
APPENDIX A

Computational Details

A.1 Bulk Materials

LiMgBi

We performed density functional theory based first-principles calculations to investigate
topological phase transitions under the application of pressure. For this purpose, we obtained
crystallographic information for LiMgBi in F43m[216] space group from MaterialsProject
repository. Optimization of lattice constant (a) was performed following the convergence
test for total energy with respect to, wave function cut off and k-mesh. We used norm-
conserving pseudopotentials under generalized gradient approximation which considers 1s1,
3s2 and 6s26p3 orbitals of Li, Mg and Bi respectively for calculations without considering
spin-orbit interactions. The pseudopotential method is based on martins-troullier with
exchange correlation of perdew-burke-ernzerhof functional type.2, 4 For calculations under
spin-orbit interactions we used, projector augmented wave sets with perdew-burke-ernzerhof
exchange correlation which considers the contribution from core electrons giving rise to
relativistic effects in our calculations.3 The optimization was performed by, finding a
global minima in terms of the total energy of the system and then narrowing down (using
bisection method) to a local minima with a constrain that, the total pressure on the atoms is
0.00 kbar. The converged value of plane wave kinetic energy cut-off for norm-conserving
(projector augmented wave) pseudopotential and charge density for norm-conserving (projector
augmented wave) pseudopotential are 50 Ry (90 Ry) and 200 Ry (360 Ry) respectively. A
uniform monkhorst-pack grid for k-points of 7 × 7 × 7 was used in the self-consistent
calculations for both norm-conserving and projector augmented wave pseudopotentials.7
For better prediction of energy band gap and in order to verify our generalized gradient
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A.1. Bulk Materials

approximation results, we have repeated some of our calculations with state-of-the-art screened
coulomb hybrid functional calculations based on Heyd-Scuseria-Ernzerhof functional in
Vienna ab initio simulation package.5, 6 The cut-off for the plane-wave basis expansion was
taken as 500 eV. To sample the brillioun zone we have used a monkhorst-pack-grid of 6 ×

6 × 6 k-points. The convergence criterion of 0.01 eV/Å for hellmann-feynman forces and
10−6 eV for total energy were considered. Phonon calculations were performed using density
functional perturbation theory.11 For phonon calculations, we used 10 × 10 × 10 q-mesh
which was followed by plotting the dynamical matrices in the entire brillouin zone.

LiMgSb

We employed first-principles calculation using plane wave self consistent formulation
implemented in Quantum ESPRESSO code.1 We employed norm conserving generalized
gradient approximation pseudopotentials (which utilize the, 1s1, 3s2 and 5s25p3 orbital
contributions from of Li, Mg and Sb respectively) with martins-troullier method.2, 4 The
plane wave basis set was optimized by convergence method, the resulting kinetic energy cutoff
was 90 Ry. The optimized k-mesh i.e., monkhorst-pack grid of 8 × 8 × 8 was used.7 The
optimization was confirmed by the threshold for total force on atoms of the order of 10−4

eV/Å with total stress on atoms 0.00 kbar.

LiMgAs

We performed electronic studies using, density functional theory based first-principles calcula-
tions in Quantum ESPRESSO code which implements plane wave self consistent formulation.
We employed norm conserving generalized gradient approximation pseudopotentials which
utilize the, 1s1, 3s2 and 4s24p3 orbital contributions from of Li, Mg and As respectively.
Martins-troullier pseudopotential method is used with exchange correlation of perdew-burke-
ernzerhof functional type.2, 4 Projector augmented wave sets with perdew-burke-ernzerhof
exchange correlation were used for spin-orbit interaction calculations since, it considers the
relativistic effects arising from the core electrons.3 Lattice constant, wave function kinetic
energy cut-off and k-mesh were optimized by performing convergence test with, the test
condition of total pressure on atoms as 0.00 kbar. The wave function kinetic energy cut-
off was obtained to be 90 Ry (90 Ry for projector augmented wave). Uniform momentum
monkhorst-pack grid was used in the calculations with, 8 × 8 × 8 (8 × 8 × 8 for projector
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augmented wave).7 Structural stability was verified by calculating phonon dispersion curves
using density functional perturbation theory.11 A q-mesh of 6 × 6 × 6 was used.

For all the compounds, with thorough qualitative analysis, we quantified our results by
calculating the surface states and ℤ2 invariants using WannierTools which used the tight-
binding model generated by Wannier90.8, 9

AuI

The electronic properties (electronic band structure, density of state and orbital projected
density of states) were calculated using state-of-the-art density functional theory based
first-principles method as implemented in the Quantum ESPRESSO code.1 The scalar
relativistic norm-conserving pseudopotentials are employed for the calculations with martins-
troullier method to replace the core ionic potential and consider the electronic effect only
due to the valence electrons.2 In order to consider the spin-orbit interaction effects, full
relativistic projector augmented wave sets were used to account for the effect of core electrons.3
These pseudopotentials were used with exchange-correlation functional of perdew-burke-
ernzerhof type under the generalized gradient approximation.4 The system was optimized
with proper convergence test using the bisection method to obtain the ground state of the
system. Converged values of the plane wave kinetic energy cut-off of 80 Ry with a uniform
monkhorst-pack grid for k-vectors of 9 × 9 × 9 were used in the self-consistent calculations
with convergence threshold of <10−6 Ry.7 We generated the tight-binding model for AuI
using the maximally localised wannier functions which was obtained by proper minimization
of the spread function �Ω using the Wannier90.8 The tight-binding model was then passed
through the WannierTools code to characterize and further investigate the topological states.9
WannierTools was used to calculate the surface states and ℤ2 invariants with the help of
iterative Green’s function and wilson Loop calculations respectively.

For validating the mechanical stability of AuI, the second-order elastic stiffness tensor
was computed within Lagrangian theory of elasticity as implemented in the ElaStic code.10

For calculating the elastic constants of the system, a set of deformations were imposed on the
optimized ground-state crystal structure and all deformed structures were relaxed keeping
tight convergence criteria. Followed by this, the second ordered partial derivative of the total
energy (U) with respect to the Lagrangian strain were computed using equation A.1 below.
Where, V0 is the volume of ground state reference structure with U being the total energy of
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A.1. Bulk Materials

the deformed structures, and 𝜂𝛼 and 𝜂𝛽 being the Lagrangian strains in Voigt notation.

𝐶𝛼𝛽 =
1
𝑉0

𝜕2𝑈
𝜕𝜂𝛼𝜕𝜂𝛽

(A.1)

The dynamic stability was investigated by calculating the phonon dispersion curves and
the phonon density of states. Density functional perturbation theory was used with q-mesh
of 8 × 8 × 8 and self-consistency threshold of <10−14 Ry.11 This was followed by plotting
the dynamical matrices in the entire brillouin zone. Followed by this, the thermoelectric
efficiency zT of the material was evaluated using equation A.2. Where, the symbols S, 𝜎 and
T represent the Seebeck co-efficient, electrical conductivity and temperature, respectively,
and the terms 𝜅𝑒 and 𝜅𝑙 are the electronic and lattice (phonon) contributions to the thermal
conductivity.

𝑧𝑇 =
( 𝑆2𝜎
𝜅𝑒 + 𝜅𝑙

)
𝑇 (A.2)

The Boltzmann transport theory as implemented in BoltzTraP package which has been
utilized for computing the electronic contribution to the thermoelectric transport properties
of AuI.12 The thermoelectric parameters like S, 𝜎, 𝜅𝑒, power factor (PF = 𝑆2𝜎) and zT were
computed as a function of the chemical potential, carrier concentration and temperature for
assessing their effect on the thermoelectric performance of AuI. It is a known fact that, the
solution obtained under semi-classical Boltzmann transport treatment yields relaxation time
(𝜏) dependent 𝜎 and 𝜅𝑒. Hence, for obtaining 𝜏 independent thermoelectric parameters, we
have employed deformation potential theory that has been widely utilized for computing
mobility (𝜇) and relaxation time (𝜏) of bulk as well as low dimensional materials. The
deformation potential based mobility was calculated using equation A.3. Where, apart from
the standard constants, the terms 𝐶3𝐷, 𝑚∗ and 𝐸1 represent the elastic constant, the carrier
effective mass and the deformation potential respectively.

𝜇 = (8𝜋)1∕2𝑒ℏ4𝐶3𝐷

3(𝑘𝐵𝑇 )3∕2(𝑚∗)5∕2𝐸2
1

(A.3)

Besides computing the electronic thermoelectric parameters, the lattice thermal conduct-
ivity of the material plays a crucial role in determination of the overall zT. For accurate
predictions of the lattice contribution to thermal conductivity requires the inclusion of anhar-
monicity. This can be done by incorporating third or higher order interatomic force constants.

167



A. Computational Details

The first step towards this requires the computation of the second order harmonic interatomic
force constants, which in present case are calculated under density functional perturbation
theory. Following this, we have utilized a complementary python script provided together
with the ShengBTE package for creating supercell structures of size 3 × 3 × 3 considering
the fifth nearest neighbour atoms.13 In total 260 supercell structures were constructed and
were considered for self-consistent relaxation. The outputs of these 260 structures together
with the second order interatomic force constants were fed to the same python utility tool for
generating third order anharmonic interatomic force constants. At the end, the third order
interatomic force constants with appropriate input script were utilized to iteratively solve the
Boltzmann transport equation for phonons to calculate the temperature dependent thermal
conductivity and related transport properties as implemented in ShengBTE package.13

A.2 Low Dimensional Materials

LiMgAs Monolayer

We performed electronic studies using, density functional theory based first-principles calcula-
tions in Quantum ESPRESSO code which implements plane wave self consistent formulation.1
We employed norm conserving generalized gradient approximation pseudopotentials which
utilizes the, 1s1, 3s2 and 4s24p3 orbital contributions from of Li, Mg and As respectively.
Martins-troullier pseudopotential method is used with exchange correlation of perdew-burke-
ernzerhof functional type.2, 4 Projector augmented wave sets with perdew-burke-ernzerhof
exchange correlation are used for spin-orbit interaction calculations since, it considers the
relativistic effects arising from the core electrons.3 Lattice constant, wave function kinetic
energy cut-off and k-mesh were optimized by performing convergence test with, the test
condition of total pressure on atoms as 0.00 kbar. The wave function kinetic energy cut-off
was obtained to be 50 Ry (80 Ry for projector augmented wave). Uniform momentum grid of
monkhorst-pack type was used in the calculations with, 6 × 6 × 1 (8 × 8 × 1 for projector
augmented wave).7 Structural stability was verified by calculating phonon dispersion curves
using density functional perturbation theory.11 A q-mesh of 5 × 5 × 1 was used. With
thorough qualitative analysis, we quantified our results by calculating the ℤ2 invariant using
Wannier90 around the wilson charge loops this was followed by the plotting edge state spectra
in WannierTools.8, 9
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A.2. Low Dimensional Materials

Functionalized Tellurene and Selenene

We implemented first-principles based density functional theory in Quantum ESPRESSO
package to obtain the ground state energy of the system (with a vacuum of c = 25.00 Å
along the [001] crystal direction to isolate the interactions between periodic images) under
plane wave self consistent formulation and calculate the electronic band structures, density of
states and orbital/elemental projected density of states.1 We used, scalar-relativistic and norm
conserving martins-troullier pseudopotentials for calculations without spin-orbit interactions
and fully-relativistic projector augmented wave pseudopotentials (for calculations with spin-
orbit interactions) under generalized gradient approximation with perdew-burke-ernzerhof
type of exchange-correlation functional in our calculations.2–4 The converged value of kinetic
energy cutoff was 80 Ry and the corresponding uniform momentum monkhorst-pack grid was
of 8 × 8 × 1.7 The structures were fully relaxed with force convergence criteria of < 10−6 a.u.
The dynamic stability of the system was investigated in terms of phonon dispersion curves
and phonon density of states under the density functional perturbation theory regime with
a q-mesh of 5 × 5 × 1.11 We then projected the plane wave functions onto the maximally
localized wannier functions (with convergence of the spread function) by using Wannier90
code to compute the quantum transport properties and create the tight-binding hamiltonian
as an input for the WannierTools code.8, 9 The spin Hall conductivity (SHC) (𝜎spinz

xy (𝜔)) was
computed using the kubo-greenwood formula within the independent-particle approximation,
and the Berry curvature (Ωz(𝑘)) and k-resolved spin Berry curvature (Ωspinz

xy (𝑘)) to understand
the topological properties and the quantum transport phenomena. For this purpose, a dense
k-mesh of 100 × 100 × 1 was used; since large contributions of spin Berry curvatures occur
in minute regions of k space which leads to slow convergence. We finally compute the ℤ2

invariant, Chern number (𝐶) and edge states using the WannierTools code.9

AuI Monolayer

We performed state-of-the-art density functional theory based first-principles computations
as implemented in Quantum ESPRESSO code under the plane wave self consistent
formalism.1 We used scalar relativistic norm conserving martins-troullier pseudopotentials
under generalized gradient approximation with exchange correlation functional of perdew-
burke-ernzerhof type.2, 4 For spin-orbit interaction calculations, full relativistic projector
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augmented wave sets with perdew-burke-ernzerhof exchange correlation functional were
used to account for the relativistic effects arising from the core electrons.3 The optimized
kinetic energy cut-off and uniform monkhorst-pack momentum grid (k-mesh for brillouin
zone sampling) used for unit cell calculations were 90 Ry and 10 × 10 × 1 respectively.7 The
dynamic stability of the system was confirmed by calculating the phonon dispersion curves
using density functional perturbation theory with a q-mesh of 5 × 5 × 1.11 A vacuum of 25Å
was introduced along the [001] crystal direction in order to eliminate the interactions with the
neighbouring periodic images. Ab-initio molecular dynamics simulations were performed for
3 picoseconds (3000 femtoseconds) at 300 K thermostat temperature to verify the structural
stability. To investigate the catalytic properties a 3 × 3 × 1 supercell was designed with kinetic
energy cut off and k-mesh of 60 Ry and 5 × 5 × 1 respectively. In order to consider the van
der Waals effect, Grimme correlations were incorporated in our computations.14 These were
followed by; computing ℤ2 invariant around the wilson loops, edge state spectrum and slab
band structures using WannierTools (WT) which employs the tight binding model generated
by Wannier90.8, 9

Topological Quantum Catalyst LiMgAs

We performed density functional theory based first-principles calculations using Quantum
ESPRESSO.1 For calculations without spin-orbit interactions, we used scalar-relativistic
and norm-conserving martins-troullier pseudopotentials and for calculations with spin-orbit
interactions, we used fully-relativistic projector augemented wave pseudopotentials.2, 3 The
generalized gradient approximation was implemented with perdew-burke-ernzerhof type
of exchange-correlation functional.4 The hexagonal unit cell was transformed into an
orthorhombic unit cell using the rotation matrix () which transforms the hexagonal basis
vector into orthorhombic basis vector. This orthorhombic unit cell was then transformed
into nanoribbons (with ribbon width N = 15 to avoid edge-edge interactions) which are
periodic along, (a) [100] and (b) [010] crystal directions with zig-zag and planar like edge
terminations respectively. The corresponding uniform momentum monkhorst-pack grid (k-
mesh) for brillouin zone sampling was set to be 1 × 6 × 1 and 6 × 1 × 1 respectively.7 A
vacuum of 25 Å along the [001] direction and 17 Å along the aperiodic directions in the
nanoribbon configurations were imposed to avoid interactions due to periodic images. We
also performed the calculations with 3 × 3 × 1 supercell of two dimensional LiMgAs (with
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A.2. Low Dimensional Materials

25 Å vacuum along the [001] crystal direction) with k-mesh for brillouin zone sampling as
6 × 6 × 1. The optimized kinetic energy cutoff used in all the calculations was set to 60 Ry
and the systems were relaxed with force convergence criteria of < 10−6 a.u. Throughout the
calculations, Grimme correlations were incorporated to address the van der Waals effects.14

From the perspective of stability and room temperature viability, we performed ab-initio
molecular dynamics simulations for 3 picoseconds (3000 femtoseconds) with thermostat
set at 300 K. We calculated the slab band structures using WannierTools wherein the exact
tight-binding Hamiltonian generated by Wannier90 was implemented.8, 9

DD dd

171



Bibliography

[1] Giannozzi, P., Andreussi, O., Brumme, T. et.al., J Phys. Condns. Matter, 29(46), 465901,
2017.

[2] Troullier, N., & Martins, J. L., Phys. Rev. B, 43(3), 1993, 1991.

[3] Blöchl P. E., Phys. Rev. B, 50, 17953, 1994.

[4] Perdew J. P., Burke K. & Ernzerhof M., Phys. Rev. Lett., 77, 3865, 1996.

[5] Heyd J., Scuseria G. E. & Ernzerhof M., J. Chem. Phys., 118, 8207-8215, 2003.

[6] Kresse G. & Furthmuller J., Phys. Rev. B, 54, 11169-11186, 1996.

[7] Monkhorst H. J. J. & Pack J. D., Phys. Rev. B, 13, 5188, 1976.

[8] Mostofi A. A., Yates J. R., Pizzi G., Lee Y. S., Souza I., Vanderbilt D. & Marzari N.,
Comput. Phys. Commun., 185, 2309-10, 2014.

[9] Wu Q., Zhang S., Song H. F., Troyer M. & Soluyanov A. A., Comput. Phys. Commun.,
224, 405-16, 2018.

[10] Golesorkhtabar R., Pavone P., Spitaler J., Puschnig P. & Draxl C., Comput. Phys.
Commun., 184, 1861-73, 2013.

[11] Baroni S., De Gironcoli S., Dal Corso A. & Giannozzi P., Rev. Mod. Phys., 73, 515,
2001.

[12] Madsen G. K. H. & Singh D. J., Comput. Phys. Commun., 175, 67-71, 2006.

[13] Wu L., Carrete J., Katcho N. A. and Mingo N., Comput. Phys. Commun., 185, 1747-58,
2014.

172



Bibliography

[14] Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys., 132, 154104, 2010.

DD dd

173


