CONTENT OF TABLES

Chapter	Title	Page No.
Chapter 1	Introduction and Review of Literature	
Table 1.1	Specific growth rates (μ) and stoichiometric parameters of <i>E. coli</i> JM101 strain grown on single or mixtures of carbon sources.	10
Table 1.2	Distribution of the essential glucose catabolism genes across the partially and completely sequenced genomes of <i>Pseudomonas</i> spp.	22
Table 1.3	Organic acid secreted by phosphate solubilizing pseudomonads	32
Table 1.4	Organic acids for phosphate solubilisation in different soil types	36
Chapter 2	Materials and Methods	
Table 2.1	List of plasmids used in the present study.	40
Table 2.2	List of <i>E. coli</i> strains used in the present study	44
Table 2.3	List of Pseudomonas strains used in the present study	46
Table 2.4	Recommended dozes of antibiotics used in this study	48
Table 2.5	Composition of SDS-PAGE reagents	54
Table 2.6	PCR conditions used in the present study.	56
Chapter 3	Effect of constitutive helerologous overexpression of <i>E. coli</i> NADH insensitive <i>cs</i> gene on the physiology and glucose metabolism of <i>P. fluorescens</i> PfO-1	din series de la companya de la comp
Table 3.1	Distribution of large and small citrate synthases in <i>Pseudomonas</i> species	77
Table 3.2	NADH binding and inhibition by variant CS	81
Table 3.3	List of bacterial strains used.	82
Table 3.4	NADH insensitive cs gene primers	84
Table 3.5	Physiological variables and metabolic data from <i>P. fluorescens</i> Pf0-1 <i>cs</i> gene transformants grown on M9 medium with 100mM glucose.	99

Chapter 4 Metabolic characterization of engineered *P. fluorescens* PfO-1coexpressing *E. coli* NADH insensitive cs and *S. tphimurium* sodium citrate transporter or *B. subtilis* magnesium citrate transporter operon

Table 4.	L Enhanced organic acid efflux by citrate transporter gene expression	104
Table 4.	2 Characterized members of the 2HCT family	108
Table 4.	B pH homeostasis in bacteria	111
Table 4.	List of bacterial strains used.	1 13
Table 4.	5 List of primers.	118
Table 4	Dhysiological yesichler and metricalis data from D. flyenseere	105

Table 4.6Physiological variables and metabolic data from *P. fluorescens*135Pf0-1 pYC and pGm transformants grown on M9 medium with
100mM glucose.100mM glucose.

Chapter 5	Genomic integration of E. coll NADH insensitive cs a	ind
	S.typhimurium Na ⁺ dependent citrate transporter operon	in
	fluorescent pseudomonads using Mini-Tn7 transposon s	and the second
	specific integration system and study their effects on gluco	ose
	metabolism.	
Table 5.1	Literature overview of bacteria tested for insertion of Tn7	140

- Table 5.2Wild type and recombinant strains used in the study.144
- Table 5.3Primer pair used for the PCR test of genomic integrants.149
- Table 5.4Physiological variables from *P. fluorescens* transformant strains157grown on75 mM glucose in TRP minimal medium.
- Table 5.5Extracellular citrate levels in *P. fluorescens* plasmid bearing 160strains and genomic integrants of yc operon.
- Table 5.6Comparison of GDH activity and gluconic acid levels of P. 161fluorescens plasmid bearing strains and genomic integrants of yc
operon.

Chapter

Title

173

Chapter 6 Evaluating the effect of engineered genetic modifications on Psolubilization and plant growth promotion ability of fluorescent pseudomonads

 Table 6.1
 List of plasmids and bacterial strains used in the study.

Chapter	Title	Page No.
Chapter 1	Introduction and Review of literature	
Figure 1.1	Design and engineering of pathways for microbial chemical factories (MCFs)	2
Figure 1.2	Recent advances in the engineering of microbes (Zhang et al., 2009).	5
Figure 1.3	Metabolic engineering and system biology converting microbes as cell factory.	7
Figure 1.4	Central Carbon metabolism of <i>E. coli</i> JM101 grown on glucose and glycerol	8
Figure 1.5	Growth profiles and substrate utilization (mmolC/L) of strain <i>E. coli</i> JM101 grown on glucose (A1) or glycerol (A2) and in the mixture glucose plus glycerol (A3).	10
Figure 1.6	Glucose uptake and contribution of global CCR regulators for nutritional intersections in <i>B. subtilis</i> (A and B)	12
Figure 1.7	Intracellular flux distribution of <i>B. subtilis</i> wild-type during exponential growth on glucose.	13
Figure 1.8	The acetoin biosynthetic pathway and other overflow metabolism pathways in <i>B. subtilis</i> , DAR diacetyl reductase.	14
Figure 1.9	Central carbon metabolism in C. glutamicum	16
Figure 1.10	Central carbon metabolism and intermediates from primary metabolism for Act production in <i>S. coelicolor</i> .	18
Figure 1.11	Central carbon metabolic pathway of Lactobacillus lactis	19

CONTENT OF FIGURES

Chapter	Title	Page No.
Figure 1.12	Glucose and fructose metabolism in Pseudomonas sp.	23
Figure 1.13	Channeling of glucose and fructose through each of the upstream sugar-catabolic pathways.	25
Figure 1.14	The origin of the components of the phosphoenolpyruvate- pyruvate-oxaloacetate (PEP-Pyr-OAA) node.	26
Figure 1.16	Global imbalance of P resources.	27
Figure 1.17	Total global P consumption (a), P use per use category (b), and P use per world region (c).	29
Figure 1.18	P production for the 1970–2006 period (historical data; left panel) and for the 2000–2100 period, in the Global orchestration (GO) scenario.	30
Figure 1.19	Depletion of resource base (reserves, reserve bases and additional resources) of phosphate rock under the GO scenario (default estimate).	31
Figure 1.20	Schematic diagram of soil phosphorus mobilization and immobilization by bacteria.	33
Figure 1.21	Mechanism of P solubilization by phosphate solubilizing bacteria and role of organic acid secretion in plant growth promotion.	35
Figure 1.22	Design and analysis of genetic modification in fluorescent pseudomonads.	38
Chapter 2	Materials and Methods	
Figure 2.1	Restriction maps of the plasmids used in this study.	43
Chapter 3	Effect of constitutive helerologous overexpression of <i>E. coli</i> NADH insensitive <i>cs</i> gene on the physiology and glucose metabolism of <i>P. fluorescens</i> PfO-1	
Figure 3.1	Correlation of Gram-Negative Bacterial CS subunit size and NADH sensitivity with the presence of NADH-Interacting residues as identified in the <i>E. coli</i> CS-NADH Complex.	77
Figure 3.2	Phylogram and cladogram tree	78

· · · · ·

.

÷

,

Chapter	Title	Page No.
Figure 3.3	CS homology by ClustalW analysis between <i>E. coli</i> and fluorescent pseudomonads.	79
Figure 3.4	<i>E. coli</i> CS protein sequence showing the regulatory variants.	81
Figure 3.5	Schematic representation of construction of <i>Pseudomonas</i> stable vectors containing NADH insensitive <i>E. coli cs</i> gene under <i>lac</i> pramotor	83
Figure 3.6	PCR amplification of NADH insensitive cs gene.	86
Figure 3.7	Restriction digestion pattern of pTZ57R/T Y146F clone with Sacl.	86
Figure 3.8	Restriction digestion pattern of pTZ57R/T K167A clone .	86
Figure 3.9	Restriction digestion pattern of pTZ57R/T R146Lclone with KpnI.	87
Figure 3.10	PCR amplification of TA clones.	. 87
Figure 3.11	Restriction digestion pattern for pY145F.	87
Figure 3.12	Restriction digestion pattern for pK167A.	88
Figure 3.13	Restriction digestion pattern for pR163L.	88
Figure 3.14	Restriction digestion pattern for pUCPM18 Kmr containing NADH insensitive cs gene digested with EcoRI-BamHI (StrategyII).	89
Figure 3.15	PCR amplification of NADH insensitive <i>cs</i> gene cloned in pUCPM18 kmr vector.	89
Figure 3.16	Complementation of <i>E. coli</i> W620 mutant phenotype by wild type and NADH insensitive <i>cs</i> plasmids.	90
Figure 3.17	Partial sequence of <i>E. coli</i> NADH insensitive cs gene	90
Figure 3.18	NCBI BLAST analysis of partial cs gene sequence	91
Figure 3.19	EBI pairwise alignment of NADH insensitive and wild type <i>cs</i> genes showing the position of mutation	92

Chapter	Title	Page N
Figure 3.20	EcoRI-BamHI restriction digestion pattern for pUCPM18 Kmr containing <i>E. coli</i> NADH insensitive <i>cs</i> gene from <i>P. fluorescens</i> PfO-1 and <i>P. fluorescens</i> ATCC13525 transformants.	93
Figure 3.21	CS activity of <i>P. fluorescens</i> PfO-1 transformants.	94
Figure 3.22	Activities of enzymes G-6-PDH (a) , ICDH (b), ICL (c), PYC (d), and GDH e) in <i>P. fluorescens</i> PfO-1 cs transformants. respectively.	95
Figure 3.23	Citric acid levels yields in <i>P. fluorescens</i> PfO-1 wild type and plasmid bearing strains	97
Figure 3.24	Organic acid secretion from <i>P. fluorescens</i> Pf0-1 NADH insensitive <i>cs</i> gene transformants.	98
Figure 3.25	Growth and pH profiles of <i>P. fluorescens</i> PfO-1 cs. transformants on M9 minimal medium with 100mM glucose.	· 99
Figure 3.26	Key metabolic fluctuations in <i>P. fluorescens</i> PfO-1 overexpressing NADH insensitive <i>E. coli cs</i> gene.	103
Chapter 4	Metabolic characterization of engineered <i>P. fluorescens</i> PfO- 1coexpressing <i>E. coli</i> NADH insensitive cs and <i>S. tphimurium</i> sodium citrate transporter or <i>B. subtilis</i> magnesium citrate transporter operon	
Figure 4.1	Structural model for 2HCT family transporters	109
Figure 4.2	Na ⁺ efflux mechanisms in bacteria.	111
Figure 4.3	Bacterial stress responses and Na^{+} homeostasis.	112
Figure 4.4	Restriction enzyme map of broad host range pUCPM18 vector having gentamycin resistance.	115
Figure 4.5	Strategy for cloning of <i>Salmonella</i> typhimurium citrate transporter (<i>citC</i>) gene and <i>yc</i> operon in broad host range vector pUCPM18 having gentamycin resistance.	116
Figure 4.6	Strategy for cloning of <i>Bacillus subtilis</i> citrate transporter (<i>citM</i>) gene in broad host range vector pUCPM18 having gentamycin resistance.	117

.

.

Chapter	Title	Page No.
Figure 4.7	PCR amplification of <i>citC</i> gene from <i>S. tphimurium</i> genome.	120
Figure 4.8	PCR amplification of CitM gene from <i>B. subtilis</i> genome.	120
Figure 4.9	Restriction enzyme mapping of <i>citC</i> and <i>citM</i> gene.	121
Figure 4.10	Restriction enzyme digestion pattern for pBluescript KS CitC clone.	121
Figure 4.11	Restriction enzyme digestion pattern of pUCPM18Gm vector.	122
Figure 4.12	Restriction enzyme digestion pattern of pUCPM18Gm CitC vector.	122
Figure 4.13	Restriction enzyme digestion pattern of pCitM clone	123
Figure 4.14	PCR amplification of <i>citC</i> and <i>citM</i> transporter genes cloned in pUCPM18 Gm ^r vector.	123
Figure 4.15	Restriction enzyme digestion pattern of pYC plasmid containing NADH insensitive Y145F gene and <i>S. tphimurium</i> sodium citrate transporter gene under same <i>lac</i> promoter in pUCPM18 Gm.	124
Figure 4.16	GenBank accession result of partial 16S rDNA sequence of Salmonella sp. WT	125
Figure 4.17	Partial SPA sequence of Salmonella sp. citC gene	126
Figure 4.18	NCBI-BLAST analysis of the partial <i>citC</i> gene sequence	127
Figure 4.19	Partial SPA sequence of <i>B. subtilis</i> 168 strain <i>citM</i> gene	128
Figure 4.20	NCBI-BLAST analysis of the partial <i>citM</i> gene sequence	129
Figure 4.21	Growth of <i>E. coli</i> DH5α on Koser citrate broth.	130
Figure 4.22	Citric acid levels and yields in <i>P. fluorescens</i> PfO-1 overexpressing citrate transporter.	131

. .

· · · ·

Chapter	Title	Page No
Figure 4.23	Organic acid secretion from <i>P. fluorescens</i> Pf0-1 overexpressing citrate transporter.	132
Figure 4.24	Activities of enzymes G-6-PDH, ICDH, ICL, PYC, and GDH in <i>P. fluorescens</i> PfO-1 overexpressing citrate transporter.	133
Figure 4.25	Growth and pH profiles of <i>P. fluorescens</i> PfO-1 pYC and pGm transformants on M9 minimal medium with 100mM glucose.	134
Figure 4.26	Diameter of zone of clearance and colouration formed by fluorescent pseudomonad transformants on Pikovskaya's agar and tris rock phosphate agar containing 75mM glucose and 75 mM Tris HCl pH 8.0.	135
Figure 4.27	Key metabolic fluctuations in <i>P. fluorescens</i> PfO-1 overexpressing NADH insensitive <i>E. coli cs</i> and <i>S. tphimurium</i> Na+ citrate transporter	138
Chapter 5	Genomic integration of <i>E. coli</i> NADH Insensitive cs and S.typhimurium Na ⁺ dependent citrate transporter operon in fluorescent pseudomonads using Mini-Tn7 transposon site specific integration system and study their effects on glucose metabolism.	
Figure 5.1	Map of transposon Tn7 (A) and its insertion site attTn7 in <i>Escherichia coli</i> (B).	141
Figure 5.2	The Tn7 delivery plasmids.	142
Figure 5.3	Vector map of mini tn7 helper plasmid (a), mini tn7 delivery plasmid (b), and mini tn7 delivery plamsid with <i>yc</i> gene cloned along with p <i>lac</i> (c).	146
Figure 5.4	Strategy for cloning and genomic integration.	147
Figure 5.5	Restriction enzyme digestion pattern of pYCInt plasmid containing NADH insensitive <i>cs</i> Y145F and <i>S. tphimurium</i> sodium citrate transporter operon under <i>lac</i> promoter .	150
Figure 5.6	PCR amplification of p <i>lac yc</i> gene cloned in integration delivery plasmid AKN69.	151

,

.

Chapter	Title	Page No
Figure 5.7	Natural fluorescence and antibiotic resistance of genomic Integrants of <i>P. fluorescens</i> PfO-1, <i>P. fluorescens</i> Pf-5, <i>P. fluorescens</i> CHAO-1, P fluorescens Fp315, <i>P. fluorescens</i> P109 and <i>P. fluorescens</i> ATCC13525.	152
Figure 5.8	PCR test of genomic DNA isolated from <i>P. fluorescens</i> wild type and genomic integrants using Tn7-Gm (510 nt from the start site of Gm ^r gene)and <i>cs</i> reverse primer (~2800 bp).	153
Figure 5.9	Growth profile and media acidification of genomic integrants and plasmid transformants of fluorescent pseudomonads including selected native isolates on TRP medium.	155
Figure 5.10	Intracellular citric acid levels in <i>P. fluorescens</i> strains p <i>lac yc</i> genomic integrants.	158
Figure 5.11	Extracellular citric acid levels in <i>P. fluorescens</i> strains p <i>lac yc</i> genomic integrants.	159
Figure 5.12	Gluconic acid levels in <i>P. fluorescens</i> strains <i>yc</i> operon genomic integrants.	159
Figure 5.13	Activities of enzymes G-6-PDH, ICDH, ICL, PYC, and GDH in <i>P</i> . <i>fluorescens</i> PfO-1 <i>yc</i> operon genomic integrants.	163
Figure 5.14	Activities of enzymes G-6-PDH, ICDH, ICL, PYC and GDH in <i>P. fluorescens</i> Pf-5 <i>yc</i> operon genomic integrants.	164
Figure 5.15	Activities of enzymes G-6-PDH, ICDH, ICL, PYC, and GDH in <i>P</i> . <i>fluorescens</i> CHAO-1 <i>yc</i> operon genomic integrants.	165
Figure 5.16	Activities of enzymes G-6-PDH, ICDH, ICL, PYC, and GDH in <i>P. fluorescens</i> ATCC 13525 <i>yc</i> operon genomic integrants.	166
Figure 5.17	Activities of enzymes G-6-PDH, ICDH, ICL, PYC, and GDH in <i>P. fluorescens</i> P109 <i>yc</i> operon genomic integrants.	167
Figure 5.18	Activities of enzymes G-6-PDH, ICDH, ICL, PYC, and GDH in <i>P. fluorescens</i> Fp 315 <i>yc</i> operon genomic integrants.	168

,

.

Chapter	Title	Page No
Chapter 6	Evaluating the effect of engineered genetic modifications on P-solubilization and plant growth promotion ability of fluorescent pseudomonads	
Figure 6.1	P solubilization phenotype of transgenic <i>P. fluorescens</i> PfO-1 and Fp315 strains during 96-120 h of growth.	177
Figure 6.2	[•] Zone of clearance of transgenic <i>P. fluorescens</i> strains in Pikovskyas agar medium during 96-120 h of growth.	178
Figure 6.3	P solubilization index on Pikovskyas agar of <i>P. fluorescens</i> yc operon genomic integrants during 96-120 h of growth.	179
Figure 6.4	Zone of colouration of transgenic <i>P. fluorescens</i> strains in TRP agar medium during 96-120 h of growth.	180
Figure 6.5	Pi release of transgenic <i>P. fluorescens</i> strains in TRP broth medium during 96-120 h of growth.	181
Figure 6.6	Effect of <i>P. fluorescens</i> genomic integrants on leaf number of mung bean (<i>Vigna radiata</i>) at 45 days after sowing.	182
Figure 6.7	The pot results of Vigna radiata GM4 at 20 DAS.	183
Figure 6.8	Effect of <i>P. fluorescens</i> genomic integrants on shoot length and root length of mung bean (<i>Vigna radiata</i> GM4) at 45 Days after sowing.	184
Figure 6.9	Effect of <i>P. fluorescens</i> genomic integrants on Shoot and root dry weight of mung bean (<i>Vigna radiata</i>) at 45 Days after sowing.	185
Figure 6.10	Effect of <i>P. fluorescens</i> genomic integrants on nodule number and dry weight of mung bean (<i>Vigna radiata</i>) at 45 Days after sowing.	186
Figure 6.11	Effect of <i>P. fluorescens</i> genomic integrants on enzyme activities of mung bean (<i>Vigna radiata</i>) at 45 Days after sowing.	188
Figure 6.12	Effect of <i>P. fluorescens</i> genomic integrants on P content of root and shoot of mung bean (<i>Vigna radiata</i>) at 45 DAS.	189
Figure 6.13	Effect of <i>P. fluorescens</i> genomic integrants on available soil phosphorous of mung bean (<i>Vigna radiata</i>) at 45 Days after sowing.	[′] 191