Jm2 + 4 S ) . • •<5n . . 5.17

and A and B are constants depending upon the value of ,m*.

5.3.3 Extension of classical Griffith brittle
fracture criterion for rocks under pre-stresss 

It is postulated that when the ratio of 
applied stress to prestress locked in the rock exceeds unity 
fracture is triggered in pre-existing flaws randomly 
distributed throughout the material as per Griffith 
classical mechanism. The Griffith criterion is a parabola 
on Mohr plot (O^C) ' (Cartesian co-ordinates)
-C2 » 4 Tq ( CT+ Tq) . . . 5.18

where C is the shear stress across the plane of failure 
at the point of failure, CT is the stress normal to the 
plane of failure at the point of failure. The fracture 
process consists of deformation of submicroscopic 
pre-existing cracks traversing from state of tensile stress 
to state of compressive stresses leading to ultimate shear 
failure in rocks. The failure envelope on a Mohr plot is a 
parabola consisting of three circles of failure stresses 
(Fig 5.5). As these circles have their centres on the x-axis 

and are touching each other the parabola is also symmetrical 

about x-axis. The general equation of the parabola is of the
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form-C2 = 4^(CT+ To ) 5.19

where ( -To, 0 ) represents its vertex and 2 y is radius
of curvature at the vertex. Considering the radius of the
pre-stress circle as ^o and the radius of the next circle

2Cras _® "the equations of these circles are 
2

(cr- cr/2)2 + T32 = (cro/2)2 . . 5.20
and {0‘-(°o+Crm/2)i2+T2 = • * 5.21

Eliminating X. from equations 5.19, 5.20 and from equations 
5.19, 5.21 we get
02+ 2 (r(2Y“ CT/2) + 4 To - 0 . . 5.22

and
CT2+2 ot2y-cr-cr/2)+4 (cr/2)2+(cro/2v CT/2)+ To . 5.23

For the point of tangency the roots of equation 5.22 and 
5o23 must be equal therefore we have 
4Y To = (2Y- 0^/2)2 ... . 5.24

and
4YTo=(2v-0^-(Tm/2)2-4 (Cr/2)2+(CT0/2.Cr/2) . 5.25

From equation 5.24 and 5.25 after simplifying we get

4 Y = (0^ - %)/2 ... . 5.26
The maximum compressive stress is

1

Co = 0^ + CT = nTo . . . . 5.27
Then o „ , _Tr = (nTo/2 - 0~o) ( (T + To ) . . 5.28

if cr=0 and n « 8 the equation degenerates in to Griffith
equation as 
„2
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5.4 Stress distribution;
5.4.1 Stress distribution in discs:

A stress solution for a disc 4r cylinder 
compressed normally by a line load along diametrally

i.

opposite generators was obtained by Hertz (1883) and 
then later on by Michell (1903). Hondros (1959) analysed 
the stress distribution in a thin disc assuming material 
as homogeneous, isotropic and lineraly elastic loaded by 
uniform pressure radially applied over a short strip of 
the circumference at each end of the diameter. Since the 
Brazilian test is only valid when primary fracture starts 
from the centre spreading along the loading diameter the 
stress distribution along that diameter is of greater 
interest. The stress component normal to the loading 
diameter yy' (0@) and the stress component along the 
loading diameter yy' (CT,) are given by the expressions.

% -

tan

TTr It «<

f1+(r/r_)2

(1 -(r/rQ )2]Sin 2q<
1 “2 £r/r Cos 2<x + (r/rQ)

0‘

1-(r/rQ)‘ tanc< 5.30

°-r
TTr0 tn<

|l * (r/rQ)^lSin 2c<
1 - 2(r/r.) Cos 2<*.+ (r/r.)^

+ tan” f 1 + (r/r )'
1-(r/rQ)‘

tan < 5.31





95where rt" 
e

ss

cr ■r

■ F

ro = 
t
2 <K =*

and

Stress component normal to the loading 
diameter
Stress component along the loading
diameter
Applied force
Radius of the disc
Thickness of the disc
Angular distance over which F is assumed 
to be distributed radially

r = Distance from the centre of the disc 
The maximum tensile stress at the centre in a disc loaded 
diametrally by uniform pressure radially applied over a 
short strip of the circumference•

01 = - F ( Sin 2«K/o( - 1) . . 5.32
rrr0 t

** - F .... . 5.32 A
TTr0 t

5*4.2 Stress distribution in rings: .
Kirsch (1898) analysed the stress 

distribution around a circular hole in a disc loaded 

diametrally. The work was followed by Nelson and Filon 
(1924), Ripperger and Davids (1947), Timoshenko and Goodier 
(1951), Leeman (1956), Jaeger and Hoskin (1966) and.Nevel 
(1969). The required general stress solution in polar 
co-ordinates ( r, 0) with symmetry about the line 

9 = 0, FT is
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o; = 2(A0 /r2) + (BQ/r2) ( r/r0)-2 

+ y~[A(2-n) (1+n) (r/r0)n + Bn (1-n) (r/r0)n'2 

- Cn (1+n) (r/r0)“n“2 + D (2+n) (1-n) (r/r0)‘n Cos(ne).5.33

r
2
o

" 2 (r/r0)-2+ C0 3+2 log(r/ )
„2 °

•rA(2-n) (1+n) (r/rQ)n - Bn (1-n) (r/r0)n‘2

+ Cn (1+n) (r/r0)"n_2 + D (2-n) (1-n) (r/rQ)“n Cos(n8) 5.34
*5

5.34

where Ao, Bo, A,B,C,D, ro are constants and 'n* is a 

positive integer. The values of constants are given as

Ao ii i »s O
'

Bc PrQ a2 

( 1-a2)2 (1 -a^) J

A " Pro Sin not _2na -1+n a2n~2
T?R not 1+n

B " Pro Sin no< a2n ,, 2n+2-1-n a
IT R n®< 1 - n

C " Pro Sin no<. a2n „4n , „ 2n+2
TTr n<

_
1 + n ^

D

it

Sin n»<. a2n - a4n - n a2n~2

not 1 - n

= ( 1-a2n)2 - n2 a2n“2 ( 1-a2)2
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Vro

Inner radius 

Outer radius

Angle of distributed load at centre 

Distance at which stress is to be determined 

Applied force per unit thickness of the ring. 

The maximum tensile stress at the intersection of the 

loading diameter with the hole is expresses as

01 = 2 F ( 6 + 38q2 ) . . { . 5.35
C YjTJJJ

5.4.3 Critical stress ratio of compressive and 

tensile stress:

Maximum tensile stress as obtained by 

theoretical solutions in disc and ring specimens greatly 

differ in value. The diametral tensile strength in Brazil 

test is more near to the uniaxial tensile stress value0 

The maximum tensile stress in disc and ring, can also be 

estimated using the failure criterion which has been 

developed in previous section 5*3.3 incorporating the 

pre-stress values. The failure equation is

-C2 = (n To/2 - 0^) ( CT + To ) . . . 5.28

comparing with Griffith criterion
T2 » 4 To ( (T+ To ) 

and eliminating -q we get

( n To/2 - (T0 ) = 4 To

5.18
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and
To = ( n To/2 - 0" )/4 =(CQ/2 - 0^)/4 5.36

where the 'Co* is the maximum compressive stress and *n‘
ia the Griffith ratio. The value of To can be obtained by-
substituting the value of Co. It has been shown that the
value of critical ratio (n) between maximum compressive
stress and maximum tensile stress is 8 if 0“ is zero.

o

5.5 Experimental development:
5*5.1 Grip design and development:
5.5.1.1 Theoretical requirements;

If disc and ring tests are to be valid the 
applied load must be confined to a narrow strip so as to 
approximate a uniform line load and the contact stresses 
must not be so high that they cause premature cracking. 
Simple theory for discs and rings assume line loading at 
the boundary although true line loading which would imply 
infinite contact stresses can never be realised in practice. 
The width of the contact area when a flat platen and a 
cylindrical sample are pressed together can be found from 
elastic theory (Timoshenko and Goodier 1951).

5.372b = 4 FR ( 1 $ 2 + 1 •X) 2 )
E.

or b/r - 2 ( F/ Rt )1
E_ s 

( 1 - •» + 1 - V
E„ 5.37 A

where 2b is the width of the contact strip F is applied 
load r is sample radius, t is sample thickness and the 
subscripts p and s refer to platen and specimen respectively.



39
Hence assuming rock to be linearly elastic the contact 
width between a steel platen and a specimen of rock can 
be calculated. The analysis of stress for the elastic 
half space loaded over a rectangular strip of finite 
length also shows that platen cracking of some kind will 
occur in a Brazil test when there is a direct contact 
between rock and platen. Reduction of contact stresses 
are therefore clearly necessary. There are two ways to 
reduce contact stresses, the first is to increase contact 
area, the second is to alter the distribution of stress 
so as to reduce stress concentrations. In order to reduce 
stresses solely by increasing contact area it would be 
ne essary to increase the contact width by atleast a 
factor r*" five from R/15 to R/3, but there is a possibility 
that this might alter the stress conditions in the critical 
test zone of the specimen. However the photoelastic 
observations and theoretical solutions suggest that stress 
distribution in the critical zones of disc and annuli 
are virtually unaffected distribution of boundary loads 
over contact ar*c upto 15°.
5.5.1.2 Prev.-i .s devices:

„e problem of how to achieve the stress 
distribution in practice has been the subject of many 
research investigators. Jaeger and Hoskin (1966) arid 
others adopted a practice to groove the platen so as to 
make direct contact over an arc of the specimen periphery.
A testing jig developed consist of reversible platens

ggrooved on one side to the radius of the specimen so as



100
give initial contact over 10°. Under the load the edges of 
the platen grooves catch the rock specimen and promote 
platen cracking. Mellor & Hawkes (1971) designed curved 
platens or pair of jaws the contact surface of which are 
circular arc of radius larger than the specimen radius.
The jaw radius has been chosen so as to get a contact arc of 
approximately 10° ( ~ R/6). While it greatly improved .
the contact conditions the contact stresses could not be 
decreased sufficiently to permit direct steel rock contact. 
Further the device lacked in making a provision for' 
displacement measurement and adequate provision for 
centering.

5.5.1.3 Present device:
Keeping in view the attempts to ensure the 

uniform load distribution a modified grip design is developed 
and produced for present investigation.

5.5.1.3.1 Contact area measurement:
In earlier attempts there is no mention of 

measurement of contact area. Therefore during the present 
investigation the following attempts were made for the 
measurement of contact area. First it was tried with wet 
chalk but contacts were very crude owing to the swelling of 
wet chalk and therefore correct contact area determination 
could not be accomplished. Second attempt consisted with 
butter paper’inserted between jig and specimen. The pressing 
folds of the butter paper measured and the contact area 
determined. The butter paper being sensitive the pressing
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folds produced error in contact area determination.
Third attempt involved the use of white paint spread at 
the surface of the grip. The rock disc when pressed under 
the jigs produced an imprint of contact area. A slight 
variation in the contact area at top and bottom noticed. 
Fourth attempt consisted in wraping the rock disc with 
butter paper and pressed with the jig where the whiter 
paint thoroughly spread. The measurement of the contact 
arc showed no appreciable difference at both top and bottom. 
The average value corresponds to contact angle of 10° 
subtended at the centre of the disc' or ring.

5.5.1.3.2 Grip dimension:
The steel loading jaws designed and 

developed in the department for the use with disc-shaped 
rock samples consisted of diametrically opposed surfaces 
over an arc of contact of approximately 10°. The critical 
dimensions of the grip are the radius of curvature of the 
jaws, the clearance and length of the guide pins coupling 
the two curved jaws and the width of the jaws. The 
dimensions of the grip are radius of jaws = 1.5 times the 
specimen thickness. Width of the jaws equal to 1.1 times 
specimen thickness. The upper jaw contains a spherical 
seating conveniently formed by a half ball bearing. The 
developed grip incorporates - essential facilities of 
self centering of disc and provision for measurement of 
displacement while test is in progress. The design of 
grip varies with the thickness and size of the specimens
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(Fig 5.7, Fig 5.8, Fig 5.9 and Fig 5.10)
5.5.2 Test specimen;
5.5.2.1 Specimen diamensions;
5.5.2.1.1 Specimen thickenss

Since theoretically the controlling 
stresses are plane stress conditions there is no explicit 
constraint on specimen thickness. The disc is favoured 
over the cylinder because of economy and also because of 
non-availability of perfectly stright rock cores for 
cyliner specimens. Theoretically the minimum thickness of 
a ring or a disc shall be approximately 10 times of grain 
diameter of rock structure. The thickness can also be 
fixed with the concept of critically stressed volume which 
is comparable with that of uniaxial tests. The ideal 
requirement is

t > 5/R2 in Brazil tests
and t >130/R2 in Ring tests
where t specimen thickness in mm
and R out side radius of disc/Annulus

In mm

In accordance with the above requirement in the present 
investigation the thickness of the specimen has been 
approximately kept equal to radius of the specimen.

5.5.2.1.2 Specimen diameter;
Specimen diameter must necessarly be such 

that the sample test material within the critically 
stressed volume of the specimen. The smaller linear

e
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dimension of this critically stressed volume equals to 
10 grain diameter of the rock. For ring test the minimum 
requirement suggested is R = 100 d where d is the grain 
diameter* Taking in to account theretical consideration, 
experimental findings and practical limitations 2.125 inch 
diameter has. been taken as the minimum acceptable size for 
Brazil and Ring tests for the present investigation.

5.5»2.1.3 Tolerances of specimen dimension;
The cylindrical surface should be free from 

obivious tool marks and any bumps or waves across the 
thickness should not exceed 0.001 inch in height. End 
faces should be flat within 0.01 inch and if possible 
square and parallel to within 0.25°. Profilometer is 
generally employed to check the tolerance value.

5.5.2.2 Specimen preparations:
Samples have been collected from Navagam 

Dam site (Gujarat State) in the form of cores, obtained 
through diamond drilling. The procured core samples of 
Basalt rock has been sliced in laboratory by a stone 
cutting machine using diamond saw and continuous water' 
flow to check the thermal- variation. The holes have been 
then drilled through discs and ring samples prepared 
subsequently subjecting to finishing and polishing. 
Finishing of the specimen ends to certain standard before 
testing is important because the ridges and hollows at 
the specimens ends form points of stress concentration 
and cause failure at a relatively low load. Stronger rocks
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like basalt are more sensitive to roughness than weaker 
rocks. Rock specimens finished on laths, a surface grinder 
and', a lapping machine for exact dimensions with grinding 
on carborandum emary block. The finishing is particularly 
very important when strain gauges are to be used for 
strain measurements.

5.5.3 Test setup:
5.5.3.1 Equipment:

A 5 ton loading frame has been used for 
the test set up. The machine is consisting of five pairs 
of driver and driven wheels and six lever combinations 
giving 30 different speeds. The speed of the machine is 
ranging from 1.9 x 10-5 to 2.4 x 10-1 inch/min.

5.5.3.2 Measurements;
The test specimen in the form of Nx size 

discs and rings measured for its size and thickness prior 
to testing. The thickness is measured at the points of 
contacts of specimen and Jigs and at two other points 
perpendicular to the loading diameter with the help of 
vernier callipers of least count equal to 0.001 cm.The 
load measured with proving ring of capacity equal to 5 
tonnes. The dial gauge of proving ring calibrated giving
a least count of 7.22 kg/div« The displacement of the
•
sample measured with the help of dial gauge having least 
count equal to 0.0005. For measuring the average displacement 
of the specimen two dial gauges installed on the upper 
Jaw of the specimen Jig. A steel flat having width equal
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to grip is mounted on the grip and on each side of the 
grip one dial gauge is fitted.

5.6 Concluding remarks:
A theoretical model developed from 

first principles has been put forward with a clear scheme 
for experimental verification. The next chapter presents 
the analysis of the experimental results obtained from 
Brazil test on discs and rings of two varieties of 
basalt from the same region.


