- CONTENTS

PAGE

PREE	FACE	
ACKN	IOWLEDGEMENTS	
SUMM	MARY AND CONCLUSIONS	1
NOMENCLATURE		
LIST	OF TABLES	14
LIST	OF FIGURES	17
1. INTE	RODUCTION, OBJECT AND SCOPE OF INVESTIGATION	25
4 4	Turkun darak dara	O.F.
1.1	Introduction	25
1.1.1	Solar Collector	26
1.1.2	Solar Water Heating	29
1.2	Object and scope of the study	34
2.	LITERATURE SURVEY	36
	•	
3.	MATHEMATICAL MODEL	59

3.1	Flow at Tee Junctions	65
3.1.1	Dividing 'T' Junction	66
3.1.2	Combining 'T' Junction	70
3.1.3	Applicability of the tee loss coefficients	•
	for solar collector network	73
	ı	
3.2	Friction flow in riser and manifold	78
3.3	Solar Collector Network Model	79
3.3.1	Network Pressure Equations	79
3.4	Network Pressure Equations for Asymmetric Flow	82
3.5	Network Pressure Equations for Symmetric Flow	89
3.6	Solution of Solar Collector Hydraulic Network	93
3.6.1	Selection of Network Algorithm	95
3.6.2	Daniel's Algorithm for Solar Collector	95
3.6.3	Circuit Matrix	98
3.7	Flow Reversals	100
3.8	Effect of Temperature	100
3.9	Collector Array Efficiency	106
		440
3.10	Computer Model Flow Chart	110

4.	ANALYTICAL METHOD	114
4.1	Principle of Electrochemical Measurements	114
5.	EXPERIMENTAL SET-UP AND PROCEDURE	119
5.1	Hydraulic Circuit	119
5.1.1	Calibration Test Section	119
5.1.2	Collector Test Section	120
5.1.3	HDPE Tank	121
5.1.4	Rotameter	121
5.1.5	Reference and Test Electrodes	121
5.1.6	Centrifugal Pump	122
5.1.7	FVC Flexible pipings, Valves and Fittings	122
5.2	Electrical Circuit	122
5.3	Experimental Procedure	123
5.3.1	Preparation of Electrolyte Solution and Quality	
	Check	123
5.3.2	Preparation of The test set-up	124
5.3.3	Rotameter Calibration	124
5.3.4	Calibration of Flow vs Polarising Current	125
6.	RESULTS AND DISCUSSION	136
6.1	Experimental Investigation	136

6.1.1	Experimental Results	137
6.1.2	Comparison with theory	146
6.1.3	Comparison with McPhedran's model	167
6.1.4	Observations on the experimental results	169
	·	
6.2	Flow distribution studies in large solar	
	collector array	172
6.2.1	Simulations of 5-module solar collector array	175
6.2.1.1	Asymmetric-Effect of Area ratio	175
6.2.1.2	Asymmetric-Effect of Flow rate	181
6.2.2.1	Symmetric-Effect of Area ratio	182
6.2.2.2	Symmmetric-Effect of Flow rate	183
6.2.3	Effect of Collector and Riser Spacing	234
6.3	Comparison of Asymmetric and Symmetric flow for	
	5-module solar collector array	243
6.4	Methods of balancing	248
7.	CONCLUSIONS	264
8.	REFERENCES	270