
CHAPTER-1

INTRODUCTION

1.1 INTRODUCTION

It has been said that one of the main goals of mathematics is to 

isolate and study functions which are both interesting in their own 

rights and whose influence pervades large area of Mathematics and 

Physics. For Greeks such special functions were the circular functions. 

Since the time of Bernoulli, Euler, and Legendre, theta functions, 

classical orthogonal polynomials and other associated functions have 

been added to the list. These functions arise from the interplay of group 

theory and differential equations, and this may account for their 

ubiquity. There are in fact, many other functions which have been 

greately studied. Their origins are (appearing to be) mainly differential 

or other functional equations. Howevere the function which arose from 

the study of infinite (geometric) series is the Hypergeometric function 

2Fi(a,b;c;x) due to C. F. Gauss.

It is defined as

2Fl
a,b; x 

c' = lx\ !,,<!,n=0 {c)nn\
(1.1.1)

where (a)n is Appell's symbol ( or pochhamer symbol) defined by:
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r- a (a+1) ....(a+n-1); if n is a positive integer

(a)n = < 1; if n = 0 (1.1.2)

L r(a+n) / r(a); for arbitrary non zero 'a' and n.

The series on the right hand side in (1.1.1) is called the Hypergeometric 

series or Gauss series.

The hypergeometric function 2^i -F is a solution of the second

order linear differential equation:

j2 ri 11~'

x(I-jc) —y- + [c-(a + 6 + l)x]------ abF = 0,
dxl dx

called the hypergeometric differential equation or Gauss' equation. Its 

equivalent form is:

[ 8 (8+c-l) - x (8+a) (8+b) ] F = 0, 0 = x~. (1.1.3)
dx

A generalized hypergeometric function has a series represenatation
00

£ cMwith Cn+i/Cn a rational function of n. The ratio cn+i/cn can be 
n=0

factored and it is usually written as:

Cn+I_ (af+o).......(aP+n^x (1.1.4)
cn (^+n).....(bq +«)(« +1)’

If c0 = 1, then using the pochhamer symbol given in (1.1.2), the 

equation (1.1.4) can be solved for cn as:

_ (a\)n....... (gp)w xn

C"~ ihh.....'

and the series form becomes:
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(1.1.5)PFC
Op ap, x 
b\...... bq\

^ (a\)n (ap)n x 
n=0 (b^)n •• (bq )n

The infinite series above in (1.1.5) converges in one of the 

following situations.

(i) |jc[ < oo, if p<, q (ii) |*J < 1 if p = q+1

(iii) bd = l if Re( E 6 • 
/=1 J 7=1

)>0

When at least one of the numerator parameters is a negative 

integer then the above infinite series terminates and thus represents a 

polynomial.

The differential equation satisfied by w = F [x\ is:

[0fto9 + A.-l)-*fi(0 + a,)]w = O, 0=x4-> (1.1.6)
j=1 J 7=1 1 dx

which is extension of equation (1.1.3).

The field of special functions is rich in polynomials. Amongst these

polynomials, the Laguerre polynomial 6jf*(x), the Hermite polynomial

Hn(x), the Legendre polynomial Pn{x), the Jacobi polynomial

p(a,P\x)f the Gegenbauer polynomial C^(x)etc. and the family of

Bessel functions are known as the fundamental functions of 

Mathematical physics; as they arise from particular phenomenon 

(Andrews [1], Lebedev [1], M.L. Boas [1], Simmons [1]). These 

polynomials were subsequently taken up for further study from the
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point of view of examining various properties (Oiver [1], Rainville [1], 

Wang & Guo [1], Chihara [1]) such as generating function relations, 

Orthogonality, Rodrigue's formula, recurrance relations, zeros, inverse

series relations (i.e. expansion of xn in a series of the polynomial), 

various integral representations, summation formulas, differential 

equation etc.

The flavour of pFq[x] is that a number of orthogonal polynomials / 

functions (and non-orthogonal ones too!) which are hypergeometric in 

character, are contained in it.

The following is the list of the explicit forms of the aforementioned 

polynomials.

Laguerre Polynomial

(l+a)
------r^]F(-n;l + a,x) = £

n\ 1 1 1r—l

„ (-»)*(!+«)„ k

Konhauser Polynomial

Z%(x;k)~r(n + C? + l) £ (-V

k=0 {\ + a)kr$k\

rn\
n\ j=0

M

1./J IW + or + 1)

where a >-l, and k is positive integer.

Hermite Polynomial

Hn(x) = (2x)n2FQ -n -n + 1

(1.1.7)

(1.1.8)

_ln^l(-l)kn\(2xf~2k 

~ k=0 k\{n-2k)\ (1.1.9)
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Jacobi Polynomial

p(«>%)=£±^F,
n\ r 1

f l-x\
~n,l + a + fl + n;l + a;-----

V 2 y

n (rn)k{\ + a +p+ n)k(\ + a)n ^ ^
2-r U V* X)

k=0 (1 +a)kn\k\ 2

Legendre Polynomials

Pn(x>2F\

- f (~nh(n+lh(l~xP
k=0 k\k\ 2k ■

Alternatively,

P fTx_m)n(2xf 
rnW 2M

f-n-n 11 -7
— —+—;—n;~x K 2 2 2 2

[«/2](-l)*(l/2)^(2*0"~2* 
: *So k\(n-2k)\

Gegenbauer Polynomial

rv,^.O'M 2*)" ,/
Un{x)--------- 2

-it -n l , _2— — +—;1- v-n-x 
2 2 2

[^2](-if(i/2)n^(2jc)

A=0 &! (» - 2&)!

n-2k

Hahn Polynomial (Andrews, G.E.[1], Gasper, G.[l],

Qn (x; a, p, N)=yF'2 {-n,\ + a + ft + n,~x, 1 + a-N; l)

n (-n),(l + a + P + n),(-x),
: 53 ----- *------------------*------« (« = 0,1,2,..., IV)
A=0 (l + a^C-^W

(1.1.10)

(1.1.11)

(1.1.12)

(1.1.13)

W.Hahn [1])

(1.1.14)
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Racah Polynomial (Askey and Wilson [1])

Rn (x(x + v + S + l);a,/3,v,S)=4F3
■n,l+a + /3 + n,x + v + S + l,-x,

1
1 + oc, {$ + 8 +1, v + lj

n (-n)b.(l+a + fi + n)rr(x+v+8 + \)ii.(~x)K
=& M,(ilW I)-gr+T;«

(1.1.15)

Wilson Polynomial (Askey and Wilson [1])

Pyi (•* ) — {a + b)n (a + c)n (a + d)n 4 F^
■a + b + c + d + n - \,a + ix,a - ix,

a + b,a + c,a + d;

n (-n) ,(a + b + c + d + n-l) ,(a + ix) ,(a - ix),
- (« + *)»(« + *)n(* + *Ofi s----- ------ ..*--------- 5-

&=0 (a + b)k(a + c)k(a + d)k

(1.1.16)

Just as the Racah Polynomail ^(Alx+r+^+l);^/?,;^) and the

Wilson polynomial Pn(x2), given in (1.1.15) and (1.1.16), are

extensions of the Jacobi polynomial Pn^a’^\x), another two worth

mentioning extensions of the Jacobi polynomial due to H.M. Srivastava 

[5], which he referred to as "Extended Jacobi polynomials" are:

<r(c> te „ .g * (“ph t flll71

»*[ 1...... P’pWl): wq)ka ' ( )

*£■«[«,....4-
”>'’m 1 ^ 1 q *=0 (l + P-na)jk(bl)k...(bq)k

6



These polynomials can also be written in an elegant form, using

the hypergeometric function notation.

>ap\P\i- ?Pq '■ x]—j . F’ + s + p q

A(s;-n),A(l;c + n),a^,.. ,ap,

P\-> ■ Pq■>
x ,

(1.1.19)

gf(a,P)
n.1 ’

/^n)[a-l,...,ap;bl,...,bq:x]= . F
m + p q + l

A(m -n),av ..,ap, 

A(l;l + P -na),P^,...,Pg,

(1.1.20)

where A(/?7,A)denotes the sequence of m parameters
X X + l 

m m

A + m-\ 

m

1.2 INVERSE SERIES RELATIONS

Let {An} and {Bn} be two sequences such that

A„=T. a(n,k)Bk and B„ = f b{n,k)Ak , (1.2.1)

k=0 k=0

where N may be either finite of infinite.

The pair of series relations in (1.2.1) is known as a pair of inverse

series relations, wherein each one of the series is called an inverse

series (companion series) of the other. Inverse series relations are

extensively used in the study of combinatorial identities (Riordan [2]).

The use of inverse series relations can also be seen in Approximation
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theory, Distribution theory, Partition theory, Coding theory (Sloane [1]) 

and in Probability theory (Feller [1]). Some utilities of the inverse series 

relations are as below:

(1) Each pair implies a series orthogonal relation which itself may 

generate one or more identities.

(2) An identity having the form of one member of an inverse pair has 

a companion (which may be itself). If the identity is known and 

distinct from the companion, a new identity is found through the 

inverse series relation.

(3) If the identity is to be proved, the prover has a choice, that the 

proof of the inverse may be simpler, then inverse relations offer 

an alternative proof of a given identity.

(4) Particular choices of the variables (parameters) in a given inverse 

pair may serve to generate new identities, these choices may be 

suggested by one of the several methods of proving an inverse 

relation.
i

(5) The inverse relations may be transformed to the pairs giving the 

explicit representation of a polynomial and its inverse, expressing

the expansion of xn as a finite series of the corresponding 

polynomial.
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(6) The expansion of xn in the series of various orthogonal and non- 

orthogonal polynomials may be used to approximate various

functions as a series of polynomials under consideration. 

The well-known binomial expansion formulae

n ^ k > n isH+k,O + i)
nI

fW]
x ^ and xn =

k=0 A k=0 ■JCJ
(* +1)

suggest a general inversion pair, which is very simple in the form:

n
I

k=0

k\ n

y
V

fn\

\kj (12.2)

With the above introduction of the inverse series relations, it is 

now straight forward to note that the defining relations of the 

polynomials in (1.1.7) to (1.1.16) are one of the series relations of the 

inverse pair of the type (1.2.1). Their corresponding inverse series 

relations have been obtained through various methods such as: 

generating function relation, summation formula, orthogonal property, 

difference and shift operators and recurrence relations (Rainville [1], 

Riordan [2]).

The pairs of inverse series relations of the polynomials defined by 

(1.1.7) to (1.1.16) are listed below.

k=Q{\ + a)k(n~k)\k\
ji

v (-0*0+ <*)/!
kh)(n-k)\(l + a)k k U (1.2.3)

(inverse pair of Laguerre polynomial),
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Z%(x,k) = -(? + <* + l) £ (-\)J 
n\ j=Q

x
kj

\j) T(kj+a + l)

nk -Y{kn + a + \) £ (-1)7
j = o

'n1
Jj

Z“(x,k) 

W + cc + l)

(inverse pair of Konhauser polynomial)

>

J

(1.2.4)

H ^ _ K1^ M)^l(2xf2* . „ _ [n/2] nlHn_2k(x)

n &0 kS(n-2ky ' k=0 2nk\(n-2k)\ (1.2.5)

(inverse pair of Hermite polynomial)

p(a,f)\x)= l (-">*<■ + a + PW*a)n(^x)ki

/c=0 (l + a)^.2

(l~*)n = » (-'0ft(l + « + l)A:(l + « + l + 2*) p(a^)
2n(l+a)„ k=0 (l + a; + /?)?j+^+j(l + a)^ ^

(inverse pair of Jacobi polynomial)

(*)

(1.2.6)

J

n-2k[«/2](_i)«(i/2) . (2x)Pn(x)= £ *V
k=0 k\{n-2k)\

r_,n ["i21 (2”-« + l)"l V2*W

~\

> (1.2.7)

(inverse pair of Legendre polynomial)

[»/2] <.-r)k<y\_k(i*r2k ''
t?o *K?rsji

n^RJ"|2'(v+«-2A)«^V
^ J A (v) , , k\ n-2k{X)

K~v v 7/i-A;+l

(inverse pair of Gegenbauer polynomial)

> (1.2.8)
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QM,N)- i {~n)ki'+a^^x)k
k-0 (1 +a)fc(-N)]ckl

>
(~x)t ” (~n)k^ + a + P + 2^) ^ / o klS

Z —-------- i——----- —Qlc(x’a>fi’N)

(1.2.9)

(1 + a)n(-N)n lc=0 (1 + O’ + P + 2£)n+|&!

(inverse pair of Hahn polynomial (Gasper [1])

ft (~n)fr^ + a + $ + k(X + ¥ + ** + ^k(~~X^If 
Rn(x(x + y + S + l);a,j3,y,S) = Z----- -------------------- ----------------- -------

ta (l+a)t(^ + # + l)Jt0' + t)i*l

(“*)«(*+ y + <y + 1)»

(1.2.10)

rt (~n), (1 + or + ji + 2&)
Z T—V--; : ;;------/y*(* + r + £+l),a,&M)

(i+«)H(i+y0+j)n(i+r)M ^0(a + /?+*+i)n+1*!

(inverse pair of Racah polynomial (Askey and Wilson [1])

) ~ ifl + + c)ft

« (-n)k(a+b+c+d+n-l)k(a+ix)k(a-ix)k 
/^.Q(a+b)^(a+c)^(a+d)^(a+b+c+d+k-\)^^k\

(1.2.11)

(a + ix)n(a-ix)„ « (~”)k(a + b + c + d + 2k -1)fc/^(*2)

(a + 6)M(o + c)„(fl' + £/)„ ^=0(<a, + *)jfc(« + c)jt(" + ^(<=f + ^ + c + rf + it-l)w+1A-!

(Inverse pair of Wilson polynomial (Askey and Wilson [1])

- '■ •*] -
["/?]<-nhk(c+nhk<aih- <aph k
k=0 (Px)k 0q)ktt

(1.2.12)

(sn)\(al)„....(ap)n 
»KPx)n ■■ ■(fiq)n

sn i-sn) {c+k+{lk/s)) ( ,
Z_ /„ , i,\ u--------^kls^aV ‘ aP'Pv Pa'x]

k=0 (c+*W141

(Inverse pair of Extended Jacobi polynomial)
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A systematic study of the inverse series relations was taken up for 

the first time in the middle of the 20th century. Actually, it appears from 

the works of Gould ([1] to [6]) that initially such relations were merely 

an out come of a study of binomial series transformations; but later on, 

an independent development took place, and as a result of that a 

number of inverse pairs were discovered and also studied at length by 

Gould ([1] to [6]), Gould and Hsu [1], Carlitz ([1], [2]), Riordan [2], 

and others. The main aim however, of their study were to obtain 

combinatorial identities and/or to obtain inverse series relations of 

particular polynomials. A brief account of this development of the 

subject is given below.

In 1956, in an attempt to generalize the Vandermonde's 

convolution identity

frlf m

Jj , n ,

Gould [l,Eq. (7), p. 85] proved that

t AAa,b)zk=xa, (1.2.13)
4=0 k

where

Ak(a,b)-- a
a+bk

'a+bk' 

k ,
and z = (x- l)x" (1.2.14)

By making use of the result (1.2.13), he obtained a binomial

series transformation as well as its inverse transformation 

([3, theorems 1 and 2]), where he deduced that,
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(1.2.15)

m=i (-i)*k=0

if and only if

VW= E (-1)* 
k=0

'a + bk'
V(k)

a < n J

>

'a + bn'
V. k ,

Ank(a + bk-k,b)0(k) J

wherein Ak(a,b) is same as defined in (1.2.14). 

The orthogonal series relation viz.

^)k A^a^k-k.t) 'a) f°l

&
(1.2.16)

supplied by the pair (1.2.15) was further used by Gould who, in 1962, 

proved a more general pair of inverse relation ([4,p.394]) which is 

given below,

F(a) = E (-1 )k A,(a,b)f(a + bk~k) 
k=0 *

if and only if
r \
a

> (1.2.17)
M f

m= e
k=0

F(a + bk-k)

where M=[a/(l-b)] is finite if'a' is positive and 'b' is zero or a negative 

integer, otherwise M= °o.

This general pair possesses a number of particular cases, for 

example when b = 2, one finds

F{a)= E {-\)kAk{a,2)f{a + k)
/-—A ftk=0

m= e
k=0
M (a\ 

\k;

>

F(a + k),

(1.2.18)
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Gould has discussed other special cases in [4, p.395].

By doing a slight modification in (1,2.18) Gould introduced in 

1964 yet another inversion pair [5,p.326]:

G(n)= 2 (-0* 
k-0

if and only if

f{n)= £ (-1)* 
k=0

r a + n + bk'

A < n J m
-\

r (1.2.19)

(ri\ 'a + bn + k'

KkJ , k J

-1 a 4" bk ‘b k + 1 
a + bn + k + l

G(k) J

and thereby showed that the Bessel polynomial

f a+ n^

V n j \kJ\
a + n + kY a + k)

k\(-x/2f (1.2.20)
v K

the Legendry polynomial

n k(n Yn + kYi-X^ Pn(x)=£(-V)k
k=0 \k2

(1.2.21)
A z /

and the Chebyshev polynomial Un(x) = sin(n+l)0/sin 0, where x=cos0, 

possess the inverse series relations given by:

fa + 2n\(a + n\ (xY1 n jia + 2k + \

\ n j
n!

V “
x

Yj

r,
= £ (-1) „ , Jc—O q + 2n 4“ 1

+ 2n +1Yo + k\

n-k
Yia\x), (1.2.22)

A * J

f2n\ (\-x

\n j 2 2k+l
2n(l-xf= E (~1)

k=0 2« +1 

k k +1

'2 «+r

\n~k ,

f2n + 2^
Uk(x)

k=Q' ' n + l^n-k j

respectively.

In 1965, he introduced a generalized Humbert polynomial

(1.2.23)

(1.2.24)
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[n/m]
Pn(m,x,y,p,C)= E 

k=0
' p-n+mF ' p ]
, k , ri~mk/

cp-n-k+mkyk (_mxf-mk (1.2.25)

and obtained its inverse series in the form (Gould [6]):

(~mx)r
£=0 p-n + k

by establishing a novel type of inversion pair:

[n/m]
F(n) = E A,(p-n,m)f(n-mk) k=0 K

if and only if

[n/m] ,
/(») = E {-\fAk{p~n,\)F(n-mk).

1—A ft

> (1.2.27)

k=0
J

The polynomials of Humbert: n^m(x) = Pn(m,xXo,\),

Kinney: P»(m,x) = Pn(m,x,~\/ m,\), Pincherle: Pn (x) = Pn (3,x,l, 1/2,1),

Gegenbauer: C„(x) = Pn(2,x,\-oXh Legendre: Pn(x) = Pn(2,x,l,-1/2,1) etc.

are specializations of the generalized Humbert polynomial (1.2.25), 

hence their inverse series relations follow immediately from the inverse 

series (1.2.26).

In 1973, the inversion pairs (1.2.15) and (1.2.19) were further 

extended in an elegant form by Gould and Hsu [1] who proved that if

{aj and {bi> be two sequences of numbers such that 

nn (ctf +xbi) = t//(x,n)*0 for all non negatives x and n and y/(x,0)= 1 then 
/=!
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n If F(n)= E (-if 
k=0

if and only if

G(n)= E (-1) 
k=0

A:
\kJ

W(k,n)G(k)
~\

>

(o^l + ) f//(w, k +1) 1 F(A).

(1.2.28)

In their work, Gould and Hsu [1] however do not discuss the 

reducibilities of (1.2.28) to the inverse series relations of various 

particular polynomials, although it can be shown that the inverse 

relations of the polynomials quoted in (1.1.7) to (1.1.16) are obtainable 

from this general pair.

For instance the inverse relations involving the Laguerre 

polynomial (1.1.7) may be obtained from (1.2.28) by setting

af =i, b. =0 for all i. Similarly the Jacobi polynomial and its inverse

series relation (1.2.6) follow from (1.2.28) when a. =a + fi+i and bj =1 

for all i.

1.3 BASIC HYPERGEOMETRIC SERIES AND ASSOCIATED 
POLYNOMIALS

In 1812, Gauss introduced the hypergeometric series

.....  -2,...........h<«.
c c(c + l)l-2 11

(1.3.1)

Almost thirty years after this, E.Heine ([1],[2]) introduced an 

interesting extension of this series in the form:
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(1.3.2)

(1 - qC XI - q) (1 - q° )d - q°+l )(1 - q\\ ~ q2)
x +

(c* 0,-1,-Z jd < 1).

Before defining this series, he defined a 'basic analogue' of a

is called the base.

From this definition it is clear that as q-»l, [a;q]-»a, and that the 

Heine's series (1.3.2) approaches the Gauss' hypergeometric series 

(1.3.1).

Thus, Heine's series defines 'a q - analogue' or 'a basic analogue' 

of the Gauss series and therefore the Heine's series is called a basic 

hypergeometric series (BHS) or a q - hypergeometric series.

Just as it happened for the Gauss series that it was known in 

other particular forms before its introduction, the q - series (1.3.2) was 

also known in special forms prior to its introduction.

For example, the identity

was given by Leonhard Euler in 1748 A.D; and also the triple product 

identity

\-qa

number 'a' in the form [a,q\ =—— where the arbitrary number q(g*l)
i-q
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and the Theta Functions : 6.(z,q), i =1, 2, 3, 4, were given by Carl

Gustav Jacob Jacobi in 1829 A.D. But it was not until about sixteen 

years later that the field of BHS acquired an independent status when 

Heine ([1], [2], [3]) introduced the q - series (1.3.2) and carried out a 

systematic study of it. During his study, a basic analogue of binomial 

theorem, basic transformation formulas, basic analogue of the Gauss' 

summation formula, and also the q-contiguous functions relations 

(Gasper and Rahman [1]) were given. A q-Gamma function defined by 

him in the form

r9(*) =
oo

nn=1

1 -qx 

\-qx+nA

differs slightly from Thomae's definition [1]:

Fq{x)H\-q)l~x n
1 n=1

1 -qn
l-qx+n-\ '

Since then remarkable development have taken place in the field 

of BHS by many eminent researchers, among whom the names of 

F. H. Jackson, W. N. Bailey, D.B.Sears, L. J. Rogers, W. Hahn, L. J. 

Slater, L. Carlitz, H. Exton, R. P. Agarwal, G. E. Andrews, R. Askey, 

W.A. Al-Salam, H.M. Srivastava, A. Verma, M. E. H. Ismail, 

T. H. Koornwinder, J. A. Wilson, G. Gasper, S. C. Milne, M. Rahman, 

V. K. Jain are worth mentioning. This list, although not exhaustive 

would seem to be incomplete without taking note of S. Ramanujan, as
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quite a good number of formulae given by him may be viewed as the 

special cases of the results involving BHS.

Heine used the notation ^(a,b,c,q,x) to denote series in (1.3.2). 

However, the other notations:

[” a,b,q,x
2#1(a,6,c;gr,xX and 2#j

£•3

are frequently used, in terms of which the series (1.3.2) can be 

represented in the form:

2«*i (a,b,c,q,x)
g (M)h xn 

n-0 (c;q)n (q,q)n
(1.3.3)

where (a;q)n = [a]n is a basic factorial function defined as below.

{a\q)n

(l-a)(\-aq). aqn-X),n = \,2,l - 

• 1, n-0
Moo i\aqn\m-, n is arbitrary,

CO K

in which [aU=(a;q)«, = n (l-ag'c),0<q<l.
k=0

A generalization of (1.3.3) which provides a basic analogue 

of (1.1.5) is an ^function defined as (Askey and Wilson [1], Gasper

and Rahman [1]):

rrs
av.....,ar;q,x 

....bs',

y - iar]nxn j „ n(n-\)/2
ia [*,]„ . [bsUih 1 q (1.3.4)

The infinite basic series in (1.3.4) converges for all x if 0<)q| <1 

and r<s. If 0<|q|<l and r=s+l then it converges for ]x| < 1. The
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various specializations of r$s[x] function include the basic exponential 

functions defined by (W.Hahn [2], Gasper and Rahman [1])

qo ]

1 1 U k=0 [q]k Woo

and

,, , s , , V ® 1)/2 (-JC*) r
y u u *=0 fa]*

the basic sine and cosine functions viz.

Sinqx =Y~ 0^1 (_;<y3;^2,-^2), Sinqx=-~-- 2(/>x (0,0,q3,q2,-x2)

Cosqx = (_;q^-,q2~qx2), Cosqx= f (0,0;q3;q2,-x1),

also, the basic Gamma and Beta functions are given by

rgW = Woo(l-g)1“;';1^0(0;-qx) and fiq(x,y) = (\-q) ^Q(qy,\q,qx) .

Moreover, the basic Bessel functions are expressible in the 

particular r$s functions by means of the following relations.

jil\x;q)J^P^(x/if 2#J (0,0; g1*1; q,-*2/4) (1.3.5)
faloo

and

jjj2)(x;q)Jq^lco (x/2f ^ (,qu+l;q,-x2qu+l /4) (1.3.6)

L^JOO

(Hahn ([1], [2]), Gasper and Rahman [1], and H.Exton [1]).
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a.Since the choice a>(=q l) = q , for at least one i (1 <i<r),

n= 0,1/2 reduces the infinite series in (1.3.4) to a terminating series,

the basic hypergeometric representations of various basic polynomials 

may be obtained by specializing the parameters in (1.3.4). As an

illustration, putting r = 1, s = 1, ai = q‘n, bi = aq( = qa+l), one gets by 

replacing x by -xqn+“+1, a basic Laguerre polynomial,

Mm
^x{q-n-aq-q,-xqa^X)- (1.3.7)

This polynomial was studied by D.S.Moak [1] and also it was 

taken into account by Al-Salam and Verma [1] who constructed a pair 

of biorthogonal polynomials: Z%(x,k\q) and Y„(x,k\q) which are known 

as q-Konhauser polynomials. It is to be noted here that the polynomial

z\®\x,q)- [aq]t
\qk>qk\n >=° iqk >qk ) j\m\ jk

(n-kn ks
Kq ,q }i qkj(n+a+\)+m-\)/2 xkj

(1.3.8)

reduces to the polynomial (1.3.7) when k = 1.

Amongst the other 'ordinary' polynomials, the Jacobi polynomial

p(aj)^x) jS worth noting here for, it possesses two basic analogues.

One of which is known as the 'little' q-Jacobi polynomial (Gasper and 

Rahman [1]) given by:

Pn(x,a,p,q) = 2 ^(q~n,aPqn+l,aq;q,xq) (1.3.9)

and other is given by
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(1.3.10)Pn(x,a,b,c;q)=^2(q , abqn+*, x, aq, cq, q, q)

known as the 'big' q-Jacobi polynomial.

The little q-Jacobi polynomial (1.3.9) with (3 = 0 provides two 

more basic analogues of the Laguerre polynomial L%{:c); they are the

Wall polynomial and the Stieltjes-Wigert polynomial (Gasper and 

Rahman [l,p.l96]):

Wn(x-,a,q) = (-lf[a]n n(n+Y)/2 nI
j=0 [a]

(1.3.11)

and

Sn(x,p,q) = nf[p]nq «(2«+1>/2 ?
7=0

•2

[Pij (~xJqY (1.3.12)

Besides the 'big' q-polnomial, the basic Hahn polynomial defined 

as below, also has a representation.

Qn(x;a,j3,N\q)=3 ^
-n „o„n+\ „—x.„ „ 

q ,&pq ,q ?(]?q

aq,q -N. (1.3.13)

is a q-anaiogue of (1.1.14).

Recently, in the study of general orthogonal q-polynomials, R. 

Askey and J.A.Wilson ([1]) considered the q-extensions of the Racah 

polynomial and Wilson polynomial (stated in (1.1.15) and (1.1.16)) in 

the forms:

Wn(x,a,b,c,N\q)= ^
~n,abqn+^,q x,cqx

aq,q~~N, bcq, (1.3.14)
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and

P„(x;a,b,c,d\q) 
a~n[ab\n\ac]n\ad\n 4 3

which they call q-Racah polynomial, and Askey-Wilson polynomial 

respectively. It can be shown easily that these polynomials contain 

among the other polynomials, the q-Jacobi polynomials, q-Hahn 

polynomial and the continuous q-Jacobi polynomial considered by 

M. Rehman [1] in the form:

—n 1 „J0 „q ,abcdq ,ae ,ae ,q,q

ab,ac,ad,
(1.3.15)

P^X,@\co$0,q) ■■ \aq\n[-fk]\n
4^3

40q n,a/3qn+l ,4qeld ,4^e' " ,0.0 

aq-f3q,-q,

1.4 BASIC INVERSE RELATIONS

In the early sixties when the inverse series relations were being 

discovered by Gould ([3], [4], [5]), Riordan [2] and others (for 

example Stanton and Sprott [1]), Carlitz studied several inverse series 

relations and their basic analogues from the point of view of deriving 

the inverse relations involving certain polynomials. During his study, he 

was led to several more general inversion pairs. Out of these the 

following basic pairs are worth mentioning [3. p. 196].

U
[nt 2]

n - Z 
k= 0 n-2k "\

if, and only if

k k(k-1)/2 1 -qn

>

V,
in! 2]

: zk=0
n~ .1 (“1 Tq

l-qn-k Un-2k

(1.4.1)

J
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and

rr ini2]
Un = A

k=0

implies

[»/2] 
I

k=0

n n \v

k _k-\ J n-2k

>

V,n - .1 (“1)" 9A: k(k-\)/2 U
[n! 2] 

*" a£o
n n
k k~l_ t/«-2& '

(1.4.2)

It may be observed that (1.4.1) and (1.4.2) provide basic 

analogues of Chebyshev class of inverse pairs studied by Riordan [2].

In one of his other papers on q-inverse relations, Carlitz [2] 

proved a very general as well as useful result in the form of a basic

analogue of the pair (1.2.28) due to Gould and Hsu. The result states

n _that if a, + q'xb,^ 0, , and y/{x,n,q) = n (a{ +q xbi), then
i=l

/(«)= £ (-1 )kqk{-k 1)/2 
k=0

if and only if

¥{k,n,q) g(k)

> (1.4.3)

g(n)= £ (-1 )kqk(k 2,7+1)72 

k=0

(■ak+l+q k,)^}
k+\ ■ m.

j
i//(n,k + l,q)

With the aid of this pair, he obtained certain particular inverse 

series relations including the pair (Carlitz [2,p.898]):

a+n + k
/(«)= £ (-1 )kqk^k 2/7+1)72 

k=0

if and only if

, % « , idfc k(k-1)/2g(«)= I (-1) q v ; 
k=0

g(k)

> d-4.4)

n 1
a + n + k

k , a+n+k+l
1 Cl k

m
j
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which provides a basic analogue of the pair (1,2.19) when b=l. He also

obtained a basic analogue of the pair (1.2.15) in the form:

/(«)= 2 (-I)V
k=0

if and only if

2n+\)I2 n
a + kA

k A n

g(k)

y (i.4.5)

g(n)= 1 (rV)kqmk 2"+1)/2 
k=0

i-qa+Ak-k

JA 1 -qa+nk-k

a + nA 
k m j

by means of a more general inverse relation (Carlitz [2,p.900]):

\ v* r -i\k Ak(k-2n+Y)/2 /(«)=! (-1) q v ' 
k-0

<=>

, . xr / i\k Ak(k—2n+\)i2 gin) = £ (-1) q v 7 
k- 0

y{-k,n,qA)g{k) "\

y (1.4.6)

, „Aku \ /(*)
1 + ^ ^(1) — ---—-j-

A t//(-n,k + l,q'l'y

where

'«] _ (l-qnX)(l-q^n W).......(1 -q(n /C+1)1)

A A (l~qkX XI - q^1^ )........(1 - q2X )(1 ~qX)

The other consequences of the pair (1.4.3) although not discussed 

in (Carlitz [2]), are worth mentioning here. They are the inverse series 

relations of the basic Jacobi polynomials (1.3.9) and (1.3.10), the 

q-Hahn polynomial (1.3.13), the q-Racah polynomial and the 

Askey-Wilson polynomials mentioned in (1.3.14) and (1.3.15) 

respectively. As an illustration, replacing q by q'1 and then setting
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a, = l, b, = _0«+£+*‘and g(n) = [aPq]n xn / [ag]„ in (1.4.3), one finds

after a little simplification, the following pair of inverse relations 

involving the little q-Jacobi polynomial.

n [q-\[aPq"+h. , k
pn(x;cc,/3;q)= £ ----- r......... ;------xK qK

k = 0 [«?]*[*]*

(1.4.7)

n , fo_wL<l-a072*+1)
*"=[«?]» X -------------rn-------Pu(x,a,P’,q)-k=0 - \aq]k\aPqk+\+l

In a similar manner, the inverse relations of the other polynomials 

may be obtained in the forms as given below

J

n [q~n}kWqn+\[q~-X}k k k 
Qn(x;aJ,N\q)= _£------ . * _ _N A----------qK ~\

k=0 [aq]k[q-Jy]k[q]k

<=s> V (1.4.8)

-x —N « nk [q~n}kV-aPq2k \
iq Xln<aq]n[q N]n £ qnk------------------------ QAx;a,fi;N\q).

k=0 [afiqk+l]n+l[q]k k J

(pair of inverse relations of basic Hahn polynomial)

„ , , „ r « [q-"Ual3qMhilq-x]k\r&ix*'l'ik k
Rn(M(x);a,0;y,S;q)= £ ----------------------------——r—-<T

<=> V (1.4.9)

2k+h{q~~X}nlqX+Xr8\n £ nk^q n^k^~afiq^\ n , , , n c s
n - £„ <7 ------- ------------ --—LRk{n{xy,a,P,r,8,q)

[aq\nWSq]n[yq]n k=0
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where //(*) = q x + ydqx+l.

(pair of inverse relation of basic Racah polynomial)

Pn(cos9,a,b,c,d | q) _ n [q n\\abcdqn \\ael()]k\ae %\ k 

[ab}n[ac\n[ad]n k=Q {ab}k[ac]k[ad)k[q)k q

<=> (1.4.10)

WB)n{ae-W\„ _ £ to n\\aiciqn \q"k 

lab]n[ac]n [ad]n k=Q [abcdq^ ] ^
(cos 8, a, b,c,d\q).

(pair of inverse relation of As key-Wilson polynomial)

On the other hand the substitutions a, = 1 and b, = 0 in (1.4.3) 

lead us to the inverse relations of the basic Lguerre polynomial:

4f■*(*><?) defined in (1.3.7), the Wall polynomial Wn(x;a,q)given in 

(1.3.11) and the Stieltjes-Wigert polynomial (a-,/?,<?)cited in (1.3.12).

In fact, with the aforementioned substitutions, the pair (1.4.3) assumes 

the simplest type of pair as given below:

re \ v ( k(k-l)/2/(«)=! H) q
k=0

g(k) g(n) ■■ n: I (- 
k=0

qk(k~2n+\)/2
m

(1.4.11)

whence the inverse relation of the above mentioned basic Laguerre 

polynomials is easily obtainable in the form given below by setting

g(n-) = q"(-"+l'>,2+a"V-q\ * .

min
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4? ,(x-q)= X, <7-----------------------------------------------------------
&=0 [«?]*[*]* fo]»

> (1.4.12)

<n _ -na-n(n+1)/2 « ^ "]*&*?]» ,(a).

M«
2 £ ; LT;(x;q)k=o *

Likewise, with /(£)
..A

Mi

the above pair (1.4.11) gives

Wn(x;a,q) = (-lf[a}nqnin+l)/2 £ (-1)* q^k 2n l)'2
k=0

and (-1 f[a]n[qln qn(n+l)/2 g(n) = ^(W)

Mk

> (1.4.13)

k r -i v* =M« £ q 
k=0

Wk(x;a,q)
fa]* -2

and similarly putting g(k) = qk+^k2/2^xk in (1.4.11) and comparing it 

with (1.3.12), one arrives at the inverse relations involving stieltjes- 

Wigert polynomial as mentioned below.

v /v „ ( nn„_w(2«+l)/2r , -S k^+k/2Sn(x,p,q) = (-\) q [p\n Y (-1) q
k=0 lPh

<=>

qn2+n'2xn =[P]n 1 qk-nk+ik^l2 
k=0

V (1.4.14)

Sk(x;p,q)
Mi

Finally, the following interesting results due to Gessel and Stanton [1] 

needs worth mentioning. They proved that
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(1.4.15)if An = £ p{n,k)Bk
k=0

and 5. : £ r{n,k)Ak 
k= 0

then

Theorem-1.

p(n,k) =
rnk(A^kll,gm\_k

saA/2. al/2\ H — Acr>k!2\■k (n-k)(n-k+l)/2+nk{Aq ’q hn~\U Aq }
[«W(^1/2;?1/2) 2„+4

Theorem-2.

p(n,k) = q
_^k(A^^n~k

Mn-k

o

r(«, 1) = (-1)”“* q(n~k)(n~~k+\)/2 +nk
(Aq>q)2n-} 0-V*)

Theorem-3.

p(n,k) = q~nk
(Aqk’^n-k

M„-k

o

r{n, k) = (-!)«“* q(n-k)(n-k+l)/2 +nk
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Theorem-4.

p(n,k) = q'
Mn-k

r(n, k)=(-I)"-* ?("-*X»-*+iy 2 *nk

Theorem-5.

p(n,k) = q
{Aqlkn.q-1/3)

H-&
n-k

<=>

*«, t)=Hr* ,(»^X"-*+i)/2+»* m?(2«+l)/3 1/3

M

Theorem-6.

,(nk)^,-nkl2^Ull^n-k 

p( ’ } q ,1/21/2x

<=>

r(n,k) = ^\f-k q{{n-k){n-k+\)+nk)i 2 iAq^\q-hn-k-1 a-V*'2)

(<? 1/2. 1/2

These inverse series relations were then unified in the form which

is stated here as
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Theorem-7.

(.Aqkhk;h)
p{n,k)^q~nk.......,.1 ... n~k

Mn-k

r{n,k) = (-1)"kq(n-k)(n-k+\)/2 +nk (1~^^)

With h = in theorem 7, one gets back to theorems 1 to 6 by

specializing b suitably.

To see this, take b=2. Then theorem-7 reduces to

, nk^m^\kp(n,k) = q nk — n k
[<?]n-k

( An^k~■ n~1/2 \ (\ — Afr>k^\̂} ■

which is theorem-1.

Similarly, putting b=-2 theorem-7 yields theorem-4.

It is although not mentioned in their work (Gessel and 

Stanton[l]), the q-Racah polynomial (1.3.14) and Askey-Wilson 

polynomial (1.3.15) are contained in (1.4.15) wherein p(n,k) is given by 

theorem-7.
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