
CHAPTER 2

Methods and Formalisms

This chapter discusses the origin and development of density functional theory based first-

principles method which is the primary tool of investigation employed in this thesis. We

begin with the fundamental formulations pertaining to the Kohn-Sham approach which are

at the heart of density functional theory and employed in our computations using Quantum

ESPRESSO code. We also discuss in brief other methods and codes such as, density functional

perturbation theory, ab-initio molecular dynamics simulations (AIMD), ElaStic, BoltzTrap

and the ShengBTE code. Followed by methods like, maximally localised wannier functions in

Wannier90 and the implementation of tight-binding model in WannierTools code.

2.1 Many-body Problem

The development of quantum theory with theoretical tools such as time-independent
Schrödinger equation (presented in Eq. 2.1 where, 𝐻̂ is the hamiltonian of the system,
𝜓(𝑟) is the single particle eigen function and E is the corresponding eigen value), has emerged
as an efficient method to describe simple quantum systems such as Hydrogen atom.1 The
system of Hydrogen atom is the most simplistic toy model (two-body system with one proton
and one electron) wherein the exact solution of Schrödinger equation can be numerically
computed by variable separable techniques to obtain the ground state energy of − 13.6 eV.
However, as the size of system increases for example, the case of Helium atom, the process of
solving the Schrödinger equation gets complicated due to higher number of variables involved
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2.1. Many-body Problem

in such many-body systems which makes finding the exact numerical solution a challenging
task which can be adderssed by reducing the system to a two-body system with reduced mass.

𝐻̂𝜓(𝑟) = 𝐸𝜓(𝑟) (2.1)

However, the complexity scales-up exponentially as we consider the periodic arrangement
of atoms in solids which are regarded as many-electron systems with indistinguishable mutual
interactions in a smeared-out background positive nuclear charge. Such a system is described
by the ‘N’ particle eigen function 𝜓(𝑟1, 𝑟2, 𝑟3, ..., 𝑟𝑁 ).2 It is next to impossible; to find the exact
solution (as in the case of Hydrogen atom) of such a complex many-body system. To add to
this, in such big systems, we also come across complex interactions between electron-electron,
electron-ion and ion-ion making the Hamiltonian of the system quite complex as presented
in Eq. 2.2. Here, 𝑇̂𝑒, 𝑇̂𝑛, 𝑉𝑒,𝑒, 𝑉𝑒,𝑛 and 𝑉𝑛,𝑛 are, the kinetic and potential energy operators
(accuonting for electron-electron, electron-ion and ion-ion interactions) respectively.3, 4

𝐻̂ = 𝑇̂𝑒 + 𝑇̂𝑛 + 𝑉𝑒,𝑒 + 𝑉𝑒,𝑛 + 𝑉𝑛,𝑛 (2.2)

Then, the many-body time-independent version of Shcrödinger equation reduces to Eq.
2.3 where, the indices i and k run over the electrons and ions, m𝑒 and m𝑛 are mass of electrons
and ions, Z𝑘 and Z𝑘′ are the nuclear charge on ions, |𝑟𝑛,𝑘 − 𝑟𝑛,𝑘′|, |𝑟𝑖 − 𝑟𝑗| and |𝑟𝑖 − 𝑟𝑛,𝑘| are
the radial distances between ion-ion, electron-electron and electron-ion respectively.
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Solving Eq. 2.3 gives the information regarding the ground state of the system in terms of
the energy eigen values and since this equation depends on the atomic mass and charge of the
electrons and ions, the method is termed as first-principles as it does not require parametric
fitting to obtain the solution as in the case of empirical problem. However, the associated
complexities persist making it impossible to solve Eq. 2.3 for a many body system. An attempt
by Born and Oppenheimer was made to address this issue and make the equation solvable.
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2. Methods and Formalisms

2.2 Eigen Function Based Approximations

Born-Oppenheimer Approach

As an analogy, imagine you are driving down a four-lane highway in a car, you can travel
faster and overtake several heavy vehicles such as trucks, rollers etc. So, when we want to
study the speed of vehicles travelling in such a scenario, we can neglect the effect of slow
moving heavy vehicles. Similarly, when the electrons and ions are confined in a momentum
space, by the virtue of mass, the electrons would posses higher momentum as compared to
the ions. Hence, we can neglect the ionic contribution in the Hamiltonian presented in Eq.
2.2, this is known as the Born-Oppenheimer approximation.5 Based on this, the electrons are
assumed to move in a smeared-out background positive charge originating from the relatively
static ions. Then, the eigen functions can be presented as a combination of the electronic and
ionic eigen functions as evident from Eq. 2.4 where, 𝜒𝑘(𝑟𝑛) and 𝜙𝑖(𝑟𝑖, 𝑟𝑛) are the ionic and
electronic eigen functions respectively.

𝜓(𝑟) = 𝜒𝑘(𝑟𝑛)𝜙𝑖(𝑟𝑖, 𝑟𝑛) (2.4)

Then, the variable separated form of Eq. 2.3 can be presented as Eq. 2.5 and Eq. 2.6
below.

�
− ℏ2

2𝑚𝑛

�
𝑘

𝜕2

𝜕𝑟2𝑛,𝑘
+ 1

2
�
𝑘,𝑘′
𝑘≠𝑘′

𝑒2

4𝜋𝜖0
𝑍𝑘𝑍𝑘′

|𝑟𝑛,𝑘 − 𝑟𝑛,𝑘′|
�
𝜒𝑘(𝑟𝑛) = 𝐸𝜒𝑘(𝑟𝑛) (2.5)

�
− ℏ2

2𝑚𝑒

�
𝑖

𝜕2

𝜕𝑟2𝑖
+ 1

2
�
𝑖,𝑗
𝑖≠𝑗

𝑒2

4𝜋𝜖0
1

|𝑟𝑖 − 𝑟𝑗|
−
�
𝑖

�
𝑘

𝑒2

4𝜋𝜖0
𝑍𝑘

|𝑟𝑖 − 𝑟𝑛,𝑘|
�
𝜙𝑖(𝑟𝑖, 𝑟𝑛) = 𝐸𝜙(𝑟𝑖, 𝑟𝑛)

(2.6)
Under the Born-Oppenheimer approximation, the first term of Eq. 2.5 vanishes resulting

in a constant (𝛽).6 Then the modified Hamiltonian can be rewritten as in Eq. 2.7 where,
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is an external potential (𝑉𝑒𝑥𝑡). The

reduced form of Schrodinger equation can then be presented as in Eq. 2.8
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2.2. Eigen Function Based Approximations

𝐻̂ = 𝑇̂𝑒 + 𝑉𝑒,𝑒 + 𝑉𝑒,𝑛 + 𝛽 (2.7)
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This approximation partly solves the complexity of many-body Schrödinger equation
since, it does not address the electron-electron interactions and the assymetry and correlations
which govern Fermions like electrons. This was addressed by the, Hartree and Hartree-Fock
approximations.

Hartree Approach

The coulomb interactions between electrons governed by classical electrostatics had to be
addressed in order to further simplify the many-body problem. This was done by Hartree who,
modified the many-body problem to one-electron problem which is known as the independent
electron approximation.7–10 The electron-electron interaction potential (independent of the
self-interactions) contributing to the Hamiltonian presented in Eq. 2.7 can be written in terms
of the charge density 𝜌(r) as in Eq. 2.9.

𝑉𝑒,𝑒(𝑟) = �
[𝜌(𝑟′) − 𝜌𝑖(𝑟′)]

|𝑟 − 𝑟′| 𝑑𝑟′ (2.9)
According to classical electrostatics, the distribution of electronic charge density in space

𝜌(r) gives rise to an electrostatic potential V𝑙(r) which is governed by the Poisson’s relation
presented in Eq. 2.10. The electrons in such an electrostatic potential would have a potential
energy known as the Hartree potential V𝐻 (r) which obeys the Poisson’s relation and transforms
in Hartree units as, V𝐻 (r) = − V𝑙(r).

∇2𝑉𝑙(𝑟) =
𝜌(𝑟)
𝜖0

(2.10)
Then, the electronic charge distribution corresponding to the Hartree potential can be

constructed by summing the individual eigen states as below with the summation running
over all the occupied eigen states;

𝜌(𝑟) =
�
𝑚

|𝜓𝑚(𝑟)|2 (2.11)
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2. Methods and Formalisms

With this, the electron-electron interaction potential gets converted to a single electron
potential as presented in Eq. 2.13 (by using Eq. 2.11 in Eq. 2.9) which is also known as the
Hartree potential.

𝑉𝑒,𝑒(𝑟) = 𝑉𝑙(𝑟) =
�
𝑚≠𝑙 �

|𝜓𝑚(𝑟)|2
|𝑟 − 𝑟′| 𝑑𝑟

′ (2.12)

Hartree also suggested to present many-body eigen function as the product of eigen
functions of individual electrons comprising the system as presented in Eq. 2.13 below.

𝜓(𝑟1, 𝑟2, ..., 𝑟𝑁 ) =
𝑁∏

𝑚=1
𝜓(𝑟𝑚) (2.13)

Then, by introducing the Hartree potential presented in Eq. 2.12 in Eq. 2.8 we get the
modified Schrödinger equation as follows (Eq. 2.14) which is known as the Hartree equation.

�
− ℏ2

2𝑚𝑒

�
𝑖

𝜕2

𝜕𝑟2𝑖
+

�
𝑚≠𝑙 �

|𝜓𝑚(𝑟)|2
|𝑟 − 𝑟′| 𝑑𝑟

′ + 𝑉𝑒,𝑛 + 𝑉𝑒𝑥𝑡

�
𝜓(𝑟) = 𝐸𝜓(𝑟) (2.14)

However, the missing piece was that, Hartree did not include the electronic correlations
which led to the Hartree-Fock approximations.11, 12

Hartree-Fock Approach

The major problem with Hartree approach was that, (i) the eigen functions of electrons
were not anti-symmetric with respect to exchange of electrons and, (ii) the electron-electron
interactions were averaged. Hartree-Fock method addresses the former problem (which was
pointed out by Slater and Fock independently).13, 14

They began with anti-symmetric eigen function as a function of the position and spin
(presented in Eq. 2.15 below) which satisfies the Pauli exclusion principles which mandates
that, under particle exchange, the eigen functions would be anti-symmetric. As a consequence,
no two electrons can have the same set of quantum numbers i.e., electrons with same spin
cannot simultaneously occupy the same eigen state.

𝜓𝐻𝐹
[
(𝑟1, 𝜎1), (𝑟2, 𝜎2), ..., (𝑟𝑁 , 𝜎𝑁 )

]
= −𝜓𝐻𝐹

[
(𝑟1, 𝜎1), (𝑟2, 𝜎2), ..., (𝑟𝑁 , 𝜎𝑁 )

] (2.15)
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2.3. Density Based Approximations

Also, instead of using the product of eigen functions presented in Eq. 2.13, we use a Slater
determinant eigen function which satisfies anti-symmetry and is presented in Eq. 2.16 where,
𝜓𝑟(𝑟𝑠, 𝜎𝑠) are one electron eigen functions.15

 = 1√
𝑁!

�������������

𝜓1(𝑟1, 𝜎1) 𝜓1(𝑟2, 𝜎2) ... 𝜓1(𝑟𝑁 , 𝜎𝑁 )

𝜓2(𝑟1, 𝜎1) 𝜓2(𝑟2, 𝜎2) ... 𝜓2(𝑟𝑁 , 𝜎𝑁 )

⋮ ⋮ ... ⋮

𝜓𝑁 (𝑟1, 𝜎1) 𝜓𝑁 (𝑟2, 𝜎2) ... 𝜓𝑁 (𝑟𝑁 , 𝜎𝑁 )

�������������

(2.16)

Then using the Lagrangian multiplier method to minimize the expectation value of the
Hamiltonian as done to obtain Eq. 2.14 we arrive at the set of Hartree-Fock equations presented
in Eq. 2.17 where, s𝑚 and s𝑙 are spin labels. Although the electron exchange is addressed but
this approach is computationally expensive, since, the total energy of the system E in Eq. 2.17
requires minimization of the ‘N’ particle Slater determinant.
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The complexity of many-body Schrödinger equation is that, for a system with ‘N’ electrons,
there would be 3N degrees of freedom which increases the number of variable in the problem.
Density Functional Theory resolves this issue by apprixomating the many-body problem to a
single electronic density which is computationaly viable.

2.3 Density Based Approximations

Thomas-Fermi Approach

Thomas and Fermi proposed that, the total energy of a system can be written as a functional
of the electron density rather than considering the single particle eigen functions proposed by
Hartree and Hartree-Fock approaches.16, 17 Therefore, the kinetic energy of an ‘N’ interacting
electrons can be expressed in terms of the electron density (n(𝑟)) as in Eq. 2.18. Then the
total energy (E) can be expressed as a functional of electron density as in Eq. 2.19 where,
the kinetic energy, electrostatic energy and external potential are expressed as a functional of
electron density.
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2. Methods and Formalisms

𝑇𝑇𝐹 = 𝐶𝑘 � 𝑛(𝑟)5∕3𝑑3𝑟 (2.18)

𝐸 = 𝐶𝑘 � 𝑛(𝑟)5∕3𝑑3𝑟 + � 𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟) +
1
2 ∬ 𝑒2

4𝜋𝜖0
𝑛(𝑟′)𝑛(𝑟)
|𝑟 − 𝑟′| 𝑑

3𝑟𝑑3𝑟′ (2.19)

Then by proceeding with the Lagrangian multiplier method, the above equation can
be minimized.18 However a drawback is that, this approach does not include the electron
exchange. Although it was addressed by Dirac by including the exchange interaction and
correlation functional but, the shell structure and behaviour of atoms in complex systems
could not be established.19, 20

Hohenberg-Kohn Approach

Hohenberg and Kohn devised two theorems which are at the core of Density Functional
Theory.21 The two theorems are stated below.

Theorem I:
“The external potential 𝑉𝑒𝑥𝑡(𝑟), and hence the total energy, is a unique functional of the

electron density 𝑛(𝑟).”
The energy functional as established in the theorem above can be expressed in terms of

the external potential as in Eq. 2.20 where, F[n(𝑟)] is an unknown universal functional of the
electron density n(𝑟).

𝐸[𝑛(𝑟)] = � 𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟)𝑑𝑟 + 𝐹 [𝑛(𝑟)] (2.20)

𝐸[𝑛(𝑟)] = ⟨𝜓|𝐻̂|𝜓⟩ (2.21)

Assuming that a non-degenerate ground state exists, a Hamiltonian (presented in Eq. 2.22)
can be designed corresponding to the total energy functional (presented in Eq. 2.20) such
that, the eigen function minimizes the expectation value (presented in Eq. 2.21) giving the
ground state of the system.

𝐻̂ = 𝐹 + 𝑉𝑒𝑥𝑡 (2.22)
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2.3. Density Based Approximations

𝐹 = 𝑇̂𝑒 + 𝑉𝑒,𝑒 (2.23)
Where, the electronic Hamiltonian 𝐹 consists the kinetic energy and electron-electron

interaction potential as presented in Eq. 2.23. This is identical to every ‘N’ electron system
such that, the Hamiltonian is completely described by ‘N’ electrons and external potential
𝑉𝑒𝑥𝑡(𝑟).

Consider two unique external potentials, 1𝑉𝑒𝑥𝑡(𝑟) and 2𝑉𝑒𝑥𝑡(𝑟) which would result into
identical electron density n(𝑟). Then, the corresponding Hamiltonians 1𝐻̂ and 2𝐻̂ would lead
to unique ground states 1𝜓 and 2𝜓 respectively such that the corresponding electron density
is n(𝑟). Then by applying variational principle and using Eq. 2.23 we get;

1𝐸0 < ⟨2𝜓|1𝐻̂|2𝜓⟩ = ⟨2𝜓|2𝐻̂|2𝜓⟩ + ⟨2Ψ|1𝐻̂ − 2𝐻̂|2𝜓⟩
= 2𝐸0 + � 𝑛(𝑟)[1𝑉𝑒𝑥𝑡(𝑟) − 2𝑉𝑒𝑥𝑡(𝑟)]𝑑𝑟 (2.24)

2𝐸0 <
1𝐸0 + � 𝑛(𝑟)[1𝑉𝑒𝑥𝑡(𝑟) − 2𝑉𝑒𝑥𝑡(𝑟)]𝑑𝑟 (2.25)

1𝐸0 + 2𝐸0 <
2𝐸0 + 1𝐸0 (2.26)

Where, 1E0 and 2E0 are the ground state energies corresponding to the Hamiltonians 1𝐻̂

and 2𝐻̂ respectively. Adding Eq. 2.24 and Eq. 2.25 we get Eq. 2.26 which contradicts our
assumptions and proves that, there can be only one external potential 𝑉𝑒𝑥𝑡 which uniquely
determines the ground state density n(𝑟) and vice-versa.

Theorem II:
“The groundstate energy can be obtained variationally: the density that minimises the

total energy is the exact groundstate density.”
The eigen functions of ‘N’ particle system is governed by the Hamiltonian 𝐻̂ which is

governed by the external potential 𝑉𝑒𝑥𝑡 and the number of particles, off which the external
potential is governed by the electron density n(𝑟) as evident from Theorem I. This indicates
that, the eigen function is a functional of the electron density n(𝑟), this implies that the
expectation value of 𝐹 is also a functional of the electron density n(𝑟) as evident from Eq.
2.27.
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2. Methods and Formalisms

𝐹 [𝑛(𝑟)] = ⟨𝜓|𝐹 |𝜓⟩ (2.27)
Consider an energy functional E𝑥[n(𝑟)] (presented in Eq. 2.28) wherein the external

potential 𝑉𝑒𝑥𝑡 is independent of an unknown electron density n′(𝑟).

𝐸𝑥[𝑛(𝑟)] = � 𝑉𝑒𝑥𝑡(𝑟)𝑛′(𝑟)𝑑𝑟 + 𝐹 [𝑛′(𝑟)] (2.28)
Then according to the variational principle,

⟨𝜓 ′|𝐹 |𝜓 ′⟩ + ⟨𝜓 ′|𝑉𝑒𝑥𝑡(𝑟)|𝜓 ′⟩ > ⟨𝜓|𝐹 |𝜓⟩ + ⟨𝜓|𝑉𝑒𝑥𝑡(𝑟)|𝜓⟩ (2.29)
Where, 𝜓 is the eigen function corresponding to the correct ground state electron density

n(𝑟). This gives us;

� 𝑛′(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 + 𝐹 [𝑛′(𝑟)] > � 𝑛(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 + 𝐹 [𝑛(𝑟)] (2.30)
Then, following the variational principle we arrive at;

𝐸𝑥[𝑛′(𝑟)] > 𝐸𝑥[𝑛(𝑟)] (2.31)
This implies that, the ground state energy and the corresponding electron density n(𝑟) is

lower than any other electron density n′(𝑟). The above variational principle is known as the
Hohenberg-Kohn theorem wherein, The universal functional 𝐹 [n(𝑟)] yields the lowest energy
state if and only if the input electron density is the true ground state electron density n(𝑟).

Kohn-Sham Approach

The Kohn-Sham approach established Density Functional Theory as a practical tool to obtain
the ground state of a system.22 In this approach, the electron density n(𝑟) is parametrized into
one electron orbital 𝜁𝑖(𝑟) (where summation is over all the occupied states) as in Eq. 2.32
with the total energy functional expressed as in Eq. 2.33.

𝑛(𝑟) =
�
𝑖
𝜁∗
𝑖 (𝑟)𝜁𝑖(𝑟) (2.32)

𝐸[𝑛(𝑟)] = 𝑇 [𝑛(𝑟)] + 𝐸𝐻 [𝑛(𝑟)] + 𝐸𝑥𝑐[𝑛(𝑟)] + 𝐸𝑒𝑥𝑡[𝑛(𝑟)] (2.33)
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2.3. Density Based Approximations

Here, E𝐻 is the electron-electron interaction under Hartree approximation, E𝑒𝑥𝑡 is the
external potential and the kinetic energy of the non-interacting electrons in 𝜁𝑖(𝑟) are given as
follows;

𝐸𝐻 [𝑛(𝑟)] = ∬ 𝑛(𝑟)𝑛(𝑟′)
|𝑟 − 𝑟′| 𝑑𝑟𝑑𝑟

′ (2.34)

𝐸𝑒𝑥𝑡[𝑛(𝑟)] = � 𝑉𝑒𝑥𝑡𝑛(𝑟)𝑑𝑟 (2.35)

𝑇 [𝑛(𝑟)] =
�
𝑖
� 𝜁∗

𝑖 (𝑟)
(
− 1

2
∇2)𝜁𝑖(𝑟)𝑑3𝑟 (2.36)

The remaing quantity in Eq. 2.33 is known as the exchange-correlation energy E𝑥𝑐[n(𝑟)].
As the single electron orbitals 𝜁𝑖(𝑟) are variational quantities, the variation of the total energy
functional with respect to these orbitals 𝜁∗

𝑖 (𝑟) would result into an effective single electron
equation known as the Kohn-Sham equation, presented in Eq. 2.37 below.

�
− 1

2
∇2 + � 𝑛(𝑟′)

|𝑟 − 𝑟′|𝑑𝑟
′ + 𝑉𝑒𝑥𝑡[𝑛(𝑟)] +

𝛿𝐸𝑥𝑐[𝑛(𝑟)]
𝛿𝑛(𝑟)

�
𝜁𝑖(𝑟) = 𝜖𝑖𝜁𝑖(𝑟) (2.37)

The Kohn-Sham equation for electrons in a potential are given by Eq. 2.38 where, the
exchange-correlation potential is obtained by the variation of exchange-correlation energy as
presented in Eq. 2.39.

𝑉𝑒𝑓𝑓 (𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + � 𝑛(𝑟′)
|𝑟 − 𝑟′|𝑑

3𝑟′ + 𝑉𝑥𝑐[𝑛(𝑟)] (2.38)

𝑉𝑥𝑐[𝑛(𝑟)] =
𝛿𝐸𝑥𝑐[𝑛(𝑟)]

𝛿𝑛(𝑟)
(2.39)

Therefore, the modified form of the Kohn-Sham equation is as follows;
�
− 1

2
∇2 + 𝑉𝑒𝑓𝑓 (𝑟)

�
𝜁𝑖(𝑟) = 𝜖𝑖𝜁𝑖(𝑟) (2.40)

Here, 𝜖𝑖 are the Lagrange parameters introduced to retain the orthogonality of the single-
particle Kohn-Sham orbitals as follows;

� 𝜁∗
𝑖 (𝑟)𝜁𝑗(𝑟)𝑑

3𝑟 = 𝛿𝑖𝑗 (2.41)
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2.4 Exchange and Correlation Functionals

The exchange and correlation functionals in Kohn-Sham approach define the accuracy of
calculations and outcomes. Since the theory was established, several functionals have been
developed with a goal to perdict chemically accurate results. Broadly, they can be classified
and understood in terms of the Jacob’s ladder wherein the computational cost increases as we
move up the rungs towards a chemically accurate picture of the system under investigation.
The exchange and correlation functionals are required to follow certain constraints i.e., (i) these
functionals show be slow varying densities and should reduce to homogenous two dimensional
electron gas limit, (ii) they should be asymptotic for atoms/molecules (i.e., V𝑥𝑐[𝑛(𝑟)] → −1

𝑟
for 𝑟 → ∞) and (iii) they should not be self-interacting. These functionals can be classified
as, local, semi-local and non-local functionals.

Local Density Approximation

Local density approximation and local spin-density approximations are presented in Eq. 2.42
and 2.43 respectively.21 These are known as local functionals since, the exchange energy
functional depends on the electron density and spin at some point 𝑟 in the electron cloud of
the atom.

𝐸𝐿𝐷𝐴
𝑥𝑐 [𝑛(𝑟)] = � 𝜖𝑥𝑐[𝑛(𝑟)]𝑛(𝑟)𝑑3𝑟 (2.42)

𝐸𝐿𝑆𝐷𝐴
𝑥𝑐 [𝑛↑(𝑟), 𝑛↓(𝑟)] = � 𝜖𝑥𝑐[𝑛↑(𝑟), 𝑛↓(𝑟)]𝑛(𝑟)𝑑3𝑟 (2.43)

Generalized Gradient Approximation

Generalised gradient approximation and generalised spin-gradient apparoximations are
presented in Eq. 2.44 and 2.45 respectively.23, 24 These functionals are known as semi-local
functionals since, the energy functional depends on the electron density and their gradients at
some point 𝑟 and its neighbouthood. One of the well known and most widely used semi-local
functional is PBE.

𝐸𝐺𝐺𝐴
𝑥𝑐 [𝑛(𝑟)] = � 𝜖𝑥𝑐[𝑛(𝑟),∇𝑛(𝑟)]𝑛(𝑟)𝑑3𝑟 (2.44)
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2.4. Exchange and Correlation Functionals

𝐸𝐺𝑆𝐺𝐴
𝑥𝑐 [𝑛↑(𝑟), 𝑛↓(𝑟)] = � 𝜖𝑥𝑐[𝑛↑(𝑟), 𝑛↓(𝑟),∇𝑛↑(𝑟),∇𝑛↓(𝑟)]𝑛(𝑟)𝑑3𝑟 (2.45)

When the kinetic energy densities (presented in Eq. 2.36) are included, we arrive at another
semi-local functional, the meta-generalised gradient approximation (presented generally as in
Eq. 2.46).25, 26 In such functionals, apart from the gradients, we also consider the Laplacians
of density. Although, these functionals exhibit divergent nature when applied on diatomic
systems but, they are useful to identify the type of bond in the system i.e., covalent or metallic.
Some of the frequently used functionals are TPSS and SCAN.

𝐸𝑚𝑒𝑡𝑎−𝐺𝐺𝐴
𝑥𝑐 [𝑛↑(𝑟), 𝑛↓(𝑟)] = � 𝜖𝑥𝑐[𝑛↑(𝑟), 𝑛↓(𝑟),∇𝑛↑(𝑟),∇𝑛↓(𝑟),∇2𝑛↑(𝑟),∇2

↓(𝑟)]𝑛(𝑟)𝑑
3𝑟 (2.46)

Hybrid Approximation

Hybrid functionals are a class of non-local functionals which are computationally quite
expensive but, preferred over other approximations since they provide chemically acurate
results.27 In such functionals the energy functional depends on the density or orbitals
everywhere in the electron cloud of the atom. The advantage of such functionals are; (i) we
can get rid of the self-interaction term and (ii) we can get correct asymptotic form i.e., −1

𝑟
for large 𝑟. The simple solution is to establish a exchange correlation energy funtional as in
Eq. 2.47. But, this has mathematical problem of error cancellation in LDA and GGA i.e., the
error of exchange in LDA and correlation in LDA cancel eachother with the errors in LDA
correlation being quite large as compared to the exact exchange. So the solution is achieved
by introducing a mixing parameter (𝛼; 0 < 𝛼 < 1) which modifies Eq. 2.47 into Eq. 2.48
which takes the form of Eq. 2.49 for the PBE0 functional (one of the first hybrid functionals).

𝐸ℎ𝑦𝑏𝑟𝑖𝑑
𝑥𝑐 [𝑛(𝑟)] = 𝐸𝑒𝑥𝑎𝑐𝑡

𝑥 [𝑛(𝑟)] + 𝐸𝐿𝐷𝐴∕𝐺𝐺𝐴
𝑐 [𝑛(𝑟)] (2.47)

𝐸ℎ𝑦𝑏𝑟𝑖𝑑
𝑥𝑐 [𝑛(𝑟)] = 𝛼𝐸𝑒𝑥𝑎𝑐𝑡

𝑥 [𝑛(𝑟)] + (1 − 𝛼)𝐸𝐺𝐺𝐴
𝑥 [𝑛(𝑟)] + 𝐸𝐺𝐺𝐴

𝑐 [𝑛(𝑟)] (2.48)

𝐸ℎ𝑦𝑏𝑟𝑖𝑑
𝑥𝑐 [𝑛(𝑟)] = 1

4
𝐸𝑒𝑥𝑎𝑐𝑡

𝑥 [𝑛(𝑟)] + 3
4
𝐸𝐺𝐺𝐴

𝑥 [𝑛(𝑟)] + 𝐸𝐺𝐺𝐴
𝑐 [𝑛(𝑟)] (2.49)
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2.5 Electronic Approximations

Pseudopotentials

The Kohn-Sham orbitals used to express the single particle density can be expanded into a
basis set such as a plane wave basis set based on the Blöch theorem (as in Eq. 2.50 below)
which is appropriate to in describe the electrons in a periodic potential observed in solids.28

Aslo, as the kinetic energy operator is diagonal in a plane wave basis set and the potential in
real space, we can utilize fast fourier transforms for switching between the representations
which reduces the computational cost.29

𝜓𝑛
𝑘⃗
(𝑟) =

�
𝐾⃗

𝑐𝑛,𝑘⃗
𝐾⃗

𝑒𝑖(𝑘⃗+𝐾⃗)𝑟 (2.50)

Figure 2.1: A schematic representation of
pseudopotential. Adopted from Phys. Rev. B.,
50, 17953-17979, (1994).

However, the major disadvantage of a
plane wave basis set is its inefficiency since,
the number of basis sets required to de-
scribe atomic eigen functions close to nuc-
leus would be enormous. This difficulty is
addressed by the implementation of pseudo-
potentials representing the potential of ionic
core and the core electrons since, the ma-
terials properties (physical or chemical) are
governed largely by the valence electrons
only. This is subject to certain criteria such
as, (i) valence eigen functions should remain
unchanged outside the core region r𝑐, (ii)
pseudo eigen function within the core should
match exactly at the boundary, (iii) pseudo
eigen function and its first derivative should
be continuous at the boundary and (iv) the pseudo eigen function is nodeless within the core
region. These conditions are graphically presented in Fig. 2.1 where, the eigen function of a
coulomb potential of the nucleus is presented in blue and the pseudo eigen function in red.30

The real and pseudo eigen functions along with the potentials match beyond certain cut-off
radius known as the core radius r𝑐.
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𝜓 = 𝜓̃ +
𝑛�
𝑖
𝑐𝑖𝜙𝑖 −

𝑛�
𝑖
𝑐𝑖𝜙̃𝑖 (2.51)

Pseudopotentials of diffreent classes have been developed over the years, for example,
norm-conserving, ultra-soft, projector-augmented wave method etc.31–33 Especially, the
projector-augmented wave method is a significant improvement over the original techniques
since it is an all-electron eigen function which consists of three parts as presented in Eq. 2.51
where, 𝜓̃ is the pseudo eigen function, 𝜙𝑖 is the all electron partial eigen function, 𝜙̃𝑖 is pseudo
partial eigen function. Here, the pseudo eigen functions are represented by the plane waves
which provide a good description of the eigen functions in regions far away from the ion core
but deviates significantly from the all electron eigen functions near the ionic core. Thus, the
all electron eigen functions in Eq. 2.51 are introduced to account for this error.

van der Waals Corrections

Under the standard framework of local density approximation or the generalised gradient
approximation in density functional theory, the description of long-range dispersion forces
are not accurately incorporated. This is necessary to compute the adsorption properties
of molecules over surfaces and interfaces. To solve this issue, Grimme proposed a semi-
empirical van der Waals correction method famously known as the D2 and D3 correction which
accurately incorporate the long-range dispersion forces into the standard density functional
theory.34–36 The total energy of the Kohn-Sham system (E𝐾𝑆) solved under the self-consistent
field theory is corrected by incorporating the van der Waals correction term (E𝑑𝑖𝑠𝑝) as presented
in Eq. 2.52.

𝐸𝐷𝐹𝑇+𝐷2∕𝐷3 = 𝐸𝐾𝑆 + 𝐸𝑑𝑖𝑠𝑝 (2.52)

In the D2 scheme; a semi-empirical dispersion potential (C6R−6) and damping function
(f𝑑𝑎𝑚𝑝, at small atomic distances) are added to the Kohn-Sham energy in the form of a correction
term presented in Eq. 2.53.

𝐸𝑑𝑖𝑠𝑝 = −𝑆6

𝑁𝑎𝑡−1�
𝑖=1

𝑁𝑎𝑡�
𝑗=𝑖+1

𝐶𝑖𝑗
6

𝑅6
𝑖𝑗

𝑓𝑑𝑎𝑚𝑝(𝑅𝑖𝑗) (2.53)
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2. Methods and Formalisms

Whereas, in the D3 scheme, two-body (E(2)) and three-body (E(3)) energies sum-up forming
the dispersion correction term E𝑑𝑖𝑠𝑝 which is incorporated into the Kohn-Sham energy wherein
the terms (E(2)) and (E(3)) are presented in Eq. 2.54 and 2.55 respectively.

𝐸(2) =
�
𝐴𝐵

�
𝑛=2𝑚

𝑚=1,2,3,...

𝑆𝑛

𝐶𝐴𝐵
𝑛

𝑟𝑛𝐴𝐵
𝑓𝑑,𝑛(𝑟𝐴𝐵) (2.54)

𝐸(3) =
�
𝐴𝐵𝐶

𝑓𝑑,(3)(𝑟𝐴𝐵𝐶)𝐸(𝐴𝐵𝐶) (2.55)

The global scaling factors S𝑛 and S6 in Eq. 2.53 and 2.54 depends explicitly on the
exchange-correlation functional (i.e., for generalised gradient approximation functional such
as PBE; S6 = 1.00 and S8 = 0.72). In equations above, C𝑖𝑗

6 and C𝐴𝐵
𝑛 represent the n𝑡ℎ order

dispersion coefficients for each ‘ij’ and ‘AB’ pair of atoms with interatomic distances R𝑖𝑗 and
r𝐴𝐵 respectively. The damping functions (f𝑑𝑎𝑚𝑝 and f𝑑,𝑛) are included to avoid singulatrities at
small distances R𝑖𝑗 and r𝐴𝐵 with r𝐴𝐵𝐶 as the average radii of a triple atom system ‘ABC’ with
E(𝐴𝐵𝐶) representing a non-additive triple dipole dispersion term.

2.6 Lattice Dynamics, Elastic Constants and AIMD

Density Functional Perturbation Theory

To understand the structure, binding of atoms and ultimately the dynamical stability of a system,
it is necessary to understand the vibrational energies and the displacement patterns which are
known as the electronically excited states. Experimental this is achieved by performing IR and
Raman spectroscopy. Hence, theoretically these phenomena can be addressed by the density
functional perturbation theory wherein, the lattice dynamics of a material are investigated
which governs, polarizability, phonons, IR and Raman spectra, superconductivity etc.37–41

This is done by slightly perturbing the system from its ground state. Mathematically, this is
achieved by taking the derivatives of the density functional theory electronic energies with
respect to different perturbations.

𝑉𝜆,𝑒𝑥𝑡(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + 𝜆
𝜕𝑉𝑒𝑥𝑡(𝑟)

𝜕𝜆
+ 1

2
𝜆2 𝜕

2𝑉𝑒𝑥𝑡(𝑟)
𝜕𝜆2 + ... (2.56)

𝑛𝜆(𝑟) = 𝑛(𝑟) + 𝜆
𝜕𝑛(𝑟)
𝜕𝜆

+ 1
2
𝜆2 𝜕2𝑛(𝑟)

𝜕𝜆
+ ... (2.57)
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𝐸𝜆(𝑟) = 𝐸(𝑟) + 𝜆
𝜕𝐸(𝑟)
𝜕𝜆

+ 1
2
𝜆2 𝜕2𝐸(𝑟)

𝜕𝜆2 + ... (2.58)
In principle, we apply linear response theory to Kohn-Sham equations and observe

the corresponding changes in the solution of electron densities under small perturbations.
Therefore, V𝑒𝑥𝑡, E, n(𝑟) etc. are subjected to perturbations in density functional perturbation
theory. We can expand the external potential into a Taylor series in terms of some parameter
𝛾 as presented in Eq. 2.56. Similarly, we can expand the electron density n(𝑟) and the energy
functional E as presented in Eq. 2.57 and 2.58 respectively.

In Eq. 2.58, 𝜕𝐸(𝑟)
𝜕𝜆

= ∫ 𝑛(𝑟)
𝜕𝑉𝑒𝑥𝑡(𝑟)

𝜕𝜆
indicates that, the first order term in the expansion of

the energy functional does not depend on the derivative of the electron density n(𝑟). However,
the second order term has an explicit dependence on the first order derivative of the electron
density. Hence, we proceed with the second order term of the energy functional expansion to
compute the dynamical matrices for phonon frequencies and effective Born charges.37–41 The
energy functional in terms of the electron density is presented in Eq. 2.59. Then the second
order term of the energy functional is obtained by variational principle (presented in Eq. 2.60)
with respect to the first order eigen functions provided, the first order eigen functions are
orthogonal to the ground state eigen functions (as presented in Eq. 2.61).

𝐸[𝜓] = 𝜓 (1)
𝑚𝑖𝑛

�
𝑖∈𝑜𝑐𝑐

⟨𝜓𝑖|𝑇 + 𝑉𝑒𝑥𝑡|𝜓𝑖⟩ + 𝐸𝐻 ,𝑥𝑐[𝑛] (2.59)

𝜕2𝐸(𝑟)
𝜕𝜆2 = 𝜓 (1)

𝑚𝑖𝑛

�
𝑖∈𝑜𝑐𝑐

�
⟨𝜓 (1)

𝑖 |𝐻 (0) − 𝜖(0)𝑖 |𝜓 (1)⟩ + ⟨𝜓 (1)
𝑖 |𝑉 (1)

𝑒𝑥𝑡 |𝜓 (0)
𝑖 ⟩ + ⟨𝜓 (0)

𝑖 |𝑉 (1)
𝑒𝑥𝑡 |𝜓 (1)

𝑖 ⟩+

⟨𝜓 (0)
𝑖 |𝑉 (2)

𝑒𝑥𝑡 |𝜓 (0)
𝑖 ⟩

�
+ 1

2
𝛿2𝐸𝐻 ,𝑥𝑐

𝛿𝑛(𝑟)𝛿𝑛(𝑟′)
����𝑛(0)𝑛

(1)(𝑟)𝑛(1)(𝑟′)𝑑3𝑟𝑑3𝑟′

+ �
�

𝑑
𝑑𝜆

𝛿𝐸𝐻 ,𝑥𝑐

𝛿𝑛(𝑟)
����𝑛(0)𝑛

(1)(𝑟)𝑑3𝑟
�
1
2
𝑑2𝐸𝐻 ,𝑥𝑐

𝑑𝜆2

����𝑛(0) (2.60)

⟨𝜓 (0)
𝑖 |𝜓 (𝑗)

𝑗 ⟩ = 0 (2.61)
The resulting dynamical matrices are Hermitian i.e., the constituent eigen values 𝜔2

𝑗 (𝑞) and
eigen vectors/functions 𝜉𝑗(𝑞) would be real and orthonormal respectively. In such scenarios,
the phonon dispersions correspond to the phonon density of states which gives information
about the entire brillouin zone.
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The whole phonon dispersion spectra can be obtained by matrix diagonalization (𝛼𝛽)
spanning over the three dimensional space of the wave vector 𝑞 in the entire brillouin zone.38–41

The resultant phonon density of states is determined by summation over every phonon state and
is given as in Eq. 2.62 below where, ′ is the normalization constant such that, ∫ 𝑔(𝜔)𝑑𝜔 = 1;
with g(𝜔)d𝜔 as a fraction of phonons with energies in the range 𝜔 to 𝜔 + 𝑑𝜔.37–41

𝑔(𝜔) = ′ �𝐵𝑍

�
𝑗

𝛿(𝜔 − 𝜔𝑗(𝑞))𝑑𝑞 = ′ �𝐵𝑍

�
𝑗,𝑝

𝛿(𝜔 − 𝜔𝑗(𝑞))𝑑𝑞𝑝 (2.62)

Here, the mesh indices ‘p’ are characterized by the wave vectors ‘𝑞’ in the discrete
irreducible brillouin zone where, 𝑑𝑞𝑝 gives the weight factor corresponding to the volume of
the p𝑡ℎ mesh in the 𝑞 space.

Elastic Properties

Apart from the spectral properties (which can be computed under the density functional
perturbation theory) the mechanical properties of materials are of great relevance since they
give information regarding the nature of the material and its practical applicability. This is
achieved by computing the elastic constants of materials which can be performed when the
groud state structure in equilibrium configuration is known.

The system is perturbed from its equilibrium position by application of discrete strain
fields and the corresponding atomic positions are relaxed. The numerical derivative of energy
with respect to such strain gives the stress corresponding to the strained lattice. Therefore,
stress as a function of strain is obtained, through which the elastic properties of a material can
be determined by Birch-Murnaghan curve fitting.42, 43 The elastic constants corresponding to
the second derivative of energy with respect to the strain tensor for a unit volume are presented
in Eq. 2.63 where, 𝜖𝑘𝑙 and 𝜎𝑖𝑗 are the components of strain and stress tensors respectively.

𝐶𝑖𝑗𝑘𝑙 =
𝜎𝑖𝑗

𝜖𝑘𝑙
(2.63)

The tensor C𝑖𝑗𝑘𝑙 is a 6 × 6 matrix comprising of the independent elastic constants, C𝑖𝑗

which is determined by the crystal symmetry. Therefore, the bulk, shear and, young’s modulus
can be calculated by applying different averaging approaches such as the one proposed by,
Reuss, Voigt and Hill. Under the Voigt and Reuss averaging approach we can compute the
bulk and shear modulus as presented in Eq. 2.64, 2.65 and 2.66, 2.67 respectively.
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𝑉 = 1
9
[
(𝑐11 + 𝑐22 + 𝑐33) + 2(𝑐12 + 𝑐23 + 𝑐13)

] (2.64)

𝑉 = 1
15

[
(𝑐11 + 𝑐22 + 𝑐33) − (𝑐12 + 𝑐23 + 𝑐13) + 3(𝑐44 + 𝑐55 + 𝑐66)

] (2.65)

𝑅 = 1
9
[
(𝜎11 + 𝜎22 + 𝜎33) + 2(𝜎12 + 𝜎13 + 𝜎23)

] (2.66)

𝑉 = 1
15

[
(𝜎11 + 𝜎22 + 𝜎33) − (𝜎12 + 𝜎13 + 𝜎23) + 3(𝜎44 + 𝜎55 + 𝜎66)

] (2.67)
Hill proposed that, Voigt and Reuss averaging aproaches serve as upper and lower limits

of the elastic moduli respectively. Therefore, the Hill averaged approach gives bulk and shear
modulus as presented in Eq. 2.68 and 2.69. Then using the bulk and shear moduli we can
obtain other elastic moduli such as the yound’s modulus  and the poisson ratio 𝜌 as presented
in Eq. 2.70 and 2.71 respectively.

𝐻 = 1
2
(𝑉 + 𝑅) (2.68)

𝐻 = 1
2
(𝑉 + 𝑅) (2.69)

 =
9𝐻𝐻

3𝐻 + 𝐻
(2.70)

𝜌 =
3𝐻 − 2𝐻

2(3𝐻 + 𝐻 )
(2.71)

Apart from the mechanical properties which can be extracted from the equations above,
we can also comment about the machanical stability of materials based on the Born-Huang
criteria for the bulk and low dimensional materials which talk about the material stability
in terms of the elastic tensors.44 This is important because, a crystal system cannot exist in
a stable or a meta-stable phase if their elastic tensors do not obey the Born-Huang stability
criteria. For example, the stability criteria for a bulk cubic system are presented in Eq. 2.72
and for a low dimensional hexagonal system are presented in Eq. 2.73.45, 46

𝑐11 + 2𝑐12 > 0; 𝑐44 > 0; 𝑐11 − 𝑐12 > 0 (2.72)
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𝑐11 > 0; 𝑐11 − 𝑐12 > 0; 𝑐66 > 0 (2.73)

ab-initio Molecular Dynamics

Classical molecular dynamics simulations deviate from the quantum mechanical approach,
making it reliable for prediction of dynamics on meso-scopic scales. However, ab-initio
molecular dynamics originates from a different approach and is used to get insights into
the effects of temperature and the structural stability of materials. It exploits the fact that,
atomic motions in periodic potentials obey Newtons second law of motion. So, rather than
computing forces from classical mechanics, in ab-initio method, the forces are computed from
ground state electron density obtained by the density functional theory. This makes ab-initio
method highly accurate as compared to the coarsed approach of classical molecular dynamics,
although, the disadvantage is associated computational cost. Hence, ab-initio method is just
confined to a few hundred atoms. However, for for relatively simple systems, this method
is quite feasible with proper balance in accuracy and computational time. In this thesis we
employ, ab-initio molecular dynamics to estimate the structural properties of material at a
particular temperature. This is achieved by a proper choice of thermostat out of, Gaussian,
simple velocity rescaling, Berendsen, Bussi-Donadio-Parrinello, Andersen etc.47–50

In the Gaussian thermostat, the instantaneous temperature is exactly equal to the target
temperature which is achieved by modifying the force as, F = F𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛+ F𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, where
F𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the typical interactions force computed during simulation and F𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is a
Lagrangian multiplier such that, the kinetic energy is constant. Such a thermostat does
not sample the canonical distribution rather it samples the isokinetic. Hence, the position-
dependent (structural) properties can be obtained using this thermostat but not the velocity-
dependent (dynamical) properties.47

The simple velocity rescaling thermostat is a non-physical thermostat although it is
the easiest to implement. In this scheme, the particle momentum is rescaled in such a
way that, the instanteneous temperature correlates to the target temperature similar to the
Gaussian thermosat which leads to isokinetic ensemble. However, this scheme fails to properly
sample the isokinetic ensemble so it is not recommended. Berendsen thermostat is a weak
coupling thermostat the simple velocity rescaling thermostat. However, since it samples
neither canonical nor the isokinetic distribution, it is not recommended.47
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Bussi-Donadio-Parrinello thermostat is also known as, Canonical Sampling through
Velocity Rescaling. In such a thermostat, the rescaling is done to kinetic energy which is
stochastically selected from the kinetic energy distribution under the canonical ensemble
scheme. Hence, this thermostat properly samples canonical ensemble and similar to the
Berendsen thermostat, a time coupling parameter can be introduced to vary the velocity
rescaling. This thermostat is reliable since the choice of time coupling constant does not
affect structural properties and dynamical properties.49

Andersen thermostat selects particles randomly and facilitates a collision among them in
a heat bath wherein the particle attains new velocity governed by the Maxwell-Botlzmann
distribution. Such a thermostat can easily reproduce a canonical ensemble. Hence, it can be
used to account for the structural properties of the material. We implement this thermostat
in our ab-initio molecular dynamics to assertain the structural stability of low dimensional
systems.50

2.7 Boltzmann Transport Theory

Transport properties of materials are governed by the response of carriers (such as, electrons
or phonons) to external fields such as electric, magnetic or temperature gradient. Such carrier
motion gives rise to finite electric or thermal conductivity owing to the exchange of energy
and momentum due to scattering from crystal impurities under the influence of external fields.

Boltzmann transport theory deals with various transport parameters such as, the Seebeck
coefficient, electrical conductivity, and electronic thermal conductivity.51 These parameters
are computed by solving the semi-classical Boltzmann transport equation which considers
various external parameters effecting the transport properties of a material in the constant
relaxation time approximation regime.51 These equation have to be solved iteratively to
compute the electron, phonon contributions to the thermoelectric properties. We begin with a
distribution function f(r,k,t) which defines, the number of carriers in state ‘k’ around a point ‘r’
at time ‘t’. Such a distribution function can change over time by the virtue of, (i) diffusion, (ii)
influence of external fields and, (iii) scattering/collisions. The evolution of such a system can
be determined by computing the time derivative which leads to the semi-classical Boltzmann
transport equation presented in Eq. 2.74 which reduces to Eq. 2.75 in case of a steady state
system where, the net rate of change of distribution function f(r,k,t) is zero. These equations
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are solved by following different approximations, off which the relaxation time approximation
is the most reliable technique.

𝑓 (𝑟, 𝑘, 𝑡)
𝜕𝑡

= −𝑣𝑘
𝜕𝑓𝑘

𝜕𝑟
− 𝑘

𝜕𝑓 (𝑟, 𝑘, 𝑡)
𝜕𝑘

− 𝑓 (𝑟, 𝑘, 𝑡) − 𝑓 0(𝑟, 𝑘, 𝑡)
𝜏𝑘

(2.74)

− 𝑣𝑘
𝜕𝑓𝑘

𝜕𝑟
− 𝑘

𝜕𝑓 (𝑟, 𝑘, 𝑡)
𝜕𝑘

− 𝑓 (𝑟, 𝑘, 𝑡) − 𝑓 0(𝑟, 𝑘, 𝑡)
𝜏𝑘

= 0 (2.75)
The energy conversion (from thermal to electrical and vice-versa) efficiency of a material

is quantified by the figure of merit presented in Eq. 2.76 where, ‘’ is Seebeck coefficient,
‘𝜎’ is the electrical conductivity, ‘T’ is temperature, ‘𝜅𝑒’ and ‘𝜅𝑙’ are the electronic and
lattice contributions of thermal conductivity respectively. The electronic contribution to
thermoelectrics is computed using the Boltzmann transport equations whereas the lattice
constributions are computed using the phonon Boltzmann transport equation wherein the third
order phonon scattering effects are incorporated. This is implemented in the ShengBTE code.

𝑧𝑇 =
( 2𝜎
𝜅𝑒 + 𝜅𝑙

)
𝑇 (2.76)

The electronic contributions to thermoelectric transport properties are computed by
extrapolating the electronic band dispersion energies under Fourier expansion. This is done
under the constant relaxation time approximation wherein the Seebeck coefficient of the
system is independent of the scattering rates.52 However, one issue is that, the electrical
conductivity (𝜎) and the electronic thermal condcutivity (𝜅𝑒) are computed as a function of the
relaxation time (𝜏). Similarly, the lattice contribution to thermal conductivity (𝜅𝑙) is computed
in terms of the third order interatomic force constants since, the second order interatomic
force constants under harmonic approximation neglect the crystal anharmonicity. Further, the
deformation potential theory is implemented to compute transport parameters independent
of the relaxation time as proposed by Bardeen and Shokley, wherein the carrier mobility (𝜇)
can be used to estimate the relaxation time (𝜏) as presented in Eq. 2.77 and 2.78 respectively,
where, C𝑖𝑖 are the elastic constants and E1 is the deformation potential constant.53 The later is
computed by subjecting the system to strain of the form ±𝛿(𝑥) and the corresponding valence
band maxima (E(𝑉 𝐵𝑀)) and conduction band minima (E(𝐶𝐵𝑀)) energies are computed from
the electronic dispersion relation to incorporate the hole and electron dependent properties
respectively.53 However, these band energies are corrected and realigned with respect to the
core energy (E(𝑐𝑜𝑟𝑒)) at the corresponding strain. The plot of these aligned eigen values with
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strain is linear in nature wherein, on linear fit; the slope represents the deformation potential
constant.

𝜇 =
(8𝜋)1∕2ℏ4𝑒𝐶𝑖𝑖

(𝑚∗)5∕2(𝑘𝐵𝑇 )3∕2𝐸2
1

(2.77)

𝜏 = 𝜇𝑚∗

𝑒
(2.78)

Thermally activated electrons and holes are vital in transport phenomena of inorganic
materials since they exhibit highly coherent wavelengths longer than the lattice constant
with the magnitudes close to the acoustic phonon mode at the center of brillouin zone.54

The dimensional quantum confinement is known to alter the transport properties and the
associated dynamics such as, electron-phonon coupling and scattering mechanisms. Hence,
it is necessary to incorporate these scenarios by extending the deformation potential theory
to low dimensional materials which was proposed by Bardeen and Shockley.52, 55, 56 It was
eventually shown that, the carrier mobilities explicitly demonstrate the effects of dimensional
quantum confinement.57–59

2.8 Topological Properties

The topological properties in terms of, ℤ2 invariant, slab-band structures, angle resolved
photoemission spectroscopy etc. lie at the core of investigations performed in this thesis.
These properties can be obtained by transforming the plane wave basis set in the reciprocal
space to maximally localised wannier functions in real space. This helps generate the tigh-
binding model which is used to obtain the the required properties. Here we discuss various
methods which are developed to compute the said topological properties, beginning from the
theory of maximally localised wannier functions, Berry connection and the Berry curvature,
spin Hall conductivity, the tight-binding Hamiltonian model, wannier charge centers, methods
to compute ℤ2 invariants etc.

Maximally Localised Wannier Functions

The maximally localised wannier functions approach was developed by Marzari and Vanderbilt
to transform the eigen functions from spanning the reciprocal space to be localised in real
space.60, 61 In a typical first-principles calculation, the electronic structure of periodic systems
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defined by the extended Blöch states for n𝑡ℎ band with crystal momentum ‘k’ as 𝜓𝑛𝑘. However,
Marzari and Vanderbilt gave an alternate approach wherein, the spatially localised wannier
functions centred at a crystal lattice site R, 𝜔𝑛𝑅(𝑟) are represented in terms of the Blöch states
as presented in Eq. 2.79 where, V is the unit cell volume, U(𝑘) is a unitary matrix to mix the
Blöch states at each crystal momentum ‘k’. Since, the unitary matrix U(𝑘) is not uniquely
defined, different choice of such matrix would lead to different spacial localisation of the
wannier functions.

𝜔𝑛𝑅(𝑟) =
𝑉

(2𝜋)3 �𝐵𝑍

[�
𝑚

𝑈 (𝑘)
𝑚𝑛𝜓𝑚𝑘(𝑟)

]
𝑒−𝑘.𝑅𝑑𝑘 (2.79)

The speard (Ω) of a wannier function is presented in Eq. 2.80 such that, it can be decoupled
into a gauge invariant term (Ω𝐼 ) and a term (Ω̃) which depends on the gauge choice of U(𝑘). The
latter can be further decomposed into diagonal (Ω𝐷) and off-diagonal (Ω𝑂𝐷) terms constituting
the wannier functions as presented in Eq. 2.81.

Ω =
�
𝑛

[⟨𝜔𝑛0(𝑟)|𝑟2|𝜔𝑛0(𝑟)⟩ − |⟨𝜔𝑛0(𝑟)|𝑟|𝜔𝑛0(𝑟)⟩|2
] (2.80)

Ω = Ω𝐼 + Ω̃ = Ω𝐼 +Ω𝐷 +Ω𝑂𝐷 (2.81)
Where,

Ω𝐼 =
�
𝑛

[⟨𝜔𝑛0(𝑟)|𝑟2|𝜔𝑛0(𝑟)⟩ −
�
𝑅𝑚

|⟨𝜔𝑛𝑅(𝑟)|𝑟|𝜔𝑛0(𝑟)⟩|2
] (2.82)

Ω𝐷 =
�
𝑛

�
𝑅≠0

|⟨𝜔𝑛𝑅(𝑟)|𝑟|𝜔𝑛0(𝑟)⟩|2 (2.83)

Ω𝑂𝐷 =
�
𝑚≠𝑛

�
𝑅

|⟨𝜔𝑛𝑅(𝑟)|𝑟|𝜔𝑛0(𝑟)⟩|2 (2.84)

In order to obtain, the maximally localised wannier functions, Marzari and Vanderbilt
proposed to minimize the gauge dependent spread function (Ω̃) with respect to a set of unitary
matrices U(𝑘).60 For this purpose, two key ingredients are obtained from the first-principles
electronic structure calculations i.e., (i) the overlap between cell periodic part of Blöch states
(|𝑢𝑛𝑘⟩) are computed over vectors which connects a given k-point to its neighbours as presented
in Eq. 2.85 and, (ii) initially by guess, the Blöch states (|𝜓𝑛𝑘⟩) are projected onto a localised
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orbital (|𝑔𝑛⟩) (as presented in Eq. 2.86) such that, the small N × N matrices M(𝑘,𝑏), A(𝑘) and
U(𝑘) are independent of the basis set used to obtain the original Blöch states.60

𝑀 (𝑘,𝑏)
𝑚𝑛 = ⟨𝑢𝑚𝑘|𝑢𝑛𝑘+𝑏⟩ (2.85)

𝐴(𝑘)
𝑚𝑛 = ⟨𝜓𝑚𝑘|𝑔𝑛⟩ (2.86)

Berry Connection and Curvature

In terms of periodic Blöch states (|𝑢𝑛𝑘⟩ = 𝑒−𝑖𝑘.𝑟|𝜓𝑛𝑘⟩), the Berry connection is defined as in
Eq. 2.87. Then, the curl of Berry connections gives the Berry curvature as presented in Eq.
2.88.

𝐴𝑛(𝑘) = ⟨𝑢𝑛𝑘|𝑖∇𝑘|𝑢𝑛𝑘⟩ (2.87)

Ω𝑛(𝑘) = ∇𝑘 × 𝐴𝑛(𝑘) = −Im ⟨∇𝑘𝑢𝑛𝑘| × |∇𝑘𝑢𝑛𝑘⟩ (2.88)
The quantities presented in Eq. 2.87 and 2.88 are central to the description of electronic

properties of crystals.62

Spin Hall Conductivity

Under the independent particle approximation, the spin Hall conductivity of a material is
given by the Kubo-Greenwood formula presented in Eq. 2.89.

𝜎spin 𝛾
𝛼𝛽 (𝜔) = ℏ

Ω𝑐𝑁𝑘

�
𝑘

�
𝑛

𝑓𝑛𝑘

�
𝑚≠𝑛

2 Im [⟨𝑛𝑘|𝑗𝛾𝛼|𝑚𝑘⟩⟨𝑚𝑘| − 𝑒𝜈̂𝛽|𝑛𝑘⟩
]

(𝜖𝑛𝑘 − 𝜖𝑚𝑘)2 − (ℏ𝜔 + 𝑖𝜂)2
(2.89)

Here, 𝑗𝛾𝛼 = 1
2
{𝑠̂𝛾 , 𝜈̂𝛼} is the spin current operator with the spin operator 𝑠̂𝛾 = ℏ

2
𝜎̂𝛾 where, 𝛼

and 𝛽 represent the cartesian directions and 𝛾 represents the spin direction which are typically
x, y and z respectively. Ω𝑐 is the cell volume, N𝑘 are the number of k-points used to sample
the brillouin zone, f𝑛𝑘 is the Fermi-Dirac distribution function, ℏ𝜔 is the optical frequency
and 𝜂 is a smearing paramter in energy units.

The velocity matrix in the numerator of Eq. 2.89 is a known quantity, however, the
spin current matrix ⟨𝑛𝑘|𝑗𝛾𝛼|𝑚𝑘⟩ which is unknown term can be computed using wannier
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interpolation method. Eq. 2.89 can be further resolved into a band projected Berry curvature
like term presented in Eq. 2.90 such that, the momentum resolved term summing over the
occupied bands is presented in Eq. 2.91. Then the final form of the spin Hall conductivity is
presented in Eq. 2.92.64

Ωspin 𝛾
𝑛,𝛼𝛽 (𝑘) = ℏ2

�
𝑚≠𝑛

−2 Im [⟨𝑛𝑘|1
2
{𝑠̂𝛾 , 𝜈̂𝛼}|𝑚𝑘⟩⟨𝑚𝑘| − 𝑒𝜈̂𝛽|𝑛𝑘⟩

]

(𝜖𝑛𝑘 − 𝜖𝑚𝑘)2 − (ℏ𝜔 + 𝑖𝜂)2
(2.90)

Ωspin 𝛾
𝛼𝛽 (𝑘) =

�
𝑛

𝑓𝑛𝑘Ω
spin 𝛾
𝑛,𝛼𝛽 (𝑘) (2.91)

𝜎spin 𝛾
𝛼𝛽 (𝜔) = −𝑒2

ℏ
1

Ω𝑐𝑁𝑘

�
𝑘
Ωspin 𝛾

𝛼𝛽 (𝑘) (2.92)

Where the unit of Ωspin 𝛾
𝛼𝛽 (𝑘) is Å2 and the unit of 𝜎spin 𝛾

𝛼𝛽 (𝜔) is (ℏ∕𝑒)𝑆𝑐𝑚−1 wherein, for
𝜔 = 0 we have the DC spin Hall conductivity and for 𝜔 ≠ 0 we have the frequency dependent
or AC spin Hall conductivity. Eq. 2.91 is used to compute momentum resolved, band projected
spin Berry curvature.

Tight-Binding Model

A semi-empirical approach to study electronic structures of periodic systems by projecting the
Hamiltonian onto a series of localised orbitals is known as the tight-binding method. There are
three methods to generate and construct such as model which are, (i) Slater-Koster method, (ii)
discrete k⋅p model on a lattice and (iii) maximally localised wannier functions.65–67 Over the
years, the maximally localised wannier functions have gained a lot of popularity to generate
tight-binding model for predicting materials properties. The basis functions in a tight-binding
method can be mutually orthogonal or non-orthogonal. Wannier functions generate orthogoal
basis functions for the tight-binding model which is implemented in WannierTools code to
predict material properties.67

To generate the tight binding model, consider, ‘i’ atoms with ‘𝜇’ orbitals such that,
the combination is labelled as, {i,𝜇} with, ‘𝑅⃗’ representing the lattice vactors of the three
dimensional periodic arrangement and 𝜏𝑖 indicating the position of atoms in the unit cell.
Then, the local orbital of i𝑡ℎ atom centered at (𝑅⃗ + 𝜏𝑖) can be presented as in Eq. 2.93.

𝜙𝑅𝑚(𝑟) ≡ 𝜙𝑚(𝑟 − 𝑅⃗) ≡ 𝜑𝑖𝜇(𝑟 − 𝑅⃗ − 𝜏𝑖) (2.93)
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Since the basis functions have to be orthogonal, the need to satisfy the relation,
⟨𝜙𝑅𝑚|𝜙𝑅′𝑚 = 𝛿𝑅𝑅′𝛿𝑚𝑛. Then, the tight-binding parameters of the Hamiltonian with
translational symmetry under the Blöch periodic codition is given as presented in Eq. 2.94.

𝐻𝑚𝑛(𝑅⃗) = ⟨𝜙0𝑚|𝐻̂|𝜙𝑅𝑛 (2.94)

Using the tigh-binding Hamiltonian presented in Eq. 2.94, we can present the tigh-
binding Hamiltonian in momentum space by performing a Fourier transformation under two
conventions presented in Eq. 2.95 and 2.96.67

𝐻𝑚𝑛(𝑘) =
�
𝑅

𝑒𝑖𝑘⋅𝑅𝐻𝑚𝑛(𝑅⃗) (2.95)

𝐻𝑚𝑛(𝑘) =
�
𝑅

𝑒𝑖𝑘⋅(𝑅+𝜏𝑚−𝜏𝑛)𝐻𝑚𝑛(𝑅⃗) (2.96)

The eigen values obtained under the two conventions prsented in Eq. 2.95 and 2.96 are
identical but the eigen functions are different i.e., eigen functions in Eq. 2.95 are similar to the
Blöch eigen functions 𝜓𝑛𝑘(𝑟) and, the eigen functions in Eq. 2.96 are similar to the periodic
Blöch eigen functions 𝑢𝑛𝑘(𝑟) = 𝜓𝑛𝑘(𝑟)𝑒−𝑖𝑘𝑟. We use the tight-binding Hamiltonian presented
in Eq. 2.96 to compute material properties.

Topological Invariants

The topological insulators are classified into trivial and non-trivial characters by computing
the ℤ2 invariants and the Chern numbers.68, 69 The former is used in case of systems where
the time-reversal is invariant and the later is used in case of systems where the time-reversal
symmetry is broken. We will proceed with discussions of the ℤ2 invariants.

Fu and Kane proposed that, for systems governed by the inversion symmetry in bulk and
low dimensional phase, the ℤ2 invariants can be computed by taking the product of parities
of the Kramer degenerate occupied eigen states at time reversal invariant momenta and parity
invariant points in the brillouin zone.70

Equation 2.97 and 2.98 are used to compute the ℤ2 invariants for bulk materials since, the
bulk has eight time-reversal invariant points which leads to four independent ℤ2 invariants.
One of them is 𝜈0, which is computed as the product over all the eight points (as presented in
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Eq. 2.97) and the other three (𝜈1, 𝜈2, 𝜈3) are computed as products over four 𝛿𝑖 for which the
time reversal invariant momenta lie in the same plane.70

(−1)𝜈0 =
8∏

𝑖=1
𝛿𝑖 (2.97)

(−1)𝜈𝑘 =
∏
𝑛𝑘=1;

𝑛𝑗≠𝑘=0,1

𝛿𝑖=(𝑛1𝑛2𝑛3) (2.98)

Equation 2.99 presents the ℤ2 for low dimensional materials wherein, the product of
parities are computed only along four time-reversal invariant momenta.70

(−1)𝜈 =
4∏

𝑖=1
𝛿𝑖 (2.99)

However, for systems violating the time-reversal symmetry, the method of computing ℤ2

invariat is based on the wilson loop and wannier charge center methods.71, 72 It was found
that, both of these methods accurately predict the ℤ2 invariants in systems violating the time-
reversal symmetry. For systems obeying time-reversal symmtry, the ℤ2 could be computed
in terms of the time-reversal polarization (𝜃) which is gauge invariant (as presented in Eq.
2.100).70

Δ =
[𝜃( ∕2) − 𝜃(0)

]
𝑚𝑜𝑑2 (2.100)

This equation is modified into Eq. 2.101 and 2.102 wherein, the time-reversal polarization
relation is modified in terms of the wannier charge centers along two momentum planes in
the brillouin zone (as in Eq. 2.101 and 2.102).72

𝜈0 =
[
(ℤ2)𝑘𝑖=0 + (ℤ2)𝑘𝑖=0.5

]
𝑚𝑜𝑑2 (2.101)

𝜈𝑖 = (ℤ2)𝑘𝑖=0.5, 𝑖 = 1, 2, 3 (2.102)

Surface States

It is a computationally expensive task to compute the slab band structures to observe the
surface/edge states in topological systems. For this purpose, we employ, the tight-binding
Hamiltonian model generated using wannier functions to compute the surface/edge states
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using the surface Green’s function for a semi-infinite system. The Green’s function approach
based on the effective field theory and transfer matrix converge slowly near singularities.73–75

As an alternative, the iterative Green’s function method developed in 1980’s is used for faster
convergence.76, 77 The faster convergence and resulting lower computational time is due to the
principle layers (which are large enough to ensure that, the hoppings to next nearest layers are
negligible). This is achieved by replacing the principle layers with an effective two principle
layers such that, the interaction of effective layers is governed by the energy dependent residual
interacctions which are weaker. This process of replaceing the layers is repeated iteratively
until the interactions between the layers is quite small as per requirements.78

𝑠(𝑘||,𝜔) ≈ (𝜔 − 𝜖𝑠𝑛)
−1 (2.103)

̃𝑠(𝑘||,𝜔) ≈ (𝜔 − 𝜖𝑠𝑛)
−1 (2.104)

𝑏(𝑘||,𝜔) ≈ (𝜔 − 𝜖𝑛)−1 (2.105)
The surface (𝑠(𝑘||,𝜔)) and bulk (𝑏(𝑘||,𝜔)) Green’s function obtained from such iterative

process are presented in Eq. 2.103 and 2.105 respectively where, ̃𝑠 is the surface Green’s
function of a dual surface. Then, the surface/edge spectrum can be obtained from the imaginary
part of the surface Green’s function as presented in Eq. 2.106.

(𝑘||,𝜔) = − 1
𝜋

lim
𝜂→0+

Im Tr𝑠(𝑘||,𝜔 + 𝑖𝜂) (2.106)

2.9 Computational Packages

We use Quantum ESPRESSO open-source package which an integrated suite to perform;
electronic-structure calculations and materials modeling at on bulk as well as nano-scale.79 It
is based on density functional theory, plane waves approximation and pseudopotential methods.
Using this package, we performed first-principles computations under self-consistent field
formalism to obtain the ground state eigen energies of the bulk and low dimensional periodic
systems. For electronic structure calculations (wherein we compute the electronic eigen states
as a function of crystal momentum) we perform computations in terms of non-self consistent
field formalisms. This code is so versatile that, we can perform structural relaxations and
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optimizations, compute the electronic charge densities, perform computations using van der
Waals dispersion corrections, compute electronic-structure under the influence of spin-orbit
interactions, compute the density of states and orbital projected density of states, compute
vibrational properties under density functional perturbation theory etc. Another advantage of
Quantum ESPRESSO code is that, due to its open-source availibility, it can be interfaced with
several computational codes to compute other material properties. Several members of active
computational physics group develop codes which can be easily interfaced with Quantum
ESPRESSO increasing its capabilities.

Figure 2.2: Computational codes used in this
thesis.

For example, using the ground state ener-
gies and the corresponsing crystal structure,
we can interface the Quantum ESPRESSO
code with the ElaStic code (a part of the
Exciting code) to compute the elastic stress
tensors.80 This is achieved in ElaStic code by,
perturbing the ground state system with small
strain of the order of ± 5% or 10% (as per
our requirement). The corresponding crystal
structures are fed into Quantum ESPRESSO
code and the respective ground state energies
are computed. Then, the ElaStic code plots
a curve of energy versus strain and performs
linear or polynomial fitting eventually giving
the elastic stress tensors.

For computing the thermoelectric transport properties, we employ the open-source
BoltzTrap code which implements the semi-classical Botlzmann transport equations to
compute the semi-classical transport coefficients.81 This code is interfaced with Quantum
ESPRESSO and uses a mesh of electronic-structures for computing the thermoelectric
properties. Hence, we can get the insights into the electronic aspect of thermoelectric
properties using this code. As far as the lattice or vibrational aspect is concerned, we
use ShengBTE code which computes the semi-classical Boltzmann transport equations for
phonons.82 The 2𝑛𝑑 and 3𝑟𝑑 order inter-atomic force constants required in ShengBTE are
obtained using Quantum ESPRESSO.
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The topological properties are computed by employing open-source packages such as,
Wannier90 and WannierTools code.83, 84 The Wannier90 code is used to generate the maximally
localised wannier functions. These functions are obtained by performing fourier transforms of
the plane wave basis set generated in Quantum ESPRESSO. The general workflow is that, we
perform self-consisten field calculations on a system, then the non-consistent field calculations
(which gives information about the distribution of eigen states in the momentum space), this is
followed by the interfacing script pw2wannier (which performs the transformation of basis sets
and generates the input parameters required for wannierisation) bridging Quantum ESPRESSO
and Wannier90, then finally, wannierisation is performed to compute the maximally localised
wannier functions. Using the maximally localised wannier functions obtained from Wannier90,
we generate the exact tight-binding Hamiltonian model which would be interfaced with the
WannierTools code.

We employed the maximally localised wannier functions to compute and investigate
topological properties using WannierTools code. This code extracts the information from
the exact tight-binding Hamiltonian generated using Wannier90 and computes topological
properties such as, angle resolved photo-emission spectroscopy-like spectra, spin-textures,
topological invariants (using Wilson loop method), slab band structures etc.

During the entire process of investigations and prediction of material properties, open-
source packages such as, xcrysden and VESTA were extensively used.85, 86 These are
crystalline and molecular structure visualisation programs used to, display and visualize the
crystal structures and morphologies, trace the brillouin zone momentum path (for computing
band structures and phonon dispersion curves), generate 2D and 3D plots of charge density
profiles / contours using volumetric data of electronic and nuclear densities etc.

DD dd
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