LIST OF TABLES

Table No.	Title	Page No.
2.1	Summary of HPLC methods for analysis of chloroquine phosphate	44
2.2	Summary of spectrophotometric methods for analysis of chloroquine phosphate.	47
2.3	Summary of high pressure liquid chromatographic methods for analysis of mefloquine hydrochloride	67
2.4	Summary of gas chromatographic methods for analysis of mefloquine hydrochloride	70
3.1	Calibration curve for chloroquine phosphate in 0.01N hydrochloric acid.	102
3.2	Optical characteristics for chloroquine phosphate in 0.01N hydrochloric acid.	104
3.3	Evaluation of accuracy & precision of the method for estimation of chloroquine phosphate in 0.01N hydrochloric acid.	104
3.4	Calibration curve for chloroquine phosphate in PBS	105
3.5	Optical Characteristics for Chloroquine Phosphate in PBS	107
3.6	Evaluation of accuracy & precision of the method for estimating chloroquine phosphate in PBS	107
3.7	Calibration Curve for chloroquine phosphate extracted from rat blood, lung, liver, heart, kidney & spleen in to 0.01 N hydrochloric acid.	111
3.8	Optical characteristics for chloroquine phosphate extracted from rat blood, liver, heart, kidney & spleen into 0.01 N hydrochloric acid.	118

Table No.	Title	Page No.
3.9	Evaluation of the accuracy & precision of the method for estimating chloroquine phosphate in rat blood & other tissues.	118
3.10	Calibration curve for mefloquine hydrochloride in methanol	121
3.11	Optical characteristics for mefloquine hydrochloride in methanol	123
3.12	Evaluation of accuracy & precision of the method for estimating mefloquine hydrochloride from microspheres	123
3.13	Calibration curve for mefloquine hydrochloride in PBS	125
3.14	Optical characteristics for mefloquine hydrochloride in PBS	127
3.15	Evaluation of accuracy & precision of the method for estimation of mefloquine hydrochloride in PBS	127
3.16	Calibration curve for mefloquine hydrochloride extracted from rat blood, lung, liver, heart, kidney & spleen into 0.1N hydrochloric acid	13]
3.17	Optical characteristics for mefloquine hydrochloride extracted from rat blood, lung, liver, heart, kidney & spleen.	138
3.18	Evaluation of the precision and accuracy of the method for estimating mefloquine hydrochloride in rat blood, lung, liver, heart, kidney & spleen.	133
3.19	Summary of the properties of various batches of Ethyl Cellulose coated Chloroquine Phosphate Microspheres	16

Table No.	Title	Page No.
3.20	Summary of properties of various batches of Chitosan coated Chloroquine Phosphate Microspheres	169
3.21	Summary of Ethyl Cellulose Coated Mefloquine Microspheres	171
3.22	The effect of types of continuous phase on in-vitro release profile of ethyl cellulose coated CQP microspheres.	174
3.23	The effect of concentration of Span-80 as an emulsifying agent on in-vitro release profile of ethyl cellulose coated CQP microspheres.	175
3.24	The effect of concentration of gelatin as an emulsifying agent on in-vitro release profile of ethyl cellulose coated CQP microspheres.	176
3.25	The effect of formaldehyde concentration (cross linking agent) on in-vitro release profile of chitosan coated CQP microspheres.	177
3.26	The effect of Drug: Polymer ratio on in-vitro release profile of chitosan coated CQP microspheres.	178
3.27	The effect of polymer concentration on in-vitro release profile of chitosan coated CQP.	180
3.28	The effect of stirring speed on in-vitro release profile of chitosan coated CQP microspheres.	181
3.29	The effect of hardening time on in-vitro release profile of chitosan coated CQP microsphere.	182
3.30	The effect of concentration of glutaraldehyde (cross-linking agent) on in-vitro release profile.	184

Table No.	Title	Page No.
3.31	The effect of Drug: Polymer ratio on in-vitro release profile of ethyl cellulose coated mefloquine hydrochloride microspheres.	185
3.32	The effect of solvent ratio on in-vitro release profile of ethyl cellulose coated mefloquine hydrochloride microspheres.	187
3.33	The effect of volume of disperse phase on in-vitro release profile of Ethyl Cellulose coated mefloquine hydrochloride microspheres.	188
3.34	The effect of PVA concentration (continuous) phase on in-vitro release profile of Ethyl Cellulose coated mefloquine hydrochloride microspheres.	189
3.35	The effect of volume of continuous phase on in-vitro release profile of Ethyl Cellulose coated mefloquine hydrochloride microspheres.	190
3.36	The effect of stirring speed on in-vitro release profile of Ethyl Cellulose coated mefloquine hydrochloride microspheres.	191
3.37	The effect of different molecular weight of PEG on in-vitro release profile of Ethyl Cellulose coated mefloquine hydrochloride microspheres.	192
3.38	The Effect of PEG concentration on in-vitro release profile of Ethyl Cellulose coated mefloquine hydrochloride microspheres.	193
3.39	Factorial transformed values for chitosan coated chloroquine phosphate microspheres	194
3.40	Results of multiple regression analysis and ANOVA for drug content of chitosan coated chloroquine phosphate microsphere	195

Table No.	Title	Page No.
3.41	Results of multiple regression analysis and ANOVA for particle size of chitosan coated chloroquine phosphate microsphere	196
3.42	Factorial transformed values for chitosan coated chloroquine phosphate microspheres	197
3.43	Results of multiple regression analysis and ANOVA for particle size of chitosan coated chloroquine phosphate microsphere	198
3.44	Factorial transformed values for ethyl cellulose coated mefloquine hydrochloride microspheres	199
3.45	Results of multiple regression analysis and ANOVA for drug content of ethyl cellulose coated mefloquine hydrochloride microsphere	200
3.46	Results of multiple regression analysis and ANOVA for particle size of ethyl cellulose coated mefloquine hydrochloride microsphere	201
3.47	Summary results of Regression for measured response of chitosan coated chloroquine phosphate microspheres	202
3.48	Summary results of Regression for measured response of ethyl cellulose coated mefloquine hydrochloride microspheres	202
3.48a	Hypothetical percentage release of CQP from Ethyl Cellulose microspheres at zero hour (% burst)	218
3.48b	Hypothetical percentage release of CQP from Chitosan microspheres at zero hour (% burst)	219
3.48c	Hypothetical percentage release of MQH from Ethyl Cellulose microspheres at zero hour (% burst)	219

Table No.	Title	Page No.
3.49	Concentration of chloroquine phosphate in various tissues of Sprague Dawley albino rats after intramuscular administration of free drug and formulation	231
3.50	Concentration of mefloquine hydrochloride in various tissues of Sprague Dawley albino rats after intramuscular administration of free drug and formulation	232
3.51	Comparison of the pharmacokinetic parameters in blood following intramuscular administration of CQP free drug, CQP formulation, MQH free drug and MQH formulation.	233