List of Figures

Figure 1. 1: A delafossite type structure
rigure 1. 1. A detaiossite type structure
Figure 2. 1: (a) Sealed Quartz tube (b) Quartz tube after heating treatment (c) Empty Quartz tube used
for heating treatment of raw mixture (d) Vacuum sealing facility a the Department of
Physics, Faculty of Sceince, The Maharaja Sayajirao Unicersity of Baroda22
Figure 2. 2: Ray diagram depicting Brag's Law
Figure 2. 3: XRD facility at Department of Metallurgical and Materials Engineering, Faculty of
Technology and Engineering, The Maharaja Sayajirao University of Baroda26
Figure 2. 4: (a) Schematic diagram of Scanning electron microscope [8] (b) SEM instrument Model S
3400 N by Hitachi29
Figure 2. 5: Rayleigh and Raman scattering process
Figure 2. 6: Raman Facility at Department of Physics, Faculty of Science, The Maharaja Sayajirao
University of Baroda31
Figure 2. 7: Infrared Spectrometer Schematic Diagram
Figure 2. 8: Infrared Spectrometer at Dpeartment of Applied Chemistry, Faculty of Teechnology and
Engineering, The Maharaja Sayajirao University of Baroda34
Figure 2. 9: A typical isomer shift present in a Mössbauer spectrum [18]
Figure 2. 10: Typical quadrupole splitting. 'Δ' gives the magnitude of quadrupole splitting [20]36
Figure 2. 11: A typeical magnetic splitting of nuclear energy levels[20]
Figure 2. 12: A typeical magnetic splitting of nuclear energy levels [28]
Figure 2. 13: UV-Vis spectrometer facility at UGC-DAE-CSR, Indore Center40
Figure 2. 14: Attachments for the UV-Vis Spectroscopy for Diffuse reflectance mode at UGS-DAE-CSR,
Indore center40
Figure 2. 15: Representative diagram of the Four probe contacts for current and voltage supplies to the
sample41
Figure 2. 16: Low temperature resistivity setup at MIT, MAHE, Manipal41
Figure 2. 17: Dielectric measurement facility at Solid State Physics Division, Bhabha Atomic Research
Centre, Trombay
Figure 2. 18: Magnetization field (H) dependent magnetic diagrams for different types of magnetic
materials
Figure 2. 19: Hysteresis loop or M-H plot for typical ferromagnetic maerials
Figure 2. 20: Magnetic susceptibility vs temperature (Kelvin) for paramagnetic, ferromagnetic, and
antiferromagnetic materials49
Figure 3.1: XRD-patterns of pure CuFeO ₂ and doped samples
Figure 3.2: Experimental X-ray powder diffraction pattern (black line) and calculated pattern (red line)
for $CuFeO_2$, $CuFe_{0.96}M_{0.03}V_{0.01}O_2(M = Ti, Ga, and Mn)$ and $CuFe_{0.96}V_{0.04}O_2$. The difference is
given as a bottom line. The set of Bragg ticks (blue) corresponds to the R3m space group of
delafossite59
Figure 3.3: Williamson-Hall plot for $CuFeO_2$, $CuFe_{0.96}M_{0.03}V_{0.01}O_2$ (where $M=Ti$, Ga and Mn) and
$\text{CuFe}_{0.96}\text{V}_{0.04}\text{O}_2$ samples60
Figure 3.4: Size-strain plot for $CuFeO_2$, $CuFe_{0.96}M_{0.03}V_{0.01}O_2$ (where $M=Ti$, Ga and Mn) and
$\text{CuFe}_{0.96} \text{V}_{0.04} \text{O}_2$ 61
Figure 3.5: SEM micrographs of CuFeO ₂ , CuFe _{0.96} $M_{0.03}V_{0.01}O_2$ (M = Ti, and Mn) and CuFe _{0.96} $V_{0.04}O_2$ 63
Figure 3.6: EDS spectrum for CFO (a) and CFMnV (b)64
Figure 3. 7: XRD-patterns of pure CuCrO ₂ and doped samples65
Figure 3.8: Peak 012 and 104 (inset) comparison for all the studied samples66

Figure 3.9:	Experimental X-ray powder diffraction pattern (black line) and calculated pattern (red line)
1	for $CuCrO_2$, $CuCr_{0.97}Mg_{0.03}O_2$, $CuCr_{0.96}V_{0.04}O_2$, and $CuCr_{1-x}Fe_xO_2$ (x = 0.03, 0.06, and 0.09).
	The difference is given as a bottom line. The set of Bragg ticks (blue) corresponds to the R3m
	space group of delafossite67
Figure 3.10	: Experimental X-ray powder diffraction pattern (black line) and calculated pattern (red line)
_	for $CuCr_{0.97}Ni_{0.03}O_2$, and $CuCr_{0.96}M_{0.03}V_{0.01}O_2$ (M = Ti, Mn, Ga, and Nb). The difference is
	given as a bottom line. The set of Bragg ticks (blue) corresponds to the R3m space group of
	delafossite
Figure 3.11	: Williamson-Hall plot for CuCrO ₂ and CuCr _{0.96} M _{0.03} V _{0.01} O ₂ samples72
	Williamson-Hall plot for CuCrO ₂ , CuCr _{0.07} Mg _{0.03} O ₂ , CuCr _{0.07} Ni _{0.03} O ₂ , CuCr _{1.x} Fe _x O ₂ ($x = 0.03$
rigure 3.12	0.06 and 0.09) and $CuCr_{0.96}V_{0.04}O_2$ samples
Figure 3 13	: The size-strainplot for CuCrO ₂ and CuCr _{0.96} M _{0.03} V _{0.01} O ₂ samples73
_	4: The size-strain plot for $CuCrO_2$, $CuCr_{0.07}Mg_{0.03}O_2$, $CuCr_{0.07}Ni_{0.03}O_2$, $CuCr_{1-x}Fe_xO_2$ ($x = 0.03$,
rigure 3. r	0.06 and 0.09) and $CuCr_{0.96}V_{0.04}O_2$ samples
Figure 3 15	: SEM micrographs of CuCrO ₂ , CuCr _{0.96} M _{0.03} V _{0.01} O ₂ (M = Mn, Ti and Nb), CuCr _{0.96} V _{0.04} O ₂
rigure 3.13	and $CuCr_{0.91}Fe_{0.09}O_2$
Figure 2 16	i: EDS spectrum for (a) CCO and (b) CCMnV
rigure 5.10	EDS spectrum for (a) CCO and (b) CCMIV
Figure 11.	$E_{\rm g}$ and $A_{\rm 1g}$ modes of vibration eigen vectors in ABO ₂ delafossite compounds83
	Raman plot for pure and doped CuFeO ₂ samples84
	Experimental (dots) and calculated (solid line) Mossbauer spectra for CuFeO ₂ and doped
rigure 4.5:	
E	CuFeO ₂ samples obtained at room temperature
_	FTIR spectra of pure and doped CuFeO ₂
_	K-M transformed reflectance spectra of pure and doped CuFeO ₂ samples89
	Raman spectra of pure and doped CuCrO ₂ 90
	FTIR spectra of pure and doped CuCrO ₂ 92
Figure 4.8:	Kubelka-Munk transformed reflectance spectra of $CuCrO_2$, $CuCr_{0.96}M_{0.03}V_{0.01}O_2$ (M = Ti, Mn
	Ga, and Nb), and $CuCr_{0.96}V_{0.04}O_2$ samples93
Figure 4.9:	Kubelka-Munk transformed reflectance spectra of $CuCrO_2$, $CuCr_{1-x}Fe_xO_2$ ($x=0.03,0.06$, and
	$0.09), CuCr_{0.97}Mg_{0.03}O_2, and \ CuCr_{0.97}Ni_{0.03}O_2 \ samples. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
_	Temperature dependent resistivity of pure and doped CuFeO ₂ samples101
_	Graph of $\ln(\rho/T)$ vs 1/T gor the resistivity data fitting of SPH model102
_	Variation of log σ_{ac} vs 1000/T for CuFeO ₂ and CuFe _{0.96} Ti _{0.03} V _{0.01} O ₂ sample104
Figure 5.4:	Variation of log σ_{ac} vs 1000/T for CuFeO $_2$ and CuFe $_{0.96}$ Ti $_{0.03}$ V $_{0.01}$ O $_2$ samples near room
	temperature with linear fit for calculating activation energy104
_	Plots of ac conductivity with respect to frequency and Johnscher's power law fit of CuFeO ₂ .
Figure 5.6:	Plots of ac conductivity with respect to frequency and Johnscher's power law fit of CuFeO ₂
Figure 5.7:	Temperature-dependent resistivity of $CuCrO_2$, $CuCr_{0.96}M_{0.03}V_{0.01}O_2$ (M = Ti, Mn, Ga, and
	Nb),and CuCr _{0.96} V _{0.04} O ₂ samples107
Figure 5.8:	Temperature-dependent resistivity of $CuCrO_2$, $CuCr_{1-x}Fe_xO_2$ (x = 0.03 and 0.09),
C	CuCr _{0.97} Mg _{0.03} O ₂ , and CuCr _{0.97} Ni _{0.03} O ₂ samples
Figure 5.9:	The plot of $ln(\rho/T)$ versus 1/T for the resistivity data fitting by the SPH model of $CuCrO_2$ and
g	$CuCr_{0.96}M_{0.03}V_{0.01}O_2$ (M = Ti, Mn, Ga, and Nb) samples
Figure 5.10	: The plot of $\ln (\rho/T)$ versus 1/T for the resistivity data fitting of SPH model CuCrO ₂ , CuCr ₁ .
-8	$_{x}$ Fe _x O ₂ (x = 0.03and 0.09), CuCr _{0.97} Mg _{0.03} O ₂ and CuCr _{0.97} Ni _{0.03} O ₂ samples110
Figure 5.11	: The plot of log σ_{ac} versus 1000/T for CuCrO ₂ and CuCr _{0.96} M _{0.03} V _{0.01} O ₂ (M = Ti, Mn, Ga, and
115011 0.11	Nb) and $CuCr_{0.96}V_{0.04}O_2$ samples
	110/ with CaCt(),96 t (),040/20min.pico:

Figure 5. 13: Arrhenius liner fit for $CuCrO_2$ and $CuCr_{0.96}M_{0.03}V_{0.01}O_2$ ($M=Ti, Mn, Ga, and Nb)$ and $CuCr_{0.96}V_{0.04}O_2$ samples near room temperature	Figure 5.12: The plot of $\log \sigma_{ac}$ versus 1000/T for $CuCrO_2$ and $CuCr_{0.96}Ni_{0.04}O_2$ and $CuCr_{1-x}FeO_2(x=0.06)$
CuCr _{0.96} V _{0.04} O ₂ samples near room temperature	and 0.09) samples
Figure 5.14: Arrhenius fit for $CuCrO_2$ and $CuCr_{0.96}Ni_{0.04}O_2$ and $CuCr_{1.7}$, $FeO_2(x=0.06 \text{ and } 0.09)$ samples near room temperature	
near room temperature	
Figure 5. 15: Jonscher Power Law fitof electrical conductivity for $CuCr_{0.96}M_{0.03}V_{0.01}O_2$ (M = Ti, and Mn), $CuCr_{0.96}V_{0.04}O_2$, $CuCr_{0.97}Ni_{0.03}O_2$ and $CuCr_{1.x}FeO_2(x=0.06$ and 0.09)	
CuCr _{0.96} V _{0.04} O ₂ , CuCr _{0.97} Ni _{0.03} O ₂ and CuCr _{1.x} FeO ₂ (x = 0.06 and 0.09)	
Figure 5. 16: Variation of exponent 'n' of Jonscher power law vs Temperature	Figure 5. 15: Jonscher Power Law fitof electrical conductivity for $CuCr_{0.96}M_{0.03}V_{0.01}O_2$ (M = Ti, and Mn),
Figure 6.1: Temperature dependence of magnetic susceptibility of (a) CuFeO ₂ and (b) CuFeO ₂ %Ti _{0.03} V _{0.01} O ₂	$CuCr_{0.96}V_{0.04}O_2$, $CuCr_{0.97}Ni_{0.03}O_2$ and $CuCr_{1.x}FeO_2(x=0.06 \text{ and } 0.09)$ 115
CuFe _{0.96} Ti _{0.03} V _{0.01} O ₂	Figure 5. 16: Variation of exponent 'n' of Jonscher power law vs Temperature116
CuFe _{0.96} Ti _{0.03} V _{0.01} O ₂	Figure 6.1: Temperature dependence of magnetic susceptibility of (a) CuFeO ₂ and (b)
Figure 6.2: Temperature dependence of χ^1 along with Curie-Weiss fit for (a) CuFeO ₂ and (b) CuFeO ₂ κ Ti _{0.03} V _{0.01} O ₂	
CuFe _{0.96} Ti _{0.03} V _{0.01} O ₂	
Figure 6.3: Isothermal magnetization vs applied magnetic field plots at 25 K, 40 K and 150 K for (a) CuFeO ₂ and (b) CuFe _{0.96} Ti _{0.03} V _{0.01} O ₂	
CuFeO ₂ and (b) CuFe _{0.96} Ti _{0.03} V _{0.01} O ₂	
Figure 6.4: Temperature dependence of (a) ε' and (b) ε'' of ac dielectric permittivity at different frequencies for the CuFeO ₂ sample. The insets of the figures show the variations of the real and imaginary part of ε in the temperature range of 5–50 K	
frequencies for the CuFeO ₂ sample. The insets of the figures show the variations of the real and imaginary part of ε in the temperature range of 5–50 K	
and imaginary part of ϵ in the temperature range of 5–50 K	
Figure 6.5: Temperature dependence of (a) ε' and (b) ε'' of ac dielectric permittivity at different frequencies for the CuFe _{0.96} Ti _{0.03} V _{0.01} O ₂ sample. The inset of figure (b) shows the fitting of the Arrhenius law	
frequencies for the $CuFe_{0.96}Ti_{0.03}V_{0.01}O_2$ sample. The inset of figure (b) shows the fitting of the Arrhenius law	and imaginary part of ϵ in the temperature range of 5–50 K127
Arrhenius law	Figure 6.5: Temperature dependence of (a) ε' and (b) ε'' of ac dielectric permittivity at different
Figure 6.6: Temperature dependence of magnetic susceptibility of $CuCr_{0.96}M_{0.03}V_{0.01}O_2$ (M = Mn, Ti, Nb, and Ga) samples under 100 Oe Magnetic Field	frequencies for the CuFe _{0.96} Ti _{0.03} V _{0.01} O ₂ sample. The inset of figure (b) shows the fitting of the
Nb,and Ga) samples under 100 Oe Magnetic Field	Arrhenius law128
Nb,and Ga) samples under 100 Oe Magnetic Field	Figure 6.6: Temperature dependence of magnetic susceptibility of $CuCr_{0.96}M_{0.03}V_{0.01}O_2$ (M = Mn, Ti,
Figure 6.7: Temperature dependence of magnetic susceptibility, $CuCr_{0.96}M_{0.03}V_{0.01}O_2$ (M = Ti, Nb, Ga,and Mn), and $CuCr_{0.96}V_{0.04}O_2$ samples under two magnetic fields 5 KOe and 10 KOe	
Mn), and $CuCr_{0.96}V_{0.04}O_2$ samples under two magnetic fields 5 KOe and 10 KOe	
Figure 6.8: Measured M-H hysteresis curves for $CuCrO_2$, $CuCr_{0.96}M_{0.03}V_{0.01}O_2$ (M = Ti, Nb, Ga, and Mn), and $CuCr_{0.96}V_{0.04}O_2$ samples at (a) 25 K, (b) 40 K and (c) 150 K	
and $CuCr_{0.96}V_{0.04}O_2$ samples at (a) 25 K, (b) 40 K and (c) 150 K	
Figure 6.9: Magnified M-H hysteresis curves for $CuCrO_2$, $CuCr_{0.96}M_{0.03}V_{0.01}O_2$ (M = Ti, Nb, Ga, and Mn), and $CuCr_{0.96}V_{0.04}O_2$ samples at (a) 25 K and (b) 40 K	
and $CuCr_{0.96}V_{0.04}O_2$ samples at (a) 25 K and (b) 40 K	
Figure 6. 10: Temperature-dependent dielectric constant of $CuCrO_2$ and $CuCr_{0.96}M_{0.03}V_{0.01}O_2$ (M = Ti, Mn, Ga, and Nb) samples	
Mn, Ga, and Nb) samples	
Figure 6.11: Temperature-dependent dielectric constant of $CuCr_{1-x}Fe_xO_2$ (x = 0.03and 0.09), $CuCr_{0.97}Ni_{0.03}O_2$, and $CuCr_{0.96}V_{0.04}O_2$ samples	• • • • • • • • • • • • • • • • • • • •
$CuCr_{0.97}Ni_{0.03}O_2$, and $CuCr_{0.96}V_{0.04}O_2$ samples	
Figure 7.1: Experimental X-ray powder diffraction pattern (black line) and calculated pattern (red line)	$CuCr_{0.97}Ni_{0.03}O_2$, and $CuCr_{0.96}V_{0.04}O_2$ samples
	Figure 7.1: Experimental X-ray powder diffraction pattern (black line) and calculated pattern (red line)
for $CuCr_{0.96}Mn_{0.03}V_{0.01}O_2$ thin film. The difference is given as a bottom line. The set of Bragg	for $CuCr_{0.96}Mn_{0.03}V_{0.01}O_2$ thin film. The difference is given as a bottom line. The set of Bragg
ticks (blue) corresponds to the $R\overline{3}m$ space group of delafossite143	ticks (blue) corresponds to the R3m space group of delafossite143