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CHAPTER IY

AVERAGE SAMPLE BOMBER FOR CURT AILED 

TWO CLASS ATTRIBUTES SAMPLING PLAN

4.1 In this chapter we discuss an important aspect of 

curtailed sampling plan, namely, the Average Sample Number 

(ASN). The expressions of the ASN for curtailed single and 

double two class attributes sampling plans are obtained ' 

under two probability laws, hypergeometric and binomial. The 

percent saving in inspection due to curtailment is explained 

by numerical examples.

4.2

4*2.1 Curtailment in the Inspection :

Girshic^ Hosteller, and Savage [12] introduced the 

curtailed sampling plan while studying the problem of the 

unique unbiased estimation of the parameter p (fraction 

defective) for samples drawn from a binomial distribution. 

Two forms of curtailed single sampling plan can be 

distinguished. The sampling plan which considers curtailment 

in the inspection arising due to observing enough defectives 

to reject a lot is termed, a semi-curtailed sampling plan,
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following the terminology of the Statistical Research Group 

[44] . Similarly the sampling plan which considers curtailment 

in the inspection arising due to oh serving either enough 

defectives to reject a lot or enough nondefeetives to accept 

a lot is called fully-cur tailed sampling plan. If a double 

sampling plan is administered, one can have different 

variations in curtailment other than these forms. A list of 

possible variations in curtailment, when double sampling 

plan is executed, is given below :

(a) no curtailment in the inspection of the first sample 

and semi-curtailment in the inspection of the second sample,

(b) no curtailment in the inspection of the first sample 

and full-curtailment in the inspection of the second sample,

(e) semi-curtailment In the inspection of the first 

sample and semi-curtailment in the inspection of the second 

sample,

(d) semi-curtailment in the inspection of the first 

sample and full-curtailment in the inspection of the second 

sample,

(e) full-curtailment in the inspection of the first 

sample and full-curtailment in the inspection of the second 

sample.
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Craig £83 has discussed (a) and (c). According to him the 

curtailment described in (a) is called partial truncation 

and the curtailment described in (c) is called complete 

truncation. In the following sections of this chapter we 

have considered only (c) and (e). If we follow the terminology 

of Statistical Research Group [44], only the variations (c) 

and (e) are meaningful and with reference to that terminology 

variation (c) is termed here as semi-curtailed double sampling 

plan and variation (e) is termed here as fully-curtailed 

double sampling plan.

4.2.2 Average Sample lumber ;

An important characteristic of curtailed sampling plan 

is a reduction in the ASI. Ihis problem was dealt with, as 

early as 1948, in Chapter 17 of Sampling Inspection by the 

Statistical Research Group, Columbia University [44] • Later 

Burr (1957) [5], Batil (1953) [38], Rhatak and Bhatt (1967)[40], 

and Craig (1968) [8], worked out the ASR for some curtailed 

sampling plans. Bor instance, Patil obtained the ASN of a 

curtailed single sampling plan in terms of the inverse 

binomial sampling plan. Recently Cohen [7], Guenther [16], 

and many others also have discussed the problem of the ASI
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in curtailed sampling plan. In the following sections of 

this chapter we have obtained the expressions of the AS1 

for fully-curtailed single and double sampling plans under 

two probability laws, hypergeometric probability law and 

binomial probability law. However, for comparative study of 

the percent saving in inspection we have also considered the 

expressions of the ASH under semi-curtailed sampling plan.

The percent saving in inspection as one passes from an un

curtailed sampling plan to a semi-curtailed sampling plan 

or to a fully-curtailed sampling plan is illustrated with 

numerical examples in certain cases.

4*3 The ASH of the Curtailed Sampling Plan under the

Hyper geometric Probability Law ;

In the usual acceptance sampling plan by attributes 

the practice is to take units from a lot without replacement 

and to use the binomial probaoility law, under the assumption 

that the lot size is sufficiently large, to derive the various 

expressions such as the probability of acceptance (O.C. 

function), the ASN etc. However, when the lot size is not 

sufficiently large the use of the hypergeometric probability 

law is more realistic. Using the hypergeometric probability 

law, the expressions of the ASN for a fully-curtailed single
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two class attributes sampling plan and a semi-curtailed 

double two class attributes sampling plan are given by 

Guenther in two separate papers [14], [16], In case of a 

double two class attributes sampling plan, Guenther [16] has 

considered a common rejection number for both the samples, 

i.e. r^=rg=r. In the following sections we have obtained 

the expressions of the AS 1ST for a semi-curtailed single two 

class attributes sampling plan and a fully-curtailed double 

two class attributes sampling plan. In case of a fully- 

- cur tailed double sampling plan we have given the expressions 

of the ASN when (i) both samples have a common rejection 

number and (ii) they have different rejection numbers. We 

have also given the expression of the ASN for a semi-curtailed 

double sampling plan when the two samples have different 

rejection numbers. Thus the expressions obtained by us will 

fill in the gaps and our results along with Guenther's 

results will help us in obtaining the saving in inspection 

as one passes from an uncurtailed sampling plan to a semi- 

-curtailed sampling plan or to a fully-cur tailed sampling 

plan. Shis also helps in finding the saving in inspection as 

one passes from a semi-curtailed sampling plan to a fully- 

-curtailed sampling plan. Using these results the percent 

saving in inspection is illustrated with numerical examples.
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4.3*1 Some Results of the Hyper geometric Distribution :

We state some results of the hypergeometric distribution 

and those of inverse hypergeometrie distribution. Let a lot 

contains If units of which M units are defectives. Let n be 

the size of a random sample drawn from this lot without 

replacement. Then the probability of obtaining x defectives 

in the sample is given by

p(N,n,M,x) =(“)(” ^ a - x-b ...(4.3.1.) 

where a = max. [0,n-(S-M)] and b = min. [n,Ml .

Furthermore, it may be noted that

p (N,n,M,x) = p (N,M,n,x) ...(4.3.2)

P (LT,n,M,r) = P (Ef,M,n,r) ...(4-3.3)

and P (l,n,M,r) = 1-P(l,n,I-M,n-r-1) ...(4.3.4)
r

where P(!,n,M,r) = )T p(l,n,M,x) represents the probability
x=o

of obtaining at the most r defectives in the said sample.

Phe expression (4-3-1 ) is known as the hyper-geometric 

probability function. Phe notations and the results given 

above can be found in Lieberman and '©wen [30] .

If the units of a lot are selected and inspected in 

succession without replacement, then the probability that 

y inspections are required to obtain the kth defective is
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the product of the probability of having (k-1 ) defectives in 

(y-1 ) inspections and the probability of having a defective 

at the 7 tK inspection. This probability denoted by p (H,I,k,y) 

is given by

p*(H,M,k,y) = ( )/( ^ ) y>k,k+1,.. .,H-M+k

.. .(4-3.5)

The above probabiliiy function is known as the inverse (or 

negative) hypergeometric probability function. The probability 

that r or less inspections are required to have the kth 

defective is

?* (N,M,k,r) I p*(N,M,k,y)
y=k

...(4.3.6)

The probability that the kth defective is obtained at the 

kth inspection, the (k+l)th inspection,..., or rth inspection 

is equal to the probability that one obtains k,k+1,..., or r 

defectives in r inspections. Hence

p*(N,II,k,r) = 1 - P(N,r,M,k-1 ) . .(4.3.7)

Furthermore, it is found that

p*(H+1fM+1,k+1,y+1) = y p*(3ff,M,k,y) ...(4.3.8)

The results (4.3*7) and (4»3.8) are due to Guenther [16]. 

However, the result (4-3*7) which is the relation between 

the hypergeometric distribution and the inverse hypergeometric
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distribution can be found established independently in 

lieberman and Owen [30,pp.7] .

4*3*2 Curtailed Single Sampling Plan :

We recall here the statements of a semi-curtailed and 

a fully-curtailed forms of a single sampling plan from Phatak 

and Bhamfc [40] for continuity and completeness. These forms 

are designated as Plan 2 and Plan 3 respectively'in [40].

Plan 1 is the usual uncurtailed single sampling plan.

Semi-curtailed Sampling Plan j Inspect randomly selected 

units of a lot one at a time until either k defectives have 

been observed or until n units have been inspected. Reject 

the lot if k defectives are observed. Accept the lot if n 

units are inspected, provided that the number of defectives 

observed is less than k.

Pully-curtailed Sampling Rian : Inspect randomly selected 

units of a lot one at a time until either k defectives have 

been observed or g (n-k+1) nondefectives have been observed. 

Accept the-lot if there are g nondefectives. Reject the lot 

if there are k defectives.

In these plans g, k (and hence n) are predetermined
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numbers, k is known as rejection number and it is related 

with the acceptance number, a, through the relationship 

k = a + 1 .

4.3.3 Probability Functions s

Let the joint probability function associated with a 

semi-curtailed sampling plan be denoted by hg(x,t;N,M) and 

that of a fully-curtailed sampling plan be denoted by 

hj(x, tyU,M) • ‘^'hese probability functions are given below :

4 .3*3(1) -i) Semi-Curtailed Sampling Plan :

p {X=x, T=t} = hg(x, t;lf,M)

p (JT,n,M,x) 

p*(l,M,k,x) 

0

x = 0,1 , 

x=k,k+1, 

elsewhere

,k-1; t=1,

,n; t=2,

. ..(4.3.9)

4.3.3U1) vii) Fully-Curtailed Sampling Plan : 

P |X=x, T=t] = h5(x,t;ff,M)

P*(I,N-M,g,x) x=g,g+1,...,n;t=1,

p* (W,M,k,x), x=k,k+1,.. .n;t=2

0 elsewhere.
. ..(4.3.10)
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(i) the part of the probability function associated 

with t=1 is implied by acceptance of a lot and the 

part of the probability function associated with 

t=2 is implied by the rejection of a lot,

Cii) in the case of a semi-cur tailed sampling plan the 

physical meaning of the random variable X is the 

number of defectives observed when t=1 and the 

number of units inspected when t=2,

(iii) in the case of a fully-curtailed sampling plan the 

physical meaning of the random variables X is the 

number of 'units inspected for both the cases t=1 and 

t=2,
and (iv) ( ^ ) is taken as zero whenever a 4 b.

4.3*4 Average Sample Number (ASM) s

We denote the ASS of a semi-curtailed sampling plan 

by ASSg and the ASS of a fully-curtailed sampling plan by 

ASS^. Ihen the expressions for the ASS are given below :

4.3*4li) ' ■ 5 Serai-curtailed Sampling Plan :

k-1 n
ASSg = *n 21 hg^Cx, 1 ;N,M)+ H x h2(x,2;S,M) 

x=o x=k

go
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k-1 n
= n E p (if ,n,M,x) + E x p*(l,M,k,x) 

■ x=o - x=k

= nP (if, n,M,k-1 ) + .^ [l-P(N+1,n+1,1+1 ,k)]

.. .(4-3.11 )

4,3.4(11) Fully-Curtailed Sampling Plan :

n n
ASK, = Z. x h„ (x,1 ;N,M) + X x h-(x,2;I,M)

2 x_g 2 x=k y
n n

= X x p*(lf,lf-M,g,x) + X x p*(N,M,k,x) 
x=g x=k

= ? (N+1,n+1,M,n-g)

+ .| [1- P(B+1 ,n+1 ,M+1 ,k)l ...(4.3.12)

where it may be noted that (4*3.8) and (4.3*7) are used 

to obtain (4*3*11) whereas (4*3.8), (4.3*7), and (4*3*4) 

are used to obtain (4*3*12). ,J-'he term of the form P(a,b, c,d) 

involved in (4.3.11) and (4.3*12) is readily available in 

the table given by Lieberman and Owen [30} .

4*3.5 Curtailed Double Sampling Plan.- :

A double sampling plan (DSP) and an usual double sampling 

plan (UDSP) are described in Section 2.3.1 of Chapter II. In 

the following sections we have considered the ASN of a
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semi-curtailed and a fully-curtailed DSP and a fully- 

-curtailed UDSP under the hypergeometrie probabilily law. 

fhe ASM of a semi-curtailed UDSP given by G-uenther [16-] is 

expressed here for continuity.

4»3*6 Probability functions :

4 - 3 - 6 Ci> (i) Pully-Ourtailed DSP :

Recall the definitions of the random variable T and 

T, and sets Ai(i = 1,2,3,4) of possible values attained by 

Y given in Section 2.4.1 of Chapter II. Then the joint 

probability function of the random variables Y and T under 

hypergeometric probability law can be expressed as

P (Y=y, I=i) = h (y,i;N,M) yfcAi

= 0 elsewhere

where h (y,1;H,M) = p*(N,l,r1,y)
b1

h (y,2;N,M) = T p(5T,nl,M,n1-g1 + j) 3=1 ill

. ..(4.3.13) 

...(4.3.14)

p* (N-n, , M- (n^ -g1 ) -3, bg+1 - ^y-n-jJ

...(4.3.15)

h(y,3;I,M) = p*(M,M-M,g1 ,y) - — ^4.3.16)
b1

h(y,4;M,M) = Z P (M,n. ,M,n.-g^+j )
3=1

p* (M-n1, M-M-g1 +3, g2-g1+3 ) ...(4.3.17)
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and b1 = +r1 -n^ -1, bg = g1 H-rg-Uj -1

4.3*6 (il) ''' .) Fully-curtailed UDSP^

The probability function of a fully-curtailed UDSP 

can easily be obtained from the probaDility function of a 

fully-curtailed DSP given above by substituting r^=r^=r 

and b^=bg=b. In this case the expression (4.3.16) remains 

same. Expressions (4.3*14), (4.3*15) and (4.3*17) are modified 

by taking r^=r and b^=bg=b.

4• 3*6Ciii) Semi-curtailed DSP :

The probability function of a semi-curtailed DSP can 

easily be obtained with an appropriate modification from 

the expressions of the probability of acceptance and the 

probability of rejection given by Guenther [16] .

4*3*7 The Expressions of AS1 :

4*3*7(i) (_) Fully-Curtailed DSP ;

Use the symbol ASE(D)^ to represent the ASE of a 

fully-curtailed DSP. Then the expression for the ASE under 

fully-curtailed DSP is
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ASN(D)5 = S (I)
' 4= Xy X h(y,i;N,M) 

7 ‘ i=1

= X y b(y,1;IT,M) + X yh(y,2;H,M) 
y£A1 y e A2

+ I yh(y,3;N,M) + £ yh(y,4;N,M)
y fc A3 y e A4
r1 (N+1)

= -jpprj- [1-P(W-1,n1+1----*,M+1frl)]
g-, (N+1 )+ TSFI+i") 1>(N+1 ,^ + 1 ,M,n1-g1 )

"b-j r (b2+1-3) (H-n^+1)+ £ Lfii+1 -(tt.-g.J-j)
5=1 1

■{l -P(H-n.,+1 ,n2+1 ,M-(n., -g1 )-j+1,^+1-3) } +n1 

(g2“gi+3 )(N-n1+1 )
+ -(K-K_g_] + ;j+1 ) p ( N-jx, +1 ,ng+1 ,M-(nl-g1 )

“3 j bg-j ... (4 «3 »18)

4.3*7 (ii) 1) Fully-our tailed UDSP :

The expression of the ASI under fully-curtailed UDSP 
can easily he obtained from the expression (4.3.18) by 
substituting r^=r2=r and hence b.j=b2=b. Use the symbol
ASH (UD)^ £or fully-curtailed UDSP. S^en

the expression for the ASH’is given below :
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ASN(UD)3 = fgzrp- [1-P(H+1 ,n1+1fM+1,r)3 

g« (U+1 )
+ N-M+1 ^ (^+1»^ + 1 »M,EL| -g-| )

b ' (b+1-3)(N-n^+1)
+ .1 p (S.n^H.^-g^j) L[il+1.(n.ei)_3)

1 - jn^+l ,M-(n^-g3 )-j+1, b+1-j )] +n^

(go-g-I+3 ) (l-MU+1 )
+ ..[js_M_gi+j+i ) PlN-^+l ,n2+1 ,M-(n1-g1 )-j ,

b-j)] ...(4.3.19)

4.3.7(injN .-■) Semi-curtailed DSP :

Use the symbol AS¥ (d)2 to denote the ASM for a semi- 

-curtailed DSP. Then the expression is 

r- (N+1 )
ASN(D)2 = jppq— [1-P(N+1 ,^+1 ,M+1 ,r1 )J +n1P(N,n1,HjV1)

h (b +1-3)(N-n +1)
+ P (3ST,ax, .M^-g-j+j ) [ (jI+t_(ni_gi )_j )

■^1-P(N-iL| +1 ,n2+1 >M"(ni"g-] )“D+1 jbg+1 -3 )]

+n2 P(N-n, ,n2,m-(n^-g^ )-j ,b2~3 )] ...(4.3.20)

4.3.7 (iv) Semi-curtailed UDSP :

i*et ASM (UD)2 be the symbol for the expression of the 

ASH' under semi-curtailed UDSP. Shen the expression is as 

given below :
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ASN(UD)2 = [1-P (N+1 ,n^+1 ,M+1 , r)]

+ 11.J P (HF, 33LJ ,M,r-1 ) •
b ' f (b+1 -j ) (N-rL|+1 )

+ r p L(M+1„(ni.gi)_3)

• Jl-Pd-i^+1 ,n2+1 jM-CrLj -g1 H+1 ,b+1-3)}

+ n2 P(N-Hj ,n2,M-(n1-g1 )-j ,b-j)] ...(4.3-21)

This expression is same as the expression (2.1) of [16] .

4-3-8 Numerical Examples :

Guenther • [16] states that the termination of the 

inspection on finding enough nondefectives complicates the 

formulas (of the ASN) with no appreciable reduction in the 

ASN. Suprisingly he makes this statement without calculation 

or derivation of the ASM for a fully-curt ailed sampling plan. 

Firstly we observe that in case of single sampling plan as 

such there is no complication in using (4.3-12) giving ASN^ 

instead of using (4-3-11 ) giving ASNg. As such, the second 

term of (4-3-11) and that of (4-3-12) are exactly identical 

and the first term of (4.3-12) and that of (4-3 -11), though 

differ from each other, have identical nature so far the 

process of referring to the hyper geometric tables given by 

^ieberman and Owen [30] is concerned. In case of the UDSF,
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the expression (4.3*19) giving ASH(UD)^ and (4*3.21) giving 

ASH(UD)2 to be compared from the complication point of 

view. First term and first part of the third term of (4*3*19) 

are exactly identical with the first term and first part of 

the third term of (4*3*21). Second term of (4*3*19) and that 

of (4*3*21) have identical nature so far the process of 

referring to the hypergeometric Tables [30] is concerned. 

Remaining terms of (4*3*19) and (4*3*21) appear complicated 

but evaluation go quickly with Lieberman and Owen Tables [30].

Regarding the question of reduction in the inspection 

it may be stated that the reduction depends upon the constants 

of the sampling plan and the number of defectives in the lot. 

The percent saving in inspection as one passes from an un

curtailed sampling plan to a semi-curtailed sampling plan or 

to a fully-curtailed sampling plan may be defined in the ease 

of single sampling plan as

12 = 100 (n-ASHg )/n ...(4 *3*22)

15 = 100 (n-ASE^/n - ...(4*3*23)

where n stands for the ASH of the usual uncurtailed single 

sampling plan. Ihe percent saving in inspection as one 

passes from an uncurtailed sampling plan to a semi-curtail ed
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sampling plan or to a fully-curtailed sampling plan may be 

defined in the case of an UDSP as

si2.d= 10°(asf(ud)1-ash(iid)2)/asi(dd)1 ...(4.3.24)

si3.d= 100 (ash(ud)-j-asu(hd)^)/asn(ij3))1 ...(4.3.25)

where ASI(UI))1 = el, +1^ P(lT,aa1 ,M,r-1 )-P(l'T,n1 ,1,^-g1 )

.. .(4.3 .26)

The differences between (4.3*22) and (4.3.23) and (4.3.24) 

and (4.3.25) reflect the advantage in going from a semi- 

-eurtailed sampling plan to a fully-curtailed sampling plan.

Por the following usual single sampling plan 

N = 25, n=10, a=k-1 = 2

ASNg, ASHj respectively given by (4*3.11) and (4.3.12) and 

the percent saving in inspection given by (4.3.22) and (4.3.23) 

are calculated and are presented in Table 4.1.

Similarly for the following UDSP

H = 25, n.j = 5, n2 = 10, a1 =1, a2 = 3.

ASl(UD)^, ASN(UD)2, ASN(UD)^ respectively given by (4.3.26), 

(4.3.21), and (4.3.19) and the percent saving in inspection 

given by (4.3.24) and (4.3*25) are calculated and are presented
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in Table 4*2. It is revealed from Table 4*1 and Table 4.2 

that there is appreciable saving in inspection in going from 

uncurtailed to a semi-cur tailed or to a fully-curtailed 

sampling plan. She mention able saving in inspection exists 

in going from a semi-cur tailed sampling plan to a fully- 

-curtailed sampling plan for certain values of M. We have 

made use of Ideberman and 0wen Tables [30] for the calculations 

presented in Tables 4.1 and 4.2.

Table 4.1

IT = 25, n=10, a = 2 (k = 3)

M P
a ASIg AS IT,3 S12 S13

4 0.841107 9.69 8.96 3.1 10.4

5 0.698814 9.36 8.86 6.4 11 .4

6 0.544664 8.93 8.60 10.7 14.0

7 0.398627 8.44 8.23 15.6 17.7

8 0.273684 7.92 7.79 20.8 22.1

9 0.175690 7.39 7.32 26.1 26.8

I 0 0.104819 6.88 6.84 31.2 31.6
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Table 4.2

N=25, ^=5, n2=l0, d->.j “*"*l if 3»p 3

1 P
a

ASI(UU)1 asit(uu)2 ASU(UD)3 S12.d S13.d

4 0.956127 6.66 6.53 6.01 1.95 9.76

5 0.863524 7-50 7.04 6.62 6.13 11*73

6 0.742970 8.38 7.38 7.05 11.93 15.87

7 0.617724 9.23 7.55 7.30 18.20 20.91

8 0.502406 10.02 7.59 7.40 24.25 26.15

9 0.402408 10.69 7.53 7.39 29.56 30.87
iO 0.317615 11.22 7.40 7.29 34.05 35.02

4.4 The ASM of the Curtailed Sampling Plan

under Binomial Probability Law :

In this section we consider the ASU of the curtailed 

sampling plan under binomial probaoility law. It is assumed 

that the process average proportion of defectives be p and 

for sufficiently large lots it can be considered as the* 

probability of selecting a defective in a single trial. 

Furthermore, it (p) remains constant from trial to trial and 

the trials are stochastically independent. This applies to 

the Type B situation of I>odge and Romig Li 03. Under these 

assumptions, in the following sections, we have considered
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the problem of the ASF under curtailed single and double 

sampling plans. The expressions of the ASF under curtailed 

single sampling plan are given by various authors [44] , [5] 

f38] ,[40], [8]. etc. We have given, following the Craig's 

procedure, a simplified form of the ASN under fully-curtailed 

single sampling plan. Expressions of the ASN under semi- 

-curtailed and fully-curtailed double sampling plans are 

also derived. The percent saving in inspection under curtailed 

DSP is illustrated by numerical example.

4.4.1 A Simplied form of the ASF under Curtailed 

Single Sampling Plan :

4.4.2 Remarks on Craig's and Coben'sResults :

Craig £8] gives a simplified form of the ASF under 

semi-curtailed single sampling plan. He remarks in his paper 

[83 that neither Sampling Inspection by Statistical Research 

Group [44] nor Burr [5] has given any numerical example to 

illustrate how far there is a reduction in the ASF if one 

administers a curtailed sampling plan instead of a complete 

sampling plan. As stated earlier, Craig [8] considers only 

one type of curtailment and ignores the other type of 

curtailment, i.e. full-curt ailment, merely stating that the
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effect on the ASH due to full-curtailment is small. But, 

surprisingly, he does not confirm this fact numerically. 

Numerics! examples illustrating the reduction in the ASN 

were, however, given earlier by Phatak and,Bhatt [403 . In 

their paper [40] uncurtailed, semi-curtailed, and fully- 

-curtailed single sampling plans are termed as Plan-1, Plan-2, 

and Plan-3 respectively. They considered both, Plan-2 and 

Plan-3* The last two columns of Table 1 of the paper [40] 

give indirectly the percent saving in inspection as one 

passes from Plan-1 to Plan-2 and Plan-1 to Plan-3* The 

difference between these two columns gives saving in inspection - 

as one passes from Plan-2 to Plan-3* There is no appreciable 

saving in inspection if one administers Plan-3 instead of 

Pian-2, particularly for large values of the fraction 

defective, p, of a-lot. There is a substantial saving in 

inspection for small values of p since a small value of p 

means a greater probability of acceptance and thereby 

curtailment in inspection in a greater number of cases 

under Plan-3*

Secondly, we would like to point out that we can 

calculate the ASN of Plan-2 and Plan-3 for all the typical 

examples worked out by Craig[83 using expression (22) and (23)
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of [40] and the cumulative binomial probability tables [43]* 

At this stage the recurrence relation

B(k;n+1,p) = p B(k-1;n,p) +<j.B(k;n,p) ...(4.4.1)

k
where B(k;n,p) = £ ( n ) px qn“x may be found useful.

x=o x

It is very likely that, for large values of n the binomial 

tables may not give the cumulative probaoility at unit 

interval for n. In that case one may have to use the above 

recurrence relation.

Lastly Cohen [7] has given a different presentation of 

the probability function associated with Plan-3 and continued 

to find the ASH for this sampling plan. He, furthermore, 

remarks that the ASH derived by him {(18) of [7]] and that 

derived ly Phatak and Bhatt {(23) of [40]] are the same. This 

is quite an evident. But he further remarks that the 

simplified form of these expressions is given by Craig [8]. 

This statement is misleading. In fact Craig [8 3 did not 

consider Plan-3 at all. In this section, following the 

Craig's procedure, we have given a simplified form of the 

ASH under fully-curtailed single sampling plan.
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4-4-3 Probability of Acceptance :

Consider a single attributes sampling plan in which 

individual units randomly selected from a lot are inspected 

in a sequence until either

(a) an accumulated total of k defectives is found, in which 

case the lot is rejected or

(b) an accumulated total of g nondefectives is found, in 

which case the lot is accepted.

The number of units inspected to reach a decision with 

respect to acceptance or rejection of a given lot is thereby 

a discrete random variable which assumes the values

k, k+1,.. . ,n

where n = k+g-1

This is the description of *a fully-curtailed sampling 

plan given by Cohen [7] and resembles the statement of 

Plan-3 given by Phatak and Bhatt with n-k+1 replaced by g.

The probability of acceptance, p . for a semi-curtailed 

or a fully-curtailed, sampling plan is the same as that for 

the usual uncurtafLed sampling plan [443 ,[40], Therefore,

P can be expressed in a number of ways such as£L
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n „ 1I (gl i=g 8
) Pz-g ...(4.4.2)

n
— Z (y=k i:]) • • - (4-4-3)

k-1
dg z

r=o
( pk-1'r ...(4*4*4)

1 - pn S+1 r (is"1”r ... (4.4.5)

^T1 , n
z ( x ) PX dn_X ...(4.4.6)

x=o
where p = probability of selecting a defective in a 

single trial,

(1 = 1-p,

y = Number of items inspected when the kth defective 

is found,

and z = Number of items inspected when the gth nondefective 

is found.

Expressions (4-4.2) and (4-4-3) follow from the 

probability function of the number of items inspected in 

reaching the decision. Expression (4-4-6) results from the 

usual uncurtailed single sampling plan. Expression (4-4-4) 

is given by Craig C8] in relation to a semi-curtailed sampling 

plan. However, even for a fully-curtailed sampling the use
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of (4.4,4) is recommended for the calculation of if 

the binomial tables do not give a direct entry for (4.4.6) 

or its complements and if k is small. Expression.(4 -4 .5 ) 

may be derived from (4*4*2) using the following identity.

k-1&0
V* ! r_1 'I „r-k - „g
l_ ( k_i ) p q. =14- vk-1

r=n+1 * 1 r=o ^ rz cztJL)?-'-*• • .(4*4*7)

established in [83. Expression (4.4*5) is used later in this 

paper in deriving the simplified form of the ASN for a 

fully-curtailed sampling plan.

4.4.4 The AS If :

As usual, denote the ASN of a semi-cur tailed sampling 

plan by ASN2 and the ASI of a fully-cur tailed sampling plan 

by ASN^. Craig's [83 simplified form of ASN2 is

ASN2 = (n-k/p) Pa+(k/p) 5.1-*( £ )pk qn"k] ...(4.4.8)

We now proceed to derive a simplified form of ASN^. Let 

y and z be defined as. above. Noting that neither y upr z 

would ex:ceed n, the ASN for a fully-curtailed sampling plan 

is
ASN3 = E(yfy <n)t-f(z/z in) ...(4.4.9)

Prom the expression (I0)of Craig [83 it follows that 

E(y|'y < n) = k/p - k( £ )pk_1 qg-(k/p)Pa ... (4 .4.10)
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Furthermore,

E(z fz ^n) = E(z) - E(z fz z n+1 )

where we use (4*4*7) on the last step. Comparing the series 

in the second term of the above expression with (4.4.5) we 

find that the above expression can be written as

This is the simplified form for the ASF of a fully-curtailed 

sampling plan. It appears that the principle in expressing 

the ASN in the above forms, namely (4.4.8) and (4.4*12) lies 

in expressing the ASF in terms of a simple multiple of d

and an individual term of a binomial distribution.

We note that ASF^ given by (4.4*12) can be shown to be 

equivalent to the corresponding expression given by the

g/q-(g/l) Pn-g+1 ( g ) qs - (g/q.) (1-Pa) 

= (g/q.) Pa-(gA)( g) is pn_g+1 . (4.4.11)

Adding (4*4*10) and (4*4.11) we have

)pk 4n-k]...(4.4.12)



108

Statistical Research Group [44] (c.f. equation (43) on 

page 214).- Obviously this ought to be the case.

4.4*5 Saving in Inspection ;

It follows from (4.4.8) that ASH, can be expressed as
5

ASH5 = (ASH2+ Pa-k)/q (4.4.13)

fhe above expression easily yields the following instructive 

form

which leads to an obvious conclusion that the saving in 

going from a semi-curtailed sampling plan to a fully-curtailed 

sampling plan can never exceed k and should be small, even 

for small p.

Secondly, the percent saving in inspection as one passes 

from an uncurtailed sampling plan to a semi-curtailed sampling 

plan or to a fully-curtailed sampling plan may be defined 

respectively as

ASHg1-ASH5= k-Pa-p(ASH5) . ..(4.4.14)

S12 = 100(n-ASI2)/n (4.4.15)

and S.jj = 100(n-ASHj )/n (4.4.16)

where n stands for the ASH of the usual uncurtailed sampling
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plan. 'Jl‘he expressions (4.4.15) and (4.4.16) represent the 

respective loss in efficiency in estimation of p as one 

passes from the uncurtailed sampling plan to the respective 

curtailed sampling plans [40], Ihus saving in inspection is 

counterbalanced by the loss in efficiency in estimation.

4.4*6 Numerical Example :

Consider the plan with n=80, k=5 and g=76. This example 

was considered by Phatak and Bhatt [40]. It may be noted 

that fade 1 of [40]. was prepared with the help of the 

fades of the Cumulative Binomial Probability Distribution 

[43] where formula 17(b) of [43] or (16) of[40] was found 

extremely useful. In fable 4.3, the ASN for a semi-curtailed 

and the ASN for a fully-curt ailed single sampling plan, 

using (4.4*8) and (4*4.12) respectively, are given. Last two 

columns of the table give percent saving in inspection as 

one passes from the usual uncurtailed sampling plan to a 

semit=curtailed sampling plan and a fully-curtailed sampling 

plan respectively. She difference between these columns give 

percent saving in inspection as one passes from a semi- 

-eurtailed to a fully-curtailed sampling plan.
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Table 4.3

tJocvnd S'TS

p pa asi2 asn3 S12 S13

0.03 0.90721 78.43 76.63 1 .96 4.21

0.04 0.78358 75*91 74 *68 5.11 6.65

0.05 0.62888 72.19 71 *39 9*76 1 0.76

0.06 0.47174 67.63 67*13 15.46 16.09

0.07 0.33333 62.67 62.37 21 .66 22.04

0.08 0.22350 57*70 57.52 27.88 28.10

0.09 0.14311 52.97 52.87 33*79 33*91

0.10 0.08797 48.64 48.58 39*20 39*28

4*4*7 'The ASF under Curtailed. Double Sampling Plan :

In this section we consider the ASN of a semi-curtailed 

and a fully-curtailed DSP under the assumptions described in 

Section 4*4*

4*4*8 The ASN under a Fully-Curtailed DSP :

We have given the statement of a fully-curtailed DSP 

in the Section 2.3*2 of Chapter II. Eecall the definitions 

of the random variables Y and T, sets A^(i=1,2,3 >4 ) of 

possible values attained by Y, and the joint probability 

function of the random variables Y and T given in the Section 

2.4*1 of Chapter II. Then the average sample number is merely 

the average number of units Inspected thus

ASI = B(Y)
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It follows from (2.5-6) of Chapter II that

E(Y) = I y X ft(y5P)
y i=1

T 7 + £ y fP(y;p)
y e A. y e a,

+ I y f,(y;p)+ I y f4^y;p) •••(4
y e a3 y e A

Each of the four summation terms of the right hand side 

of the above expression can "be expressed as given below

r.y^A y f-iCysp) = j~

1 zl. n--g-+t g.-t
I y f2(y;p) = T ( _t) p i

je aq ^ t=i S1 x

... (4- »4

rV1-* 
L n

[1-B(b +1-t; n2+1,p)}

+ ^1-B(b2-t; n2,p)]-J
gI y f5(ysp) =^-B(n1-|1; n.,+1,p)

. . .(4.4 

... (4.4
y & a

1 ' n. n. -g1 +t g^-tI y^yiPj'-Kjp1 1 a1
y &A

s2-gft

t=i Si-^'

B(bQ-t; nQ+1,p)q. ’ '2 u’ 2
+ zlj B(b2-t; n2,p)"]

.4.17)

.18)

.19)

.20)

... (4 .4.21 )
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’where = g^+r^-n^-1, h2=g1+rg-n1-1 and
kB(k;n,p) * I ( ® ) P* qx n-x

x=o x

These expressions have been obtained using the identity

I ( k+r1) pk r+k,p)
x=o 1

whose proof can be had in £32],L37] •

The AS1 which is the sum of the above four terms given 

by (4.4.18) through (4.4.21) can be expressed as

ri— n.+'l.n')! +
<1 

h.
- , n1 v g.-s r Or' g,-t>p 4 L-p

ASff(B)j = [ 1 —BCr1 ; r^+1, p)} + X sii|+1 ,p)

1-g1+t sr'fc r b2+1_t f , o
9 L^p----- \1-B(b2+1-t;n2+1,p)i

t=1 e1

+ n^ +
gp-g-i +'t .
----- ------  B(b -t; n0+1, p) ...(4.4.22)

where ASjRT(D)^ denotes the ASN of a fully-curtailed DSP.

4*4*9 The AS1 under Semi-Curtailed DSP s

The statement of a semi-curtailed DSP is given below ;

Inspect randomly selected units of a lot one at a time 

till one of the following four mutually exclusive events 

B^(i=1,2,3,4 ) • occurs :
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(B1 ) defectives are observed and the number of 

units inspected is less than or equal to n^ ,

(Bg) 1*2 defectives are observed and the number of units 

inspected is greater than n^ but less than or equal 

to n-j+Ug,

(B^) 0 ^ D1^n1-g,J defectives are observed and the 

number of units inspected is equal to n^ ,

iLj-g.j+1 -^D-j+Dg ^n^+ng-gg defectiges are observed 

and the number of units inspected is equal to 

n1+n2,

where Uj is the number of defectives observed during the 

inspection of first sample and Dg is the number of defectives 

observed during the inspection of the second sample.

The decision rule is then to reject the lot if either 

(B^) or (Bg) occurs and to accept the lot if either (B^) 

or (B^) occurs.

4.4.10 The Probability Function :

The probability function associated witfe the random 

phenomenon prevailing in the above curtailed sampling plan 

is as given below :
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P (Y=y, D1=d1, D2=d2, T=i)

y_1 r. y-*\( t~L,> p 1 4 1
r1 1

y=r-, 5 ^+1,.. .,a,;

drri ;
i=1.

1 n1 y-XL, -1 x r_ y-rr ( 11 ) ( J t=i V* 1 V*

el d. EL-d.(d^1 d1 1

) P ^ q.

y=r2~r1 +n^ +1, ..., n1 +n2; 
d^ =n^ -g1 + t;

d2=r2~d1 ; 
i = 2.

y = nn ;

d-j= 0,1,..., ;
i =3-

1 n„
r ( _t) ( d ) p

t=1 a2 ,

ELj-^+t+dg n2+&I+t"d2
<3.

y = rL|+n2

d1 = -g1 +t

dg-0,1 , •.., rg—1 ""^1 *

i = 4

,.. (4 .4.23)
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where Y and T are the random variables defined as in fully 

curtailed DSP, b1 =g1 +r1 -n.,-1 and fc2=s1+r2~nl"1*

4-4.11 The AS! i

The ASM is defined as 

ASI = E(Y).

It follows from (4.4*23) that

E(Y) = H y L r z PCY^D^d- ,D2=d2,T=i) 
y
n

d1 d2 1 

1 _ < I', y-r.5: y( T-1 > 5 1 <5 1 
y=r.I 1

n^ +n2
+ X

y=rg-r^+n^+1 t=1

1 a. y-a, -1 r y-f
y x (gi.tK vt ) p <1

n1*g1 n d ^-a,
+ X y X ( , ) P 1 i

y=n.1 d1 =0

+ X
y=n1 +n2

i n n -g1 + t §1-t
y X (- _+) p 1t=l gi x

i-1 1 , n2x d2 n2"d2
. X ( /) P 1 ^

d2=o 2
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.'. asi(d)2 =

+

r1 j^+1 ,p)} m,

rL.-g.j + t g.-t 
P q.

?ILj , p)

+1 -t

P
^1-B(t>2+1-t; n2+1,p)] +

+ n2 B(b2-t; .(4.4.24)

where ASH(3))2 denotes the ASH of a semi-curtailed DSP. 

Craig [8] has given the ASH of a semi-curtailed TJDSP. His 

expression is given Below j

ASH(UD)2 = ^ [1-B(r jn^ +1,p)] +bl, B(n.j -g-j 5^ , p)

b n., u.-g-.+t g--t
+ r (. lt) p 1 1 <i1t=1 S1 *

,p±lzi (i-B(b+1-t; n2+1,p)l 

+rL,+n2 B(b-t; n2,p)] ...(4.4.25)

It may be noted that one can calculate the ASH using (4*4.22), 

(4.4.24), and (4.4.25) with the help of the usual binomial 

tables such as the tables of the cumulative Binomial Proba

bility Distribution [43] • However, for large values of n, 

the binomial tables including [43] do not give the cumulative 

probability at an unit interval for n. In that case the
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following recurrence relation

rB(k;n+rsfr)= X ( * )p r~X q.X B(k-r+x;n,p) ...(4.4.26) 
x=o

may Be found useful.

4.4.12 Humeri cal Example ;

To illustrate the percent saving in inspection under 

curtailed DSP, we consider the following DSP :

^=50, n2=100, r.j=3, r2=4, S2=1^’

The percent saving in inspection as one passes from an
<■

uncurtailed sampling plan to a semi-curtailed sampling plan 

or to a fully-curtailed sampling plan may he defined in the 

case of DSP as

S12.d=100 - ASN(D)2 ]/ASN(D)1 ...(4.4.27)

S15^d=100 [ASN(D)1 - ASN(D)51 /ASN(D)1 ...(4.4.28)

where
ASl(D)1 = Uj+Hg [B^-1 jn., ,p)-B(n1-g1 jil, ,p)] .. .(4-4.29)

The expressions of ASH(D)2 and ASEKd)^ are given by (4.4.24) 

and (4.4.22) respectively. ASHCD)^, ASN(d)2> ASM(D)^ and 

the percent saving in inspection given by (4*4.27) and 

(4.4.28) are calculated and are presented in Table 4*4*
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It is revealed from the Table 4*4 that there is appreciable 

saving in the inspection in going from an uncnrtailed 

sampling plan to a semi-curtailed or to a fully-curtailed 

sampling plan, ‘^he difference between column (6) and column (7) 

reflects the advantage in going from a semi-curtailed sampling 

plan to a fully-curtailed sampling plan. The mentionable 

saving in inspection exists in going from a semi-curtailed 

DSP to a fully-curtailed DSP for smaller values of p.

Table 4.4

iL|=50, n2= 100, =3, ^2~4» §i “49), and g2 = 147

P ?a asi(d)1 asn(d)2 asn(d)5 ' S12.d S1 3*d
1 2 3 4 5 6 7

0.01 0.9662016 57-56180 56.61671: 55-97763 1.65 2.75
0.02 0.8106996 68.58009 57.03777 56.64104 16.83 17.41

o • o 0.6050094 75.55182 62.16715 61 .92980 17.72 18.03O
•

O

0.4245586 77.62328 57.91618 57.77604 25-39 25.57
0.05 0.2891136 76.11013 52.28129 52.19867 31 .31 31.42
0.06 0.1934357 72.62442 46.61682 46.56809 35.81 35.88
0.07 0.1276016 68.42951 41.47878 41 .45009 39.38 39-43
0.08

■sh
OK
"\

C
O

O
•

o

64.32623 37.02507 37*00822 42.44 42.47
0.09 0.0533322 60.73020 33.24186 33.23201 45.26 45 .28
0.10 0.0338110 57.79429 30.05191 - 30.04618 4b. 00 48.01


